
SIAM J. MATRIX ANAL. APPL.
Vol. 12, No. 1, pp. 1-6, January 1991

(C) 1991 Society for Industrial and Applied Mathematics
001

LARGEST SINGULAR VALUE SUBMULTIPLICATIVITY*

CHARLES R. JOHNSONy AND PETER NYLEN

Abstract. A combinatorial technique by which several different products on matrices may each be represented
as a conventional product of transformed matrices is described. When the matrix transformation does not
increase the largest singular value, a submultiplicativity inequality for the product may be deduced. An example
is given of a product that is submultiplicative, but for which there is no such representation in terms of the
ordinary product. The Hadamard product on infinite matrices and a mapping defined on triples of matrices X,
Y, B (XY) B are also considered.
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1. Introduction. The primary purpose of this note is to exhibit a simple technique
for deducing some submultiplicativity inequalities for nonstandard products (such as the
Hadamard product) from the corresponding inequality for the usual product. We illustrate
the technique with some examples, including a new inequality (spectral norm submul-
tiplicativity for the "box" product). Although we do not attempt to determine all im-
plications of the technique, it is likely that the idea will be useful in analogous settings.

Let Mn,m denote the set of all n-by-m complex matrices. By a product (on matrices)
we mean a function

1.1 :Mn,m X Mp,q- Mr,s,
whose value at A, B Mn,m X Mp,q is denoted by A. B. Note that we are making no
assumption of linearity, associativity, or any other properties usually associated with the
term product. We consider several products that can be defined on matrices.

Given A e Mn,p and B e Mp,m, the usualproduct ofA a,.j] and B bij] is denoted
by AB.

Let A Mn,m and B Mp,q. The Kronecker product of A [ai] and B [bi],
denoted by A (R) B, is the member of Mnp,mq defined blockwise by [aliBI.

Let A ai] and B bij] Mm,n. The Hadamardproduct ofA and B is the matrix
[aibi], which we denote by A B.

Let n, m, p, q and r be positive integers. Let A Mnp,mq and B Mnq,mr. Partition
A into an n-by-m matrix of blocks whose i, jth block is a p-by-q matrix, A [Ai] in
block notation. Partition B as an n-by-rn block matrix whose i,jth block is q-by-r, so that
B [Bij]. The box product of A and B is defined by A B [AijBi]. When n m
1, the box product reduces to the usual product; when p q r 1, the box product
becomes the Hadamard product. The box product has also been considered in HMN].

2. The largest singular value. The largest singular value of a matrix A is defined to
be the nonnegative square root of the largest eigenvalue of the matrix A’A, which we

Received by the editors August 15, 1988; accepted for publication (in revised form) October 23, 1989.
The work ofboth authors was supported in part by a North Atlantic Treaty Organization (NATO) travel grant.

? Department of Mathematics, College of William and Mary, Williamsburg, Virginia 23185
(#CRJOH2@WMMVS.BITNET). The work ofthis author was supported in part by National Science Foundation
grant DMS 87 13762 and by Office of Naval Research contract N00014-87-K-0661.

Department of Mathematics ACA, Auburn University, Auburn, Alabama 36849
(PMNYLEN@AUDUCVAX.BITNET). The work of this author was supported in part by Office of Naval
Research contract N00014-87-K-0012.



2 c.R. JOHNSON AND P. NYLEN

denote by (rl (A). Of course, (rl (.) restricted to the set of matrices of a particular size is
the spectral norm.

We list here several well-known properties of a that we will need.
Permutation Invariance. Let A e M,,m. Let P and Q be n-by-n and m-by-m per-

mutation matrices, respectively. Then a (PAQ) (rl (A).
Direct Sum. Let A e M., and B e Mp,q. Then

((A 0))=max{a(A)al(B)}.al (A ( B) al
0 B

Submatrix. Let A e M.,m and let B be a matrix obtained from A by deleting some
rows and/ or columns. Then a (B) _-< a (A).

Submultiplicativity. Let A e M.,p and B 6 Mp,m. Then a(AB) <= al(A)a(B).
3. Submultiplieativity. Let be a product as defined in (1.1). We say that is

submultiplicative with respect to a (") if for all A e M.,m and all B e M,q,

a(A. B) <= a(A)a(B).
All four products we have described have this property. For the usual product, see

[HJ 1, p. 296 ]. For a treatment of inequalities involving the singular values of the Had-
amard product, including this one, see AHJ ]. For the Kronecker product the inequality
is an equality (see HJ2, Chap. 4 ). Submultiplicativity ofthe box product has also been
independently discovered by others HMN]. Our purpose here is simply to illustrate a
combinatorial embedding technique that facilitates a unified proof ofsubmultiplicativity
for the latter three products (and others) based on the submultiplicativity of the usual
product. We suspect this approach will be useful elsewhere.

OBSERVATION 3.1. Let be a product on matrices. Suppose there exist mappings
F and G such that for all A and B for which A. B is defined,

(a) A. B F(A)G(B),
(b) al(F(A)) _-< al(A) and al(G(B)) _-< a(B).

Then is submultiplicative with respect to al, since

a(A. B) a,(F(A)G(B)) <-_ al(F(A))al(G(B)) <- a(A)a(B).

Ofcourse, this observation is equally valid for any nonnegative-valued function (in place
of al(" )) provided it satisfies the submultiplicativity inequality with respect to the usual
product and is defined on the different sizes of matrices appearing in (a) and (b). There
are many candidates for product/function pairs that we might try.

Now we construct mappings F and G that satisfy the hypotheses of Observation 3.1
for the latter three products.

For the Kronecker product, let the sizes n-by-m and p-by-q be given. We consider
the Kronecker product mapping Mn, X Mp,q into Mnp,mq. We start with the formula
[HJ2, Chap. 4]

A(R)B=(A@Ip)(Im@B),

where Ip denotes the p-by-p identity matrix and Im the m-by-m identity matrix. Define
the mappings F and G, respectively, by

F(A)=(A(R)Ip) and G(B)=(Im(R)B).

By the direct sum property of

a(G(B))= r(B).
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There exist permutation matrices P and Q such that

P(A(R)Ip)Q=II(R)A

(see HJ2, Chap. 4 ). Then

a (F(A)) a(Ip(R)A) a(A).

For the Hadamard product, let the size n-by-m be given. F will be a mapping from
M.,m into M.,.m and G a mapping from M.,m into M.m,m. For x C", define D(x) to be
the n-by-n diagonal matrix with the entries of x placed in order on the main diagonal.
LetA and B 6 M.,m be given. Denote the columns ofA and B by a, am and b,
bm, respectively. Define F by

F(A)= [D(a),D(a2), ,D(am)]

and define G by

G(B) b b2( ( bm.
The usual product of F(A) and G(B) is the Hadamard product A B since

F(A)G(B)= [O(a)b,D(az)b2, ,D(am)bm]

[ao b, a2o b2, am bm] A B.

By applying the direct sum and submatrix properties of cry, we have

r G(B)) <= (B).
There exists an nm-by-nm permutation matrix P such that

F A P= a a2 () () am.
Thus, similarly,

r (F(A )) <= cr (A ).

Submultiplicativity of a (.) with respect to the Hadamard product was first noted in
S ]. In this case our technique actually exhibits the stronger inequality

a (Ao B) -<_ r (A)c (B),

in which r (A) denotes the largest row length ofA and c (B) the largest column length
of B. This inequality was noted in [AHJ].

For the box product, let the integers n, m, p, q, and r in the definition of the box
product be given. Let A M.p,mr and B Mnr,mq. Utilize the same block partitioning for
A [Ao] and B [Bij].

We define the mappings F" Mnp,m -- Mnp,nmr and G Mnr,mq -- Mnmr,mq by the
same procedure as that used with the Hadamard product, except instead ofplacing entries
ofA and B in specified locations, place the p-by-r blocks ofA in those locations occupied
by entries ofA and the r-by-q blocks ofB in those locations occupied by entries of B.

An extension of the argument used in the Hadamard product case based on block
multiplication of matrices gives

AB=F(A)G(B).

Now, we obtain the bounds on g. For j ( l, m }, let Bj. denote the nr-by-q
submatrix of B in the columns of B indexed by (j )m + through (j- )m +
q. Then

G(B)=BB2 ..OB,,
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from which the inequality

a,(G(B))<=a,(B)

follows. For { 1, n } let Ai denote the p-by-mr submatrix ofA consisting of the
rows indexed by (i )n + through (i )n + p. Let P denote the permutation
matrix used at this stage in the Hadamard product argument. The permutation matrix
P (R)/r accomplishes the equality

from which

F(A)(P(R)Ir)=AI@A2@

trl(F(A)) <-trl(A)

follows.
We may note that these proofs of submultiplicativity hold for any function defined

on all sizes of matrices that has the permutation invariance, direct sum, submatrix, and
submultiplicativity properties. Besides a, the norms induced by the lp norm, _-< p _-<, have these properties. Of the unitarily invariant norms, only multiples of a(.),
Crl ("), with c >= 1, have both the submultiplicativity and direct sum property.

4. A nonexample. In this section, we show that a product having the submultipli-
cativity property need not satisfy the hypotheses of Observation 3.1. Define the product

by the following"

o" M2 X M2-- M2

A’W=
b d x z bw 0

We will use the following upper and lower bounds on al. Let B e Mn,m. A lower
bound on a (B) is the maximum of the Euclidean length of the rows and columns of
B. This is a special case of the submatrix property. An upper bound on a (B) is trace
(B *B) 1/2. We then may obtain the submultiplicativity inequality

o’,(A" W) <-_(lawl 2+ lay[ 2+ Ibwl2) 1/2

-<(law[ 2 + lay[ 2 + [bw[ 2 + [by[2) 1/2

=(lal2+ IblZ)/2(lwl2+ lyl) /2

<= tr (A )tr (W).

To show that does not satisfy the hypotheses of Observation 3.1, we first need
a lemma.

LEMMA 4.1. Let x, y e C" with Euclidean length at most one and suppose that
xty 1. Then x yC, where the superscript c denotes the complex conjugate.

Proof. The proof follows from the well-known characterization of cases of equality
for the Cauchy-Schwarz inequality.

Now we suppose has a representation as in the hypotheses of Observation 3.1 and
we derive a contradiction. Denote the rows of F(A) and the columns of G(B), respec-
tively, by

F(A)=(f(A)t)f(A)t
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and

G(B)= [gl(B),g2(B)].

Denoting the member ofM2 with a one in the i, j position and zero in all other positions
by Eij, we have

EI.E EI, E" EI2 E12, E21" E E21.
This implies

f(E,)tg,(E,1) 1, f(E,)tg2(E,2) 1, f2(E2,)tg,(E,) 1.

By applying the lower bound for tr(F(Eij)) and a(G(Eo)), all these vectors have at
most unit length. By applying Lemma 4.1, we have

fl(E)C=g(E), f(E)C=g2(E2), fi(E2)C=g(E).

Thus,

f2(E2)C=g2(E12).

However, this is a contradiction since it implies that the 2,2 element of E2" E2 is one,
whereas this product is the zero matrix. We conclude that does not satisfy the hypotheses
of Observation 3.1.

5. Extensions. In this section we show that this approach can be applied to dem-
onstrate the submultiplicativity of the Hadamard product of infinite matrices that rep-
resent operators on the Hilbert sequence space 12 and that other inequalities appearing
in the literature can be simply deduced with this method.

Let A [aij] and B [bi] be semi-infinite matrices representing operators in the
Hilbert sequence space 12 with respect to the standard orthogonal basis. We may deduce
Hadamard submultiplicativity in this setting by noting that the previous construction of
G and F yield mappings from 12 into a countable direct sum of 12, and back again,
respectively. Here we give an explicit construction of infinite matrices F(A) and G(B)
representing these mappings, such that F(A)G(B) A B.

Define the function p: N - N (N { 1, 2, 3, } by setting p(i) to be the ith
largest prime number. Define functions Fand G mapping the set ofsemi-infinite matrices
into itself by the following: F(A) [fk],

air if k=p(r)i forsome rN,
fk=

0 otherwise,

and G(B) [gk],

bqj
gk=

0

ifk=p(q)j for some qeN,

otherwise.

With these definitions of F and G, we continue to have A B F(A)G(B), a(A) >-
a(F(A)), and a(B) >= a(G(B)). Thus, we again have al(Ao B) >= a(A)al(B).

Let A and B M.,m. Let ri(A) denote the ith largest Euclidean length among the
rows ofA and ci(A) the ith largest Euclidean column length ofA. Now, let X and Y be
matrices such that A XY. In the recent work AHJ ], the family of inequalities

k k

(5.1) E ri(AoB) <= E ri(X)ci(Y)ai(B), k 1, ,n
i=l i=l
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was proven. We note that the k case of (5.1) may be demonstrated using the present
methodology.

It is easily verified that for x e Cn, y Cm, and B Mn,m, (xyt) B D(x)BD(y).
Let the matrices X s Mn,p, Y e Mp,m, and B e M.,n, be given. Denote the columns ofX
by x, Xp and the rows of Y by y, y. Then

(XY)o B (xyl) B +... + (xpy,) B

D(x )BD(y + + D(xp)BD(y,)

[D(Xl), ,D(xp)l(Ip(R)B)
D(yp)

This is of the form F(X)G(B)H(Y). It is readily seen, using the permutation invari-
ance and direct sum properties of a, that a(F(X)) r(X), a(H(Y)) c(Y), and
(G(B)) a(B), and thus the inequality is proved by two applications of the sub-
multiplicativity property of.

This representation may be further exploited to carry out the first step in the proof
of 5.1 ), namely, to show that

k k, ai(AoB)<=a(B) ri(X)ci(Y), k 1, ,n.
i=1 i=1

At present we do not know if our method can be used to prove (5.1) directly, or
even the weaker family of inequalities from [HJ3],

k k_, a(AoB) <- _, qi(A)oi(B), k 1, ,n.
/=l i=l

However, in sequel to this paper we will show how Observation 3.1 may be modified to
obtain the inequalities

(5.2) (I)(A B) _-< (I)(A) (I)(B)

and

5.3 (I)(A I B) _-< (I)(A) (I)(B)

for unitarily invariant norms (I)(-) that dominate the spectral norm. Inequalities (5.2)
and (5.3) appear in [HJ3] and [HMN], respectively.
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DETERMINANTS OF HESSENBERG L-MATRICES*

JEFFREY L. STUARTf

Abstract. A determinantal formula for Hessenberg matrices is presented. The formula uses paths in an
associated directed graph. The qualitative properties of Hessenberg matrices are investigated. Necessary and
sufficient conditions are given for when the matrix is an L-matrix, and for when the determinant is sign positive
or sign negative.

Key words. Hessenberg matrix, L-matrix, determinant, qualitative determinant
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1. Introduction. The recent literature contains many papers which relate the sign
patterns ofmatrices or their inverses to other properties ofthe matrix including invertibility
2 ], 7 ], 8 ], stability 4 ], 5 ], solvability 2 ], 6 ], 8 ], and determinantal formulae
], 9 ]. We investigate the relationship between the sign pattern of a Hessenberg matrix

and the positivity or negativity of its determinant. For this purpose, we employ a com-
binatorial formula for the determinant ofa Hessenberg matrix in terms ofproducts along
certain paths in an associated, directed graph. This formula is used to characterize which
sign patterns for Hessenberg matrices yield sign-positive or sign-negative determinants,
and hence which Hessenberg matrices are L-matrices.

2. Hessenberg matrices. Throughout this paper, //n(F) will denote the set of all
n n matrices over the set F, where F is , C or ( l, 0, ). IfA is in //n( { 1, 0, ) ),
A will be called a pattern, and the entries ofA will be represented by the characters "+,"
"-" and "0."

Let A be in /(C). The matrix A [aij] is called an upper Hessenberg matrix if
ao 0 whenever > j + 1. An upper Hessenberg matrix is called unreduced if ai9 4:0
whenever j + 1.

Lower Hessenberg matrices and unreduced lower Hessenberg matrices are defined
analogously. Since such matrices are the transposes of upper Hessenberg matrices, since
the determinant is transpose-invariant, and since inversion and transposition are com-
muting operations, we will consider only upper Hessenberg matrices in this paper.

Suppose that A is an n n upper Hessenberg matrix which is not unreduced. That
is, ai + 1,i 0 for some i. Then A partitions into a block upper triangular matrix of the
form

A
0 A2

where A is an upper Hessenberg matrix, and where A2 is an (n i) n i) upper
Hessenberg matrix. Consequently, an arbitrary upper Hessenberg matrix can be repre-
sented as a block upper triangular matrix each ofwhose diagonal blocks is an unreduced
upper Hessenberg matrix. It follows that many formulae which require unreduced Hes-
senberg matrices can be extended to arbitrary upper Hessenberg matrices by applying
the formulae to each of the unreduced, diagonal blocks.
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For every real number r, the weak sign function wsgn (r) is defined by

I if r >= 0,
wsgrl r

-1 if r<0.

Observe that for every real number r, wsgn (r). r [r[.
PROPOSITION 1. LetA be in #n(N). Suppose thatA is an upper Hessenberg matrix.

Then there exists a diagonal matrix D with diagonal entries + such that DAD- is an
upper triangular Hessenberg matrix with the same zero pattern as A, and such that
[DAD -1 ]i,i-l [ai,i-[ for 2 <- <= n 1. Furthermore, D can be chosen to be D
diag d d2, dn) where dl- 1, and di di- l" wsgn (ai,i_ )for 2 <-_ <- n. In particular,
ifA is unreduced, then DAD- is unreduced with a positive subdiagonal.

An unreduced, upper Hessenberg matrix with a positive subdiagonal will be called
a Hessenberg matrix in standardform.

3. Sign patterns, sign-positive determinants, and L-matrices. For every real number
r, the sign function sgn (r) is defined by

if r>0,

sgn(r)= 0 if r=0,

-1 if r<0.

Let A be in (). Define sgn (A) to be the matrix in g( { -1, 0, } ) such that
for each and j, [sgn (A)] sgn (A0). Let Q(A) be the subset of/g,(N) given by

Q(A)= {B: sgn (A) sgn (B)}.
Thus for each A, Q(A) has a canonical representative: sgn (A). The matrix A is called
an L-matrix if every matrix in Q(A) is invertible.

IfA is in /,(N), then A is said to have sign-positive determinant if det (B) > 0 for
every matrix B in Q(A). Sign-negative, sign-nonnegative, and sign-nonpositive deter-
minants are similarly defined. Clearly, A is an L-matrix if and only if det (B) 4 0 for
every B in Q(A).

PROPOSITION 2. Let A be in //ln(N). A is an L-matrix ifand only ifA has either
sign-positive determinant or sign-negative determinant.

Proof. Assume A is an L-matrix. Suppose that there exist matrices B and B’ in
Q(A) such that det (B) > 0 and det (B’) < 0. Since B and B’ have the same sign pattern,
there is a continuous path in N: from B to B’ that remains in Q(A). Since the map
det (-): N ": -- is continuous, the intermediate value theorem for continuous, real-
valued functions implies there must be a point C on the path at which det (C) 0, a
contradiction. The converse is clear.

4. Triangular embeddings and ((A). If B is in ///(C) and _-< i, j =< n, then
B(i[ j) will denote the submatrix ofA obtained from B by deleting row and column j.

Let A [ao] be an upper Hessenberg matrix in //,(C). Then A embeds in an
(n + (n / upper triangular matrix TA, called the triangular embedding ofA, as

1 /11 I12"" "t/ln
1

a21 a22
TA 0 A a:2"..

0 0""0 1
1

follows:
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Observe that TA(n + 111 A. Let denote A with the indexing inherited from TA.
Thus the rows of are indexed by {1, 2,..., n} and the columns by {2, 3,...,
(n+ 1)}.Thatis, forl =<i<-nand <j=<n+ 1,[TA]ij=dij.

IfA is an upper Hessenberg matrix in //n(), let f(A denote the edge-weighted,
loop-free, directed graph on (n + vertices for which sgn (TA) is the adjacency matrix.
That is, f#(A) has vertex set { 1, 2, 3, n + }, and there is an edge from to j if
and only if di :/: 0 and < j. If there is an edge from to j, then it is assigned weight
sgn (di). (In diagrams, this weight will be denoted with either a "+" or a "-.")

Example 1. Let A be any matrix for which

+ + +
sgn(A)= + + 0

0 + 0

Then

+ + +
0 + +sgn(TA)=
0 0 +
0 0 0

and (A) is the graph:

+

1 2 3 4

Since the graph N(A) will play a crucial role in our results, it is appropriate to
characterize the irreducibility of A in terms of this graph rather than in terms of the
standard associated directed graph f# (A).

LEMMA 3. Let A be an unreduced, upper Hessenberg matrix. A is irreducible ifand
only iffor each with <= <= n 1, there is an edge in ((A) from { 1, 2, } to

{i+2, i+3,...,n+l}.
Proof. Since A is unreduced, A is irreducible if and only if there is a directed path

in c(A) from to n. Let be the largest vertex such that there is a directed path in f(A)
from to i. Since A is unreduced, the vertex set 9 { 1, 2, } is strongly connected,
and for all j > i, there can be no edge from a vertex in 5’ to vertex j. Thus, c(A) is
strongly connected if and only if for each with -< _-< n 1, there is an edge from
{ 1, 2, } to { + 1, + 2, n }. Since an edge from a to/3 in f(A) becomes an
edge from a to/3 + in (A), the result holds. V]

5. Paths and path products. Suppose and j are positive integers with < j. Let
ij denote the set of all increasing sequences of integers starting with and ending with
j. If P 6 i, P is called a path from to j. If P ij, let [PI denote the number of
elements in P considered as a set, and let pc { i, + 1, + 2, j } \P.

Let B brs] be in //n(C) such that brr 0 for each r. Let andj be positive integers
with <- < j =< n. Let P in ij be the sequence {i l, i2, ile j}. Let
1-Ip b -l denote the product of all ofthe terms (b)- such that -y is in P. IfP is nonempty,
let 1-Ipc b, denote the product of all of the terms b, such that 3’ is in pc. IfPe is empty,
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let I-lec b, 1. Finally, the path product for P, denoted by I-Ie b,, is the product
bfi,i2 bi2,i3 bileI_ ,ile

This notation facilitates the following formula for the entries of the inverse of an
upper triangular matrix (see [3, p. 264]).

THEOREM 4. Let B be in /gn(C ). Suppose that B is an invertible, upper triangular
matrix. Then

(bii) -1 ifi=j,

Pc Pij

0 ifi>j.

6. Parity, consistency, and full patterns. Let B [brs] be in /n(). Let and j be
positive integers with =< < j =< n. Let P be in ij. The sign ofthe path P is defined to
be sgn l-[e b,,). The path P is called a nonzero path if its sign is nonzero. Then the path
P has parity ifsgn (I-[e b,,) (- )lel, and it has antiparity ifsgn (lie b,,) (- )lel + 1.
If all nonzero paths in ij have parity, or if all nonzero paths in i have antiparity, we
say all paths from to j have consistent parity. Let f be the edge-weighted, loop-free
directed graph for which sgn (B) is both the adjacency matrix and the weighting matrix.
The graph f has consistent parity if all paths in f# have parity or if all paths in f have
antiparity.

IfA is in /g( { 1, 0, } such that ai 0 implies j > 1, then A is called afull
pattern.

LEMMA 5. Let A in l( {- 1, O, be a Hessenberg matrix in standardform. If
A is a full pattern, and if all paths from vertex to vertex (n + in f(A) have
consistent parity, then (A) has consistent parity.

Proof. Choose < j. Since A is a full pattern, then every path

p={il=i, ,ih=j}

in (q(A) extends to a path P* { 1, i, ih, n + } in f#(A). Now apply the
consistent parity for all paths of the type P*. []

Note that the requirement that A be a full pattern cannot be removed. For the
matrix of Example 1, all paths from to 4 in (q(A) have consistent parity, but the
paths from to 3 do not.

7. A determinantal formula for Hessenberg matrices. We present a combinatorial
formula for the determinant of a Hessenberg form. While this formula does not provide
an efficient means of computing the determinant since it involves 2 summands, it is
useful for studying the relationship between the sign pattern of a matrix and the sign of
its determinant.

THEOREM 6. Let A in //(C) be an upper Hessenberg matrix. Let dij] be
the matrix obtained j?om A by indexing the columns ofA by the integers 2, 3,...,
n + ). Then

Pc o1, e jkec J

Proof. Since det (A) is continuous in each ofthe entries ofA, the case when at least
one subdiagonal entry aj + , is zero follows by a continuity argument from the case when
all entries a + 1j are nonzero. That is, it suffices to prove the result in the case where A
is unreduced.
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Let A be unreduced. Embed A in the upper triangular matrix B TA. Since A is
unreduced, TA is nonsingular. As is well known,

[B-],,+=[det(B)]-(-1)n+)+ det [B(n+ lll)]

11-1bii (-1 ) det (A).
i=1

Now use Theorem 4 to obtain [B -1 ]l,n+ 1, and note that for each P in ’1,+ 1,

Finally, and n + are both in P for all P in ,+ , so

pc pc

It should be noted that ifA is not unreduced, then det (A) can also be expressed as
the product of the determinants for each of the unreduced Hessenberg diagonal blocks
as discussed in 2.

8. Sign positivity and sign negativity for det (A). Theorem 6 has, as direct conse-
quences, the following two theorems relating necessary and sufficient conditions for a
qualitatively signed determinant to parity or antiparity in (a(A). The first result is
immediate.

THEOREM 7. Let A be in /#n(R be an upper Hessenberg matrix. Ifthere is no path
from to n + in ((A), then det (B) O for all B in Q(A).

THEOREM 8. Let A be in t() and be a Hessenberg matrix in standard form.
Suppose that there is at least onepathfrom to n + in fq A ). The conclusion depends
on whether n is even or odd.

Suppose that n is odd. Then det (A) is sign positive if and only if every path from
to n + in fq (A) has parity; det (A) is sign negative if and only if every path from
to n + in fq(A) has antiparity.

Suppose that n is even. Then det (A) is sign positive if and only if every path from
to n + in fq(A) has antiparity; det (A) is sign negative if and only if every path

from to n + in fq(A)has parity.
COROLLARY 9. Let A be in lt( and be a Hessenberg matrix in standardform.

The matrix A is an L-matrix ifand only if there is at least one path from to n + in
fq (A), and either every pathfrom to n + in fq (A) has parity or every pathfrom
to n + in f(A) has antiparity.

ProofofTheorem 8. First we prove that the parity/antiparity conditions are sufficient
to determine the sign of the determinant. In the formula for the determinant given by
Theorem 6, each summand has sign (- )n + + I’1 .sgn I-[e d,]. If every path P from
to n + in (a(A) has parity, then the signs of the nonzero summands are (-1)n+ 1+21el

(- )n+ 1. Ifevery path Pfrom to n + has antiparity, the signs ofthe nonzero summands
are (-1)"/2+21Pl (-1)n. Finally, since there is a path from to n + in fa(A),
there is at least one nonzero summand.

Next we prove that the parity/antiparity conditions are necessary for the sign ofthe
determinant to be implied by the sign pattern of the matrix. The case for n odd and all
paths from to n + is proven. The proofs for the remaining cases are analogous.

Suppose that n is odd and that det (A) is sign positive, but that some path P’ from
to n + in (#(A) has antiparity. Then sgn lrlp, d, (-1)1+ IPtl. Let r be a real
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number with r >= 1. Let/r be the matrix in //n() whose entries are defined as follows:
bij 0 if da 0; bii for all i; if do 4:0 and do is not on P’, let b0 do(r-n); and if

di is on P’, then let bo. rda. Then B A, and Br has the same sign pattern as A for
all r >= 1. IfP is in Pl,n + and P 4: P’, then ]-[e b, either is zero or contains at least one
factor of r-n. Thus as r becomes arbitrarily large, det (/) is dominated by the term

(-1)n + + le’l[ e, b,] (-1)n + 21e’l + 2. rle’l

which is clearly negative, contradicting the sign positivity of det (A). E]

Remark. It can occur that A is a Hessenberg matrix in standard form with
det (A) > 0, but det (A) is not sign positive. For example, let

A= -1
0 -1

and let

0]B -1 6
0 -1

Then det (A) > 0, and B is in Q(A), but det (B) -4 < 0.

9. Sign patterns for Hessenberg L-matrices. The following result is immediate.
COROLLARY 10. LetA be a Hessenberg matrix in standardform. Let B be obtained

from A by arbitrarily choosing nonzero entries ofA occurring on or above the diagonal,
and replacing those entries with zeros. Ifdet A is sign nonnegative (sign nonpositive),
then so is det (B).

By direct observation, it is impossible to choose a nonzero value for the 3,3-entry
of the matrix A given in Example in order that the filled in Hessenberg matrix is still
an L-matrix. A partial converse to the preceding corollary is, however, still possible. That
is, there are conditions under which complete fillin preserves sign nonnegativity or sign
nonpositivity of the determinant.

THEOREM 1. Let A be a Hessenberg L-matrix. Suppose that ((A has consistent
parity. Then there is a Hessenberg L-matrix B that is a full pattern such that when a
0, sgn (aa) sgn (ba).

Proof. Filling in entries of A corresponds to adding weighted edges to ((A).
Starting with ((A), create a sequence of graphs by adding one edge at a time. When
an edge is added, there are two possible cases: If there is no path in the graph between
the vertices for the edge to be added, assign the weight of the edge arbitrarily; if there is
already a path between the two vertices, weight the edge so as to preserve the consistency
of parity. This can be done since ff(A) has consistent parity, and the weighting rule
for added edges guarantees that each subsequent graph has consistent parity. Label the
final graph as ( *. Then ( * ((B) where B is a full pattern such that the nonzero
entries ofA have the same sign as the corresponding entries ofB. Since ( * has consistent
parity, B is an L-matrix.

THEOREM 2. There are exactly 2 matrices in ln( {- 1, O, } that are Hessenberg
L-matrices in standardform and alsofullpatterns. Exactly halfofthese have sign-positive
determinant, and the other halfhave sign-negative determinant.

For n even (n odd), these full patterns are determined from the pattern given below
by first arbitrarily and independently assigning + to each of the n border entries
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denoted by "D," and then uniquely determining the entries denoted by "*" by imposing
the requirement that all paths from to n + in f(A) have consistent parity. When
all paths from to n + have parity (antiparity), the determinant is sign negative. When
all paths from to n + have antiparity (parity), the determinant is sign positive:

neven (n=2k)
n odd (n 2k- 1)

2’3 k k+l n n+l
* * * D D D *
+ * * * * * Do.,

0 /

0 *
*

* *
/ *

0 0 0 + *

k
k+l

Proof. By Theorem 8, it is necessary and sufficient that all paths from to n +
in ((A) have consistent parity in order for the matrix to be an L-matrix. By Lemma
5, (A must have consistent parity ifA is an L-matrix and a full pattern. By choosing
n even or odd, and by choosing consistent parity to parity or antiparity, all possible cases
are covered. We prove the theorem for n even. The case for n odd is similar.

Choose k so that 2k n. The proof is by induction on k. The case for k is
easily checked.

Assume that the result holds for n 2k. Then n + 2 2 (k + ). Choose an n
n full pattern An that is a Hessenberg L-matrix in standard form. The graph (q(An)
can be transformed into the graph for an (n + 2) (n + 2) full pattern An + 2 by adding
two additional vertices and all of the edges arising at or terminating at those two vertices.
Consider the added vertices as being positioned between vertices k and k + of (An),
and relabel the vertices as indicated:

1 k k+l n+l

(q(An)

1 k k+l n+l
1 k k+lk+2k+3 n+3

By the induction hypothesis, (q(An) has consistent parity. (Parity or antiparity is de-
termined by the sign of the edge from to n + in (An).) We now add the edges
so as to preserve consistent parity. Add the edge -- (k + 2). Since it does not lie on a
path from to (( n + 2 + ), arbitrarily assign it a weight of _+ 1. Similarly, add the edge
(k + - ((n + 2) + ), and arbitrarily assign it a weight of _+ 1. (Thus there are 2 2

assignments for these two edges.) Now forj _-< k, every edge of the form j -- (k + lies
on a path from to ((n + 2) + ), and thus must be assigned the weight required for
consistent parity. Add these edges to the graph and weight them as required. Similarly,
consistent parity implies that every edge of the form (k + 2) -- j with j >= k + 3 has its
weight uniquely determined. Add these edges and assign their weights as required. The
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one remaining edge to be added is the edge (k + -- (k + 2), which together with the
edges -- (k + and (k + 2) -,- ((n + 2) + ), forms a path from to ((n + 2) + ).
Hence the weight of(k + -- (k + 2 is determined by the parity consistency condition.
Since there were 2 n choices for the full pattern An, and since two further arbitrary weight
choices were made, there are 2 n + 2 n + 2 (n + 2) full patterns An + 2 that satisfy parity
consistency, and hence are Hessenberg L-matrices in standard form. Since exactly half
of these have parity and exactly half have antiparity, exactly half of these have sign
positive determinant. The result holds by induction. [3

10. Selected patterns for sign positivity of det (A). In light of Theorem 12, it is
impossible to list all of the full patterns that correspond to Hessenberg L-matrices. Here
we list a few interesting patterns that guarantee sign-positive determinants:

Banded for all n >-_ 2"

"+ + +
+ + +

+ + +

+ +
0 + +

+

Half-bordered for odd n >_- 3"

+ + +

+
Oo and

+
+
+

+
+
+

Fully bordered for even n >= 2:

+ + + +

4- 4-

4- +
0

4- 4-

+ +
+ +

11. Inverse patterns. In 7 ], Lady and Maybee prove the following theorem on
sign patterns for the inverses of L-matrices.

THEOREM 13. Let A be an irreducible L-matrix with aii 0 for <= <= n. Let
aij-1 denote the i,j-entry ofA- Then"

Ifaij 4: O, sgn (ai) sgn (a); and
(2) Ifao :/: O, then a) has a determined sign ifand only ifevery directedpathfrom

j to in c(A) has the same sign.
Two difficulties arise in applying this theorem to Hessenberg L-matrices in standard

form. First, standard form does not require diagonal entries to be nonzero. Second, there
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appears to be no simple relationship between ((A) and ((A), and consequently no
simple relationship between existence of signed cycles in ((A) and parity consistency
in (#(A).

The first difficulty can be partially addressed as follows. Suppose that A is an irre-
ducible, Hessenberg L-matrix in standard form and that aii 0. For small positive e,
adding an e multiple of row + (column to row (column i) yields an invertible
matrix that is an irreducible, Hessenberg matrix in standard form whose sign pattern
differs from A only where A has zero entries in row (column i). This new matrix need
not be an L-matrix, however. Alternatively, an L-matrix with a nonzero i,i entry can be
obtained from A via a row or column permutation. In this case, however, the resultant
matrix will be neither irreducible nor a Hessenberg matrix in standard form since it has
a zero on its subdiagonal.

The second issue, that of relating signs of cycles to consistent parity, appears to be
rather difficult. From numerical experiments with randomly generated Hessenberg L-
matrices A in standard form (n _-< 8), it appears that the presence of even a few paths
from to n + in ((A) is sufficient to control the signs of the lower Hessenberg part
of A - and to permit all possible signs for the entries of A - for which j > 1. In
closing, we offer the following conjecture.

CONJECTURE. Let A be a Hessenberg L-matrix in standard form. If A is a full
pattern, and ifB is in Q(A), then the lower Hessenberg portion ofsgn (B-1 is the upper
Hessenberg portion of A, and the remaining entries of B-1, which correspond to the
zero entries in A, can occur with any sign.
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Abstract. This paper is devoted to solving the general problem ofpole assignment, as stated by Rosenbrock
and Hayton [Internat. J. Control, 27 (1978), pp. 837-852], under certain restrictions for uncontrollable
systems. The solution is used to give some results about the changes ofthe Jordan structure ofa matrix subjected
to additive perturbations of fixed rank.
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1. Introduction. The general problem of pole assignment as given by Rosenbrock
and Hayton [8 can be stated in the following general way. Let R be the field of real
numbers, and let R[s] denote the ring of polynomials with coefficients in R. Let A (s) e
R s ]"" and B(s) R s n be n n and n rn polynomial matrices, respectively,
such that A(s)l 4: 0(l" means determinant). Assume that the rational matrix
A (s) 1B(s) is strictly proper i.e., A (s)- B(s) -- 0 when s -- ). When do there exist
matrices C(s) R[s]mn and D(s) R[s]mn such that D(s)l 4: 0, D(s)-C(s) is
proper (i.e., D(s)-lC(s) -- H Rmn when s -- ), and

A(s) B(s)
G(s)

C(s) D(s)

has prescribed invariant factors?
The symbol" > will be used to mean "divides" and -< is the symbol ofmajorization

in the Hardy, Littlewood, and P61ya sense [6]. That is to say, if a (al, a, a,)
and b (b, b2, b,) are two n-tuples of real numbers, we will write a -< b if and
only if

k k

] ati] Z bti], =< k-< n
i=1 i=1

with equality holding for k n. a[] >= >= atn] and bt >- >= bin] are the components
of a and b in nonincreasing order.

IfA (s) and B(s) are assumed to be relatively left prime (i.e., the invariant factors
of [A (s), B(s)] are all equal to one), then Rosenbrock and Hayton gave a sufficient
condition for the problem to have a solution as follows.

THE ROSENBROCK-HAYTON THEOREM. A sufficient conditionfor the existence of
a proper rn n rational matrix D(s)-IC(s)such that Zl’> > z+ are the invariant
factors ofG(s) is

-i 1, <=i<=n,
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(2) (kl + b- 1, ,kin + b- "< (d(’,+ m), d(z,+ 1))

where kl >- >- km >- 0 are the controllability indices ofA(s)- B(s), b is its biggest
observability index, and d(. denotes degree.

There are several ways of defining the controllability indices of a rational matrix
(see 3 ]), but quickly speaking we can say that the controllability indices ofA (s)- B(s)
(A (s), B(s) are not required to be relatively left prime) are those of any pair (X, Y)
such that

A(s)-1B(s) H(sI-X)-I Y

for some H, (X, H) being a completely observable pair. The observability indices of
A (s)-I B(s) can be defined in a similar way.

IfA (s) and B(s) are not relatively left prime and we are allowed to construct C(s)
and D(s) without specific requirements, then S [5] and Thompson [11] have given a
necessary and sufficient condition for a more general problem to have a solution as
follows. (From now on F will be an arbitrary field.)

THE S-THOMPSON THEOREM. IfA s F s]" p and 1 > > O are its
invariant factors (O 0 for > rank A (s)), then there exist matrices B(s) F Is] q,
C(s) F[s] rep, and D(s) F[s]mq such that

[A(s) B(s)]C(s) D(s)

kas - > > Zn+m (ifp + q < n + m, tken ri 0 for > + q) as invariant

factors ifand only if

(3) ri’>i’>ri+m+q, <=i<=n.

The S-Thompson result for the case when the prescribed submatrix is A (s), B s
and the Rosenbrock-Hayton theorem are particular cases ofthe general problem of pole
assignment, and this paper is devoted to giving a new result under the following as-
sumptions:

A (s) is a p-characteristic matrix and A (s)- B(s) is strictly proper, i.e.,

p-1 p-1

A(s) SPin nt- Z Ajsj, B(s) , Bjs.
j=o j=0

(ii) D(s) is prescribed to be q-characteristic, D(s)-lC(s) is proper, and q >= p 1.
Since F is an arbitrary field we should define what is meant by proper and strictly

proper rational matrices. A (s) -1B(s) will be said to be proper (strictly proper) if the
degrees of the polynomials in the ith row of [A(s), B(s)] are not bigger (are less, re-
spectively) than the degree of the polynomial in the position (i, i).

Before continuing, let us say something about the above restrictions. If we do not
constrain ourselves to the case in which A (s) is p-characteristic we can still solve the
problem 15 using a similar methodology and under the assumption that q is greater
than the largest degree appearing among the polynomials ofA (s). This degree turns out
to be the largest observability index of A (s)- B(s) when A (s) and B(s) are relatively
left prime. That is to say, we can generalize the result by Rosenbrock and Hayton to the
case when A (s) and B(s) are not relatively left prime. We make the assumption that
A (s) is p-characteristic because we gain clarity in the proofs and just this case is enough
to obtain the results we wish concerning the change of the Jordan structure of a matrix
under perturbations of fixed rank. We will deal with this problem in 3. The result we
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have obtained generalizes an earlier result by Thompson 12 to perturbations of arbi-
trary rank.

Finally, we say a few words about the assumption q >= p 1. As far as we know,
nothing has been said about the case q < p 1, and this seems to be a hard case (see
[1 ]). For example, if a(s) and b(s) are monic polynomials ofdegrees 3 and 2, respectively,
the a(s)-b(s) is a one-by-one strictly proper rational matrix. Ifwe are looking for poly-
nomials d(s) and c(s), d(s) monic and c(s) with no greater degree than d(s), such that

a(s) b(s)]c(s) d(s)

has a prescribed determinant, it is easily seen that we can always find such polynomials
if d(s) is allowed to have degree greater than one, but this is not always possible if d(s)
is prescribed to be linear (see [1]).

2. Invariant factor assignment. We begin with our most general result.
THEOREM 1. Let A s spin -k- p- j 1)-Ej=0 Ajs and B(s) Bso where B may

be a zero matrix for some j O, 1, p 1, A (s) F s and B(s) F s m.
Then there exist matrices C(s) F[s]mn and D(s) F[s]mm such that D(s) is q-
characteristic, q >= p 1, D(s)-C(s) is proper and

A(s) B(s) 1C(s) D(s)

has - > > "rn + as invariant factors ifand only if
(4) Ti’>Oli’>Ti+m, i<n,

(5) (k, +q, ,km+q) (d(o’m), ,d(o,))

where a > > an are the invariant factors of[A(s), B(s)],

/3 1.c.m. (ai-j, ’i),

=< =< n +j, 0 <=j <= rn and k > >= km are the controllability indices ofA(s)-B(s).
Proof. First, if D(s) is q-characteristic and D(s)-C(s) is proper, then

q

(6) C(s) Cj.s
j=0

where some of the matrices C may be zero.
Let X be the first companion matrix ofA (s) 4 ], i.e.,

(7) X

(8)

o In 0 0 0
0 0 In 0 0

0 0 0 0 In
-Ao -A -A2 Ap-2 -Ap-1

Let C(s) be a matrix as in (6) and define the following matrices:

Lj(s) sLj_ l(S)+Ap-j, <=j<=p- 1, L0(s)
q

Cj(s) Cz:sk-, <=j <p 1, Co(s) Co.
k=j
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A simple computation shows that there exist matrices Y0, Y1, Yp-1 such that

p-1

Lj(s)Y B(s).
j=O

Assume that D(s) is a q-characteristic matrix and write

(9) Y= r Z(s)=[CoCl’"Cp-2Cp-l(S)l,

go
p--I

(10) T(s)=D(s) , C(s)Yp_j.
j=l

We claim that

0 A(s) B(s)
0 C(s) D(s)

are equivalent polynomial matrices. In fact, let

p(s)

and

and

I o o o o
o I o o o

0 0 In 0 0
Lp_ I(S) Lp_2(S LI(s) Lo(s) 0
Cl(S) C2(s) Cp_ l(S) 0 Im

s - o o o Y_
0 S -- 0 0 Yp-2

0 0 0 S -- Y1
In 0 0 0 0 0
0 0 0 0 0 Im

Then P(s) and Q(s) are unimodular and

0 A(s) B(s) Q(s).
Z(s) T(s) 0 C(s) D(s)

On the other hand, from (8) and (10) it is easily seen that T(s) is q-characteristic.
Next, assume that r > > rn + are the invariant factors of

[A(s) B(s)].C(s) D(s)’

then, by defining 6i ri-p-), <= <- np + m, where we agree that ri for < 1,
we have that 61 > > 6p+ are the invariant factors of

[ In(p-1) O 0 ]0 A(s) B(s)
0 C(s) O(s)
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and then of

Z(s) r(s)

AS Slnp X is regular, there exist (unique) matrices Z Fmnp and S(s) F[s] mnp

such that

Z(s)=S(s)(slnp-X)+ Z.

As sI,p X is regular and d(Z(s)) <= q, it turns out that d(S(s)) _-< q 1. (The degree
of a polynomial matrix is that of its entry with highest degree.) Now

-S(s) Im Z(s) T(s) Z R(s)

has 61, 6np+m as invariant factors and R(s) T(s) S(s)Y is a q-characteristic
matrix.

From the preceding discussion we can conclude that if there exist matrices C(s) e
F[S]mn and D(s) F[s]mxm such that D(s) is q-characteristic (q an arbitrary nonnegative
integer), D(s)-C(s) is proper, and rl > > rn+m are the invariant factors of

[A(s) B(s)](12)
C(s) D(s)

then there exist matrices Z e F np and R(s) e F s such that R(s) is q-characteristic
and 61, 6np+ are the invariant factors of

(13) [SInp-X Y 1Z R(s)

X and Y being the matrices defined by (7) and (9) and determined uniquely by A (s)
and B(s).

Conversely, if q >-_ p and Z, R(s) are matrices such that R(s) is q-characteristic
and 6, 6,+m (6 _,(p_ )) are the invariant factors of the matrix in (13), then
there exist matrices C(s), D(s) satisfying the requirements of the theorem such that the
matrix in (12) has , Z,+m as invariant factors. (It should be noted that if q <
p 1, then some additional restrictions on Z are needed in order to obtain from the
above process matrices C(s) and D(s) with degree q.)

According to Theorem 2.5 of [14], a necessary and sufficient condition for the
existence of matrices Z F np and R(s) e F s such that R(s) is q-characteris-
tic and

Z R(s)

has 61, 6np+ as invariant factors is

(14) i:>ei:>i+m, <=i<=np,

(15) (k + q, ,km+ q) < (d(Om), ,d(01))

where el > > enp and k >= >= km are the invariant factors and the controllability
indices of (X, Y),

J
# tJ-- # "" #Jp +2, #- 1.c.m. (’i-j, i),Oj--j--l,

<=i<=np+j, O<=j<=m.
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From 11 we get that [sln, X Y] and

In(- ) 0 0

0 A(s) B(s)

are equivalent polynomial matrices. So, if O/1 > > a are the invariant factors of
[A(s)B(s)], we have ei ai-(p-l)n where ai for < 1.

On the other hand, if

H= [In 0"-"0]EFnnp,
then it turns out that H(slnp X)-IY is a completely observable state-space realization
of A(s)-1B(s) (see [16]). Thus, beating in mind that the controllability indices of
A (s) -1B(s) are those of (X, Y) and the characterization of i and ei, it is easily seen that
(4) and 5 are equivalent to 14 and 15 ), respectively, and the theorem follows. [3

Remarks. From the proof of the theorem we can conclude that conditions (4)
and (5) are necessary even if 0 _-< q < p 1.

(2) If q is prescribed to be greater than p 1, then C(s) can be constructed to have
degree at most p and then D(s)-lC(s) would be strictly proper.

As a consequence of Theorem 1, we have the following corollary.
COROLLARY 1. Under the same conditions as in Theorem 1, ifA s) and B(s) are

relatively left prime, then there exist matrices C( s F s x n and D( s F s such
that D(s)-lC(s) is proper, D(s) is q-characteristic, and ’1, ’n/m are the invariant

factors of

ifand only if
(16)

and

(17)

A(s) B(s)]C(s) D(s)

-i 1, <-i<=n

(kl + q, ,km + q) -< (d(rn+ m), ,d(rn+ 1)).

Proof. If A(s) and B(s) are relatively left prime, then the invariant factors of
[A (s), B(s)] are all equal to one, and in this case (16) and 17 are equivalent to (4)
and (5), respectively. []

As noted in the Introduction, if A (s) and B(s) are relatively left prime, A (s) is p-
characteristic and A (s) -1B(s) is strictly proper, then by [7, p. 103], the observability
indices ofA (s)-I B(s) are all equal to p, and from Corollary 1, we get the Rosenbrock-
Hayton theorem by prescribing q p 1.

Our next result is a slight generalization of a result ofS [5 ].
THEOREM 2. Let A (s) F s] n be a p-characteristic matrix, and let ai >
> cn be its invariantfactors. Let 71 > > rn + be monicpolynomials such that

=+ d(rj) np + mqfor some nonnegative integer q >= p 1. Then there exist matrices
B(s) F[s] nxm, C(s) F[s] mxn, and D(s) F[s] mxm such that A(s) -1B(s) is strictly
proper, D(s)-lC( s) is proper, D( s) is q-characteristic, and

[A(s) B(s)]C(s) D(s)
has ’1 > > ’+m as invariant factors ifand only if
(18) ri:>ai:>i+2m, <=i<-n.

S’s result is the case q p.
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Proof. The necessity of (18) for any q >= 0 is a consequence of the Sfi-Thompson
theorem. We will show its sufficiency. Let X be the first companion matrix ofA (s) and
let ’i Oli-(p-l)n, <= <= pn, be its invariant factors. Define i Ti-(p-1)n, =< =<
pn + m. Now use (18) and the proof of Theorem 3.2 of 13 (using Theorem 2.5 of
[14] instead of Lemma 2.11 of[13]) to show that there exist matrices Y Fnp m, Z
F np, and D1 (s) 6 F s such that D1 (s) is q-characteristic and

[slnp-X Y ]Z DI(S)

has 61, 6.p/ as invariant factors. Now, as in the proof of Theorem 1, this matrix
is equivalent to

[ In(p-1) O 0 ]0 A(s) B(s)
0 C(s) D(s)

for some matrices B(s) F[s] nxm, C(S) F[S] mxn, and D(s) F[s] mxm, obtained
from Y, Z, and D1 (s).

So, 3-1 > > 3-n+ are the invariant factors of

[A(s) B(s)]. [3
C(s) D(s)

3. Changes of the Jordan structure. As a consequence of the previous section, we
can give some results related to the possible invariant factors that can be attained when
a given matrix is subjected to an additive perturbation offixed rank. Since the eigenvalues
and the Jordan structure of a complex matrix are determined by its elementary divisors,
and hence by its invariant factors, our next results apply in an obvious way to the study
of the changes of the Jordan structure of a matrix under additive perturbations.

If we take p and q 0 in Theorem 2, we obtain the following result.
THEOREM 3. Let A F , and let c1 > > c be its invariant factors. If

3-1 > > 3- are monic polynomials suck tkat X’]= d(3-) n, tken tkere exists a
matrix P F" witk rank P <= m suck tkat A + P kas 3-1, 3- as invariantfactors if
and only if
(19) 3-i-m’>Ci’>3-i+m, <=iNn

wkere 3-i for < and 3-i 0 for > n.
Proof. Define ui 3-i-m, =< -< n + m. From Theorem 2, there exist matrices

B G F and C e F , such that

(20)
C Im

has Zl, n + as invariant factors if and only if

(21) ti’>ci’>Ixi+m, <=i<=n:
Now, the matrix in (20) is equivalent to

[ SIn (A + BC) O ]Im
So, the invariant factors of the matrix in (20) are those of A + BC and m-invariant
factors equal to one. Put P BC; then rank P =< m and 3-1, 3-n are the invariant
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factors of A + P if and only if r #g + m and (21 holds; that is, if and only if (19) is
satisfied. [3

Remarks. (i) It is easily seen that

r=min {t:i-t’>ai’>’i+t}, <=i<=n

is the minimum rank ofthe matrices P 6 F such thatA + Phas z, zn as invariant
factors.

(ii) If we take rn 1, we get an earlier result due to Thompson [12]. The general
case has also been solved by Silva 9], [10 ], but his approach is completely different.

(iii) Theorem 3 is not a complete characterization ofthe possible Jordan structures
ofa matrix subjected to perturbations of fixed rank. For instance, there could be matrices
P of rank r > such that A + P and A are similar. A complete answer to this problem
for the case when F is an algebraically closed field is given by Silva in 9 ]. His proof is
large and complicated and does not apply to the case of general fields.

Aeknowleflgment. The results of this paper were presented at Robert Thompson’s
lectures held at The Johns Hopkins University, Baltimore, MD, June 20-24, 1988. Thanks
are due to the organizers for inviting the author to such an interesting conference.
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ON THE RECONSTRUCTION OF LAYERED MEDIA FROM
REFLECTION DATA*
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Abstract. The problem of reconstructing an elastic layered medium from a discrete reflection response is
considered. Using matrix methods, a family of models is defined that is parametrized by the surface reflection
coefficient. The relationship between a general response and that with a perfect reflector at the surface is established
and is used to provide a new proof of a recently established representation for the reflection coefficients. A
(known) thresholding strategy for the prediction of reflection coefficients is presented and is shown to be a
"maximum a posteriori" estimation process. Numerical examples are given.

Key words. Levinson algorithm, Toeplitz matrices, reflection coefficients, layered media
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Introduction. In this paper we consider the problem of reconstructing a layered
medium from noisy reflection response data. It is assumed that the medium is made up
of a sequence of horizontal homogeneous layers (the Goupillaud model), and that the
measurement noise is bounded in magnitude by e. We also admit some a priori knowledge
of the reflection coefficient sequence; namely, that most of the reflection coefficients are
zero and if different from zero, that they are uniformly distributed between [-1, ].

Both the standard reconstruction procedures, known as dynamic deconvolution
(Claerbout 3 ], Aki and Richards ], Robinson and Treitel 13 and the layer peeling
procedure (Bruckstein, Koltracht, and Kailath 2 ), are unstable in the presence ofnoise.
A thresholding strategy for stabilizing this procedure has recently been introduced in
Bruckstein, Koltracht, and Kailath 2 and Koltracht and Lancaster 8 (see also Ferber
[5 ]). This strategy consists of careful estimation of error magnification in the recursive
reconstruction procedure and of the use of recursive estimates for setting to zero small
computed reflection coefficients. The estimation oferrors is based on a new representation
of reflection coefficients for a general surface condition first obtained in Koltracht and
Lancaster 8 ].

Section contains a new derivation of this formula that is both simpler than the
original one and also has more physical intuition behind it. It contains some relevant
results of error analysis from Koltracht and Lancaster 9 as well.

In 2 the thresholding strategy is described and we show that it can be viewed as
an approximate maximum a posteriori estimation process for the reflection coefficients.
The strategy is also compared with the minimum entropy deconvolution method proposed
by Wiggins [17 for geophysical reflection seismology.

The stabilizing effects of the thresholding strategy in the presence of noise are illus-
trated in the numerical experiments of 3, with synthetic as well as field data.
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A similar idea ofsetting to zero small reflection coefficients appeared simultaneously
in Ferber [5 (both this paper and the paper of Bruckstein, Koltracht, and Kailath 2
were submitted in 1984). The error estimates in Ferber [5 ], however, are less accurate
and apply to the perfect surface reflector only.

1. Representations of reflection coefficients. The one-dimensional inverse scattering
problem amounts to the reconstruction of an acoustic medium from its response to a
known input pressure wave. Discretizing the medium into a large number ofthin layers,
we can assume that each layer has a constant impedance, and that changes ofimpedance
occur only at layer interfaces. Such interfaces are characterized by their reflection coef-
ficients. To define a reflection coefficient, consider a vertically incident unit impulse on
the interface from above (and measured in terms of units that represent the square root
of energy). The part of the impulse that is reflected upward gives the value of the cor-
responding reflection coefficient c; hence c =< 1. The transmitted part can be calculated
from the energy conservation law as /1- c2. If a unit impulse is incident on the
same interface from below, the reflected amplitude is equal to c (see Robinson 14, p.
48 ], for example).

Let the controlled input signal, which is sent downward, be measured just above
the surface at uniform intervals of time r, giving the input sequence { do, d, dN }.
Starting with time r, after each r units oftime, some reflected upcoming signal (possibly
zero) will reach the surface from below. Denote this upcoming sequence of signals just
below the surface by { 0, v, v2, VN ). Each vj represents a superposition ofa primary
reflection from the jth interface with multiple reflections from previous layers. (Note
that the width of each layer is determined by the half travel time r/2 of the pressure
wave; thus, the physical width depends on the velocity of propagation in the medium of
this particular layer.)

Assuming that the surface reflection coefficient Co is known, the sequence of down-
going signals just below the surface can then be seen to be {t0d0, tod CoVe,’",

todN- CORN}.
Let uj to dj. CoVe, j 1,..., N, and define the following nested sequence

of matrices:

(1) Rk L(uk)L T(Uk) L(vk)L T(Vk)
for k=0, 1,...,N where T denotes transpose, Uk=[1, U,’’’,Uk] T, Vk=
[0, Vl, Vk] , and for any vector a [ao, ak] r ofany length k + 1, L(a) denotes
a lower triangular Toeplitz matrix whose first column is a. Thus,

ao 0...0

L(a)= ax ao"’0

k ak_l"" ao

Conservation of energy arguments (Kailath, Bruckstein, and Morgan [6 ]; see also Lev-
Ari and Kailath [12]) show that RN is a positive-definite matrix.

THEOREM 1. Let {do, d,..., du} be the controlled input sequence and let
{ O, Vl, VN} be the upcoming sequence measuredjust below the surface ofa layered
medium defined by the sequence ofreflection coefficients { Co, Cl, CN }. Thenfor k
0,...,N-

k

(2) c,+ 1-- E /)j+ l"Yk(j)
j=O
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where ’k [3’k(0), 7(k)] T is the solution ofthe equation

Rk’Yk=[O, ,0,1] T

andR are defined via with u t0d Coy.

The representation formula (2) was established in Koltracht and Lancaster 8 ].
The new derivation of Theorem is based on reduction of the general case when d
{ do, d, du} and Co [-1, 1] to the special case when dj. 0, j 1, N, and
Co (or perfect reflection ofupcoming waves at the surface). In reflection seismology
this case is called "marine" and the representation of the reflection coefficients given by
(2) of Theorem is well known in this particular situation (see Kunetz [10], Robin-
son [14]).

Let us first show how the transformations from d to v and from u to v in the Gou-
pillaud model can be interpreted as discrete, causal, linear systems (see Robinson 14],
for example). We also show how, using a limiting process, the "marine case" can be
included in a family ofsystems parametrized by Co, the reflection coefficient at the surface.

Assuming that c0l < 1, it is not difficult to see that v (in the first layer) is related
to the input vector d by v toBd, where B is a strictly lower triangular Toeplitz matrix:

0 0 0
bl 0

!00bz bx 0
o

N b

bl cl, b2 c2t2 c2co, and for j 2, N, bj is a polynomial in Co, c, cj.
This relation implies that the transformation d v is a discrete causal linear system.

For c01 < we have

(3) u t0d c0v,

and it follows that

Bu=(I-coB)v,

or Au v where

(4) A=(I-coB)-B.

As A is also lower triangular and Toeplitz it is seen that, as claimed above, the transfor-
mation u -- v is also a discrete causal linear system. Furthermore, the system (i.e., A
and B) both depend continuously on Co.

Next we show how to include the cases when c01 in our discussion. Observe
that either case Co + means that no finite signal above ground can produce a signal
below ground. However, it we consider the limiting process Co -- 1, and simultaneously
let do -- in such a way that to do -- (while { dj }= remains bounded), then it
follows from the equation v toBd that

de__f lim v B_eo
co-- -1

where B_I denotes B evaluated at Co -1 and eo is the first unit vector, i.e., er

[1, 0, 0]. Furthermore, it follows from (3) that, in this case,

fi=eo+,
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as physical reasoning also requires. Equation (3) also applies in the sense that A-11
where

A-1 =(I+B-I)-B_i.
Thus, the equation v toBd still makes sense in the limit as Co -- and represents

the physical situation when Co and the disturbing signal eo is applied just below the
surface. A similar argument applies when Co -- 1. Thus, the matrix A: u -- v defines a
causal linear systemfor any Co [-1, 1] andA depends continuously on Co. The limiting
case when Co -1, fi eo + is known as the marine case and the vector is called the
marine response.

As the transformation B from input d to output v is a time-invariant causal linear
system (i.e., a filter) and depends only on Co, c, CN, we may write, absorbing to
into B,

v B( co, cl CN)d.
In this notation the marine response of the model is

B(-1, c CN)eO.

As u tod Coy, the marine response is also characterized by the property that when
v we have u eo + . We use this to prove the following reduction theorem.

THEOREM 2. For any Co 6 [-1, 1], let

0

U-- V--

represent the downgoing and upcoming signals in thefirst layer, (respectively), and write
U L(u), V L(v). Then the marine response ofthe model is given by

(5) =(U- V)-v.

Proof. The model associated with surface reflection coefficient Co is a filter. Let a
be its impulse response and A L(a) (so that a Aeo). The marine response of the
model is the vector for which A( + eo) , i.e.,

= (I-A)-lAeo.
We have Au v, or A Ueo UAeo Ve0 so that a U-1Ve0 and it follows that A
U-1V. Substitute in the equation for and use the fact that lower triangular Toeplitz
matrices commute to obtain

(I- U- V)- U- Veo

(U- V)- Veo (U- V)-I. [--]

Now let us complete the proof of Theorem 1. This depends on the reduction to the
"marine case" as described in Theorem 2. We use a subscript k (as in u, v) to denote
vectors of length k + 1.

For the "marine case" it is well known (see Kunetz 10 ], Robinson 14 that, if
clef

(6) Tk L(k+ eo)L(evg + eo)r- L(Cg)L(g) r

(a positive-definite Toeplitz matrix) and w is defined by Tkw e, then the subsurface
reflection coefficients are given by the (Levinson-Durbin) formula

(7) Cg+l =wg, k=0, 1, ,N.
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From (5)we have for the general case

L(Vk) L(uk-- Vk)L(k).

But also

L(uk) L(uk-- v) + L(v)

L(u-v)+L(uk-v)L()

L(Uk-V)(L(,)+ I)

L(uk-vg)L(C’k+eo).

Consequently, using and (3) we obtain

L(Uk-- Vk) TkL(Uk-- Vk)T= Rk.

As L(Uk Vk) is nonsingular and Tk is positive definite, it follows that Rk is positive
definite. Furthermore, as L(Uk- Vk)ek ek, TkWk ek implies

L(Uk-- Vk) TkL(Uk-- Vk)T(L(Uk_ Vk)T)-lWk ek,

or Rk(L(Uk--Vk)r)-lwk=ek. Thus, if 3’k is defined by Rk"/k=ek, then Wk
L(Uk Vk)rTk and (7) and (5) give

Ck+ (L(Uk-- Vk)-IVk)rL(Uk-- Vk)7k

as required.

2. The effects of noisy data. In practice the measured response ofa layered medium
is contaminated with noise arising from measurement errors, spatial effects, and the
discretization of the continuous medium. Thus we can write v + e where is the
vector of measured noisy response. In what follows we assume that the errors ej are
uniformly distributed

e being a known estimate. Under this assumption it is possible to show (Koltracht and
Lancaster [9]) that the matrix RN defined in will be perturbed by a certain matrix
F {fj}/u,j=0

RN kN+ F,

where, with a high probability (of 99.8 percent), elements of F satisfy the inequality

(8) If0l < Ve(I c01 + 2( --02)1/2), i,j=O, ,N.

(Note that when Co _+1, the fight-hand side of (8) is simply equal torte.) Similar
estimates can be obtained for measurement noise with other statistical properties. Given
the representation (2) of the reflection coefficients and the estimate (8) of the size of the
perturbation matrix, we can estimate the error in the reflection coefficients as follows
(Koltracht and Lancaster [9]).

THEOREM 3. Let be the recorded response of a layered medium with a known
surface reflection coefficient Co. Let e denote the noise level, so that
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and let k, k 1, ..., N denote the reflection coefficients corresponding to the recorded
response and the known input vector d. Then for sufficiently small e, with a probability
of 0.998, andfor k O, ..., N-
(9)

J
+(I Col + 2( -c) ’/2 I(J)l

where Ck, k 1, N, are the true reflection coefficients, andfor k 0, N- 1,
"k and are defined by t’k e and lkk fl f;k + 1] T.

Efficient algorithms for computing the bounds of Theorem 3 can be found in Kol-
tracht and Lancaster 8 (see also Lev-Ari and Kailath 11 ). Note that in the case of a
Toeplitz matrix/U the fight-hand side of (9) simplifies to

(10) ck+,--k+ < Ve ,(j) I+ ,(J)l/’+ (k+ 1)

where can be computed via the usual Levinson algorithm (see Koltracht and Lancaster
8 for more details). We remark that the estimate (10) is more accurate than the one

suggested in Ferber [5] for the marine case only.

3. Inverse scattering with thresholding" An approximate "maximum a posteriori"
estimation process. The discretizafion ofthe pressure wave and the elastic medium, and
the presence of noise, imply that most ofthe observed reflecting interfaces are an artificial
byproduct of the chosen discretization interval, and do not correspond to real reflectors.
Moreover, because of these facts the reflection coefficients are computed approximately
with the precision of the bound of (9) at best. This means in particular, that the zero
reflection coefficients, which correspond to artificial layers, can become nonzero values
within this bound. It is, of course, our objective to reconstruct the real layered structure
ofthe medium, and the first priority is therefore to distinguish the real reflecting interfaces
from the artificial ones.

In order to use our prior information, which says that most of the reflection coef-
ficients are zero, the following thresholding strategy is useful (see Ferber 5 ], Bruckstein,
Koltracht, and Kailath 2 ], Koltracht and Lancaster 8 ).

(i) Start with the known data Co, {dl, du}, { 1, N} and k 0.
(ii) Compute k, k, and k+1 as defined in Theorem 3, and also compute

Bk f -],(j) +(I Col + 2( --cg) 1/2 Ik(j)[)
j j=0

(iii) If Y+ < eBb, then set + 0.
(iv) Increase k by one (until k N- ).

Indeed, if 1/ 11 < eBb, then the true reflection coefficient c/ can be any number in
the interval (k+l eBk, /1 + eBb) and zero also belongs to this interval. Having
assumed the prior information about the medium, we must now conclude that the true
reflection coefficient is most likely equal to zero.

In probabilistic terms, it may be assumed that the reflection coefficient sequence is
composed ofindependent identically distributed values having a probability distribution
function given by

pc(C)=po6(C)+( -p0)/2, c6(-1, 1),



30 BRUCKSTEIN, KAILATH, KOLTRACHT, AND LANCASTER

i.e., that we have a high probability (P0) ofhaving a zero reflection coefficient and a small
probability of it being chosen uniformly in the interval (-1, ). If this is our a priori
information on the reflection coefficients, and the measurement of depth k yields an
estimate d+1 that obeys the inequality

c+-+ l <B,

then it is not difficult to see that the thresholding procedure yields a maximum a
posteriori (MAP) estimate of c+ 1. This follows if we assume that the conditional
probability of obtaining /l as an estimate (that is, p(/ [ c+ 1)) is uniform over
(+1 eBb, +1 + eBb). Indeed the MAP estimate is defined as the c+l value that
maximizes the function

p(+ 1 c+ )p(c+ )P(Ck+ 1)=f+P(k+ Ck+ 1)P(Ck+ 1)

and if P(+l] c+ l) is not zero at C+l 0 (meaning that 0 e (+ eBb, + +
eB) ), then obviously p( c + + will have its maximum at c + 0. For a discussion
of MAP estimator design see, e.g., Sfinath and Rajasekaran [15].)

It is also interesting to compare the thresholding strategy with the minimum entropy
deconvolution (MED) method introduced by Wiggins [17] in reflection seismology (see
also Walden [16 ]). In this approach the discrete convolutional model of the recorded
seismogram is assumed:

= wc_+ n,
/=0

or, in vector form

:w,c+n,
where the sequence { n } represents the noise in the system. (We remark that, in contrast
to the scattering model developed in this paper, the deconvolution model does not admit
multiple reflections.) Thus the sequence { w ) represents the impulse response ofa discrete
filter transforming the sequence of reflection coefficients into the output sequence { }.

Now consider the formation of an approximate inverse filter with impulse response
J }. Namely, the convolution f w is to be close to the first unit coordinate vector e0

in an appropriate sense. Once f is determined we naturally take f - as the corre-
sponding estimate of the reflection coefficient sequence.

In the MED process, the sequence {J } is determined by maximization ofthe varimax
norm of"

The varimax norm is proportional to the kurtosis of a zero mean process, which is a
statistic that characterizes the peakedness ofthe corresponding probability density function
(Donoho [4]). Thus maximizing the varimax norrn results in suppressing most of the
reflection coefficients in favor of a few large ones. This, of course, is exactly the idea
behind our thresholding strategy.
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It is now widely accepted that the MED processes do not perform to expectations
(see Wiggins 18 ], for example ). One ofthe main reasons is that the optimization criteria
reduce to a highly nonlinear system ofequations whose solution is approximated iteratively
by local linearizations. The convergence of those iterations is problematic, in particular,
because of the nonuniqueness of the local maxima.

The method of inverse scattering with thresholding does not seem to have this
disadvantage. The reflectivity information recovered by this algorithm is reliable and, as
the numerical experiments of Bruckstein, Koltracht, and Kailath [2], Koltracht and
Lancaster 8 ], and the following section demonstrate, the thresholding strategy efficiently
suppresses noise magnification in inverse scattering algorithms.

4. Numerical examples. The effects of the thresholding strategy are illustrated first
on a synthetic reflectivity profile shown in Fig. 1. In all of the figures the vertical scale

FIG. 1. Synthetic reflectivity profile.



32 BRUCKSTEIN, KAILATH, KOLTRACHT, AND LANCASTER

denotes depth measured in the number of horizontal layers. A recursive algorithm de-
scribed in Koltracht and Lancaster [7 is used to generate the "marine" response rl,

r2, "", rN of a medium corresponding to this profile. As soon as a new entry rk in the
response sequence is obtained, some noise value ek, chosen randomly from the interval
[-e, e], is added to rk. Since k rk + ek is used for the computation of rk+ 1, rN,
in the formula

Fk + Ck + -lt- . j" + "Yk(j) "Yk(k),
j=0

it follows that the perturbation ek affects all following entries of the response sequence
(a phenomenon to be expected in real-life situations). Reconstruction of the reflectivity
profile with and without thresholding, as well as the corresponding "marine" responses,
are shown in the following diagrams. In Fig. 2(a), the marine response corresponding
to a noise level e 0.02 is presented. Figures 2(b) and 2(c) show the reconstruction
without and with thresholding, respectively. We see that the thresholding algorithm gives
a perfect reconstruction, whereas the algorithm without thresholding hardly reconstructs
the second reflector at the depth of 700 and breaks down soon after that.

(a)

FIG. 2 (a). "Marine" response perturbed by noise oflevel 0.02.
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In Fig. 3(a) the marine response corresponding to the noise level e 0.03 is presented;
Figures 3 (b) and 3 (c) show the reconstruction without and with thresholding, respectively.
Again, the algorithm without thresholding breaks down before producing any reliable
information, whereas the threshold algorithm recovers four out of six reflection coeffi-
cients.

In Fig. 4 we observe the effect of changing the noise barrier e in the threshold
reconstruction. This observation is important because in real-life situations, we cannot
expect to have exact knowledge of e, but rather some estimate of it. The marine response
corresponding to e 0.03 (the same as in Fig. 3) is used. In Figs. 4(a) and 4(b) threshold
reconstructions with e 0.025 and e 0.005, respectively, are presented. In Fig. 4(a)
the fifth true reflector is recovered. The reconstruction does not change for gradually
decreasing values of e, until for e 0.005 a small ghost reflector appears just above the
depth of 700. This is apparently a result of some noise going through at shallow depths.
It appears to be encouraging that the reconstruction with imprecise noise levels reveals
more information than the reconstruction with exactly known e. Indeed, in practical
situations (see Koltracht and Lancaster [8]) we must experiment with the noise barrier
e, which can only be roughly estimated in advance.

o

(a)
FIG. 3(a). "Marine" response perturbed by noise oflevel 0.03.
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The effect of thresholding strategy is illustrated also on a set of field data. This data
comes from a geophysical survey in northern Canada. (We thank K. Coffin, Department
of Geology and Geophysics, University of Calgary, Calgary, British Columbia, Canada,
for making this data available to us.) The data consists of about 100 traces (of 2,000
samples each) of unfiltered CDP-stack data along a horizontal survey line, as shown in
Fig. 6(a). The reconstruction without thresholding breaks down at depth of about 130,
as shown in Fig. 5. The reconstruction using threshold algorithms with appropriately
chosen e is shown in Fig. 6(b). It appears that the section indeed has some multiple
reflections, which are eliminated with the threshold reconstruction.

(a)

FIG. 4(a). Reconstruction for response ofFig. 3 with threshold barrier 0.025.
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o

0

(b)

FIG. 4(b). Reconstruction for response ofFig. 3 with threshold barrier 0.005.

5. Concluding remarks. An inverse scattering method that is stable in the presence
of noise has been described. The method is based on a thresholding strategy that predicts
in a statistically reliable way when small reflection coefficients are to be set to zero.
Statistical interpretation ofthe strategy in terms ofmaximum a posteriori estimation has
been presented. The procedure has been developed for an extended Goupillaud model
of a layered medium in which the reflection coefficient characterizing the surface is a
parameter. The theoretical basis for the method has been described and developed and
favorable performance has been demonstrated using both synthetic and field data.
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(b)

FIG. 6(b). Inversion ofthe seismic section with the threshold algorithm.
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COMPUTATION OF THE EULER ANGLES
OF A SYMMETRIC 3 3 MATRIX*

ADAM W. BOJANCZYKf AND ADAM LUTOBORSKI

Abstract. Closed form formulas for computing the eigenvectors ofa symmetric 3 3 matrix are presented.
The matrix of the eigenvectors is computed as a product of three rotations through Euler angles. The formulas
require approximately 90 arithmetic operations, six trigonometric evaluations, and two root evaluations. These
formulas may be applied as a subroutine in a parallel one-sided Jacobi-type method in which three rather than
two columns, as is the case in the standard Jacobi method, are operated on in each step.

Key words. Euler angles, eigenvectors

AMS(MOS) subject classifications. 15A 18, 65H 15

Introduction. In this paper we derive closed form formulas for computing a diago-
nalizing rotation matrix for a given symmetric 3 3 matrix. A standard result in the
representation of the group of rotations shows that the diagonalizing matrix may be
represented as a product of three plane rotationsmthe angles of rotations are known as
Euler angles. This representation leads to a system of trigonometric equations involving
rotation angles, which due to their special form can be reduced to a scalar cubic equation
in cotangent ofone ofthe angles. Thus we may use the trigonometric form ofthe Cardano
formulas to compute all real solutions of the cubic.

The overall cost ofcomputing eigenvectors of a 3 3 symmetric matrix from closed
form formulas is approximately 90 arithmetic operations, six trigonometric evaluations,
and two root evaluations. When only an approximate eigendecomposition is sought this
cost may be higher than the one required by methods such as the QR or Jacobi algorithm.
However, in contrast to iterative methods that, although numerically very efficient, can
only produce approximate eigendecomposition, the formulas presented in this paper are
of closed form.

The formulas could be utilized as a subroutine in a parallel one-sided Jacobi-type
method in which three rather than two columns, as is the case in the traditional Jacobi
method, are operated on in each basic step. This approach leads to open problems con-
cerning the rate of convergence ofthese types ofJacobi methods and will be investigated
in a forthcoming paper. It should be noted that a closed formula for the eigenvalues (but
not eigenvectors) of a symmetric 3 3 matrix was given previously by Smith [Sm ].

The paper is organized as follows. In preliminaries on orthogonal diagonalization
are given. In 2 the closed formulas for computing the diagonalizing rotation matrix are
derived. Section 3 contains results of numerical tests.

1. Preliminaries on orthogonal diagonalization. Let A [aij]l <=i,j<=3 be a real, sym-
metric 3 3 matrix. Due to the spectral theorem St, pp. 309-311 ], A is diagonalizable:
there exists an orthogonal matrix Q [q, q2, q3] such that

1.1 Q-rAQ= A diag (Xl, k2, k3),
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where k 2 k3 are the eigenvalues of the matrix A and the columns ql, q2, q3 of Q
are the orthonormal eigenvectors associated with these eigenvalues.

DEFINITION 1. An orthogonal matrix Q such that det Q will be called a rotation
matrix.

DEFINITION 2. Let =< p < r < 3 and 4 be a real number. An orthogonal 3 3
matrix Qpr(4))= [qi]<=i,9<=3 given by

qpp qr cos b,

qii=l ifi4=p,r,

qpr --qrp =--sin 4,

qip qpi qir qri 0 if 4 p, r

@=0 if i4=p,r and j4:p,r,

will be called a plane rotation through 4 in the plane span (ep, er).
Our objective is: given a symmetric 3 3 matrix A, construct a diagonalizing rotation

matrix Q q(), q(2), q(3) such that

(1.2) QVAQ A diag (X(1) X(2) Xr(3)),

where belongs to the set 3 of permutations of 1, 2, 3).
As we recall in the following lemma, a rotation in R may be represented as a

product of three plane rotations through the Euler angles 4, 0, @.
LEMMA 1. Let Q [q6]l <=i,j <-_ be a rotation matrix. Then there exist angles 4) in

[0, r) and O, p in (-r, r] called the Euler angles ofQ such that

(1.3) Q-- Q12(dp)Q23(O)Q12(IP).

Proof. The geometric definition of Euler angles (see [GMS, p. 5]) is given in
Fig. 1. The algebraic proof of 1.3 is simply the QR factorization of our rotation ma-
trix. Set Q1 Q, Q2 Qlz(-qS)Q1, Q3 Qz3(-O)Q2, Q4 Qz(-)Q3 where Q
[q.] l=i,j=<3. We then choose 4, O, p to be the numbers that subsequently annihilate
q3, q33, q:, that is, such that cot -q3/q13, cot 0 -q3/q23, cot -q2/q32.
Q4 is a rotation lower triangular matrix and hence it is the identity matrix. Since
Qpr(--l/) Qpr()-I we obtain (1.3).

In Fig. 1, we assume that q3 @ e3, or in other words that 0 4: 0. If 0 0, then one
of the remaining angles may be arbitrary. The rotation matrices Q2(), Q23(0), and
Q2(ff) are called proper rotation, nutation, and precession matrices, respectively.

DEFINITION 3. Let A be a symmetric 3 3 matrix. Any angles 4, 0, ff for which
there exists a rotation matrix Q, Q aplr () Qpzr2 (0) ap3r3 IP <= Pi ri <= 3, <= < 3
that diagonalizes A are called Euler angles of the matrix A.

Remark 1. Let Q be a rotation matrix. Then there exist angles 4, 0, ff in (-r/4,
r/ 4 and a rotation matrix ( Qplrl (ok) Qpr(0) Qp3r3() where (pl, r, P2, r2, p3, r3) e
{(1, 2, 2, 3, 1, 2), (1, 2,2, 3, 1, 3), (1,2, 1, 3, 1,2), (1,2, 1, 3,2, 3)} such that Qmay
be obtained from ( by a permutation of columns and multiplication of some columns
by -1.

Factorization of rotation matrices Q into Euler rotation form (1.3) has long been
known and widely used in mechanics, especially in the theory of angular momentum
(see [Ro ]), and in algebra in the theory of representation of the rotation group SO(3)
(see GMS ]).
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/

q2

FIG. 1. The Euler angles 4, O, .
2. Computation of the Euler angles of a matrix. Our objective is to compute Euler

angles , 0, ff of a given symmetric 3 3 matrix A.
We denote

(2.1) Q12( q) )-VAQ12( 49 B.

(2.2) bll al cos2 4+ 2a2 sin cos 4+ a:z2 sin e 4 a + a22-- b22,

(2.3) blz=(azz-a)sin ) COS (]) + a12(COS2 b- sin 2 b),

(2.4) b13 a3 cos 4 + a23 sin

(2.5) b22=a sin 2 b- 2a2 sin b COS b + a22 COS2),

(2.6) b3 -a13 sin + a3 cos

(2.7) b33 a33.

Next, we define matrix C as

(2.8)

(2.9)

(2.10)

(2.11)

Qz3(O)-VQz(4))TAQz(qS)Q23(o) Qz3(O)TBQ23(o) c.

Cll all - a22-- b22,

c2 b cos 0 + b3 sin 0,

c3 -b2 sin 0 + b3 cos 0,
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(2.12) 22 b22 cos 2 0-[- 2b23 sin 0 cos 0+ a33 sin 2 0,

(2.13) c23=(a33-bz2) sin 0 cos 0+ b23(cos 2 0-sin 2 0),

(2.14) 33 bz sin 2 0 2b23 sin 0 cos 0 + a33 cos2 0.

Last, due to the spectral theorem

(2.15) Qz(p)-VCQ2() A.
Computation of the proler rotation and nutation angles b and 0. The last column

of CQ2() is equal to the last column of C. From (2.15) we know that

Q12() c23 0
C32 )ka(3)

The rotation Q]2(ff) does not change the last component of a vector and therefore
c33 )3). Since Qiv2 (if) is an isometry

(2.16) ( c13 O,

(2.17 c3 0.

Using (2.11 )-(2.13), we may write (2.16), (2.17) as

(2.18 f -b2 sin 0 + b13 cos 0 0,

(2.19 1/2 (a33 b22) sin 20 + b23 cos 20 0.

Due to its very special form, the above system of trigonometric equations with respect
to and 0 can be reduced to a single trigonometric equation in . We exclude momen-
tarily the degenerate matrices A that yield one or more of the following cases: sin 0 0,
sin 20 0, b3 0, b23 0, since then the system uncouples and may be solved by substi-
tution. Under this assumption we obtain that

(2.20) f cot 0 b2/b3,

(2.21 cot 20 b22 a33) / (2b23),

for 0 (-r/2, 0) U (0, r/2).
Substituting cot 0 from (2.20) into (2.21 we obtain a scalar trigonometric equation

for ,
(2.22) (b22 a33) b2bi3 + b23(b23 b212) 0,

where bi bo(ok) are given in (2.2)-(2.7). The explicit form of (2.22) in terms of the
entries ofA is

F( dp a12a23a33 a3a3 )s + aa23a33

a22a23a33 + a2a3a33 + a323 2a213a23)s2c
+ aa13a33- a13a22a33- a2a23a33- a33 + 2a3a223)s2

+ (-a2a3a33 + a213 a23)c + (-aa2a23 + a22a3)s
(2.23) + a la22a23 a2 a23 + al lal2a3 2a12a13a22 + a212 a23 )$4c

+ (al a12a23 a la13a22 a2a22a23 q- a3a222)s 3 c2

(a a22a23 a2 a23 a12a3a22 d- a a12a13)s2 c
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+ (a3a22 a a3a22 a2a2za23 a22a13 + 2a a2az3)sc4

+ (a12a3a22 a22 a23 )c 0,

where s sin and c cos . To simplify (2.23) we set

(2.24) d=a2z-a,

(2.25) e a2a33 a3a23,

(2.26) f= a a33 + a3 a22a33 a23,

(2.27) h al a:z3 a2a3,

(2.28) k a3a22 a2a23,

(2.29) y a23e- a2h,

(2.30) z=a2k-a3e.
We note that F splits into two parts:

F(4)) s[ a3es2 + a3f a23e)c2- a2hs4 + dks2 c2 + dk+ a_h )c4

+ c[(a23f+ a3e)s2- a3ec2 + (dh- a2k)s4 + dhs2c2 + al2kC4].
Eliminating c from the first part and s from the second, we obtain

F(4 s[a3f+ dk- y+ (2y a3f dk)s2

(2.31)
+ C[ az3f+ dh z + (2z- az3f- dh)c2 0.

Upon dividing (2.31 by s 4:0 our resulting trigonometric equation is

(2.32) zcot ck+(a3f+dk-y)cot2 ck+(a23f+dh-z)cotck+y=O.

We may now use the trigonometric form of the Cardano formulas [KK, 1.8-4] to
compute all real solutions of (2.32), which is cubic with respect to cot b. If z 4:0
we set

(2.33) a

(2.34) b

a3f+dk-y

a23f+ dh- z

(2.35) Y

The standard change of variable

(2.36) cot $ 3--
a

transforms (2.32) to the "reduced" form

(2.37)

where

(2.38)
2
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2 a2_l(2.39) q - -ab + c.

We set

p3 q2
(2.40) D -t---,
and consider two possible cases of closed form formulas for all the solutions of (2.37).

IfD < 0, then

(2.41)

(2.42)

where

(2.43)

If D > 0 and p > 0, then

(2.44)

where

COS
2/-(p/3)

t3 -2[p/ 3 cot 2/,

(2.45) tan/=@tan (//2) and I1 4’

(2.46) tan/3 =2 /(p/3) and I1q

IfD >= 0 and p < 0, then

(2.47) /3=-2"1/-p/3 csc 2/,
where

(2.48) tan/= @tan (/2) and I1 4’

(2.49) sin=2/(-p/3)3 and Il-=<Tr.q 2

From (2.21) we compute 0 by substituting b given by (2.32) in (2.5), (2.6).

Computation of the precession angle k. From (2.15 (A)12 1/2 (C22 Cll sin 2 +
c2 cos 2 0. If c2 :/: 0, then we obtain that

(2.50) cot 2!p (Cll--C22)/(2C12),

where-7r/4 < =< 7r/4.
In the following theorem we summarize our algorithm.
THEOREM 1. Let A [ao.]l =<;,j__<3 be a real symmetric matrix. Then there exist

Euler angles ck in (- r, 7r], O, in (-r/4, r/4] and a rotation matrix Q

Q= Qz(4))Qz3(O)Qz(P),
such that QVAQ diag (X(1), X(2), X(3)) where Xl <-- k2 < k3 are the eigenvalues ofA
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and ,3. For nontrivialA with at most two off-diagonal entries equal to zero, the angles
4, O, p can be computed asfollows"

Degenerate cases. Ifal2 0, al a22 or aij 4 0, <- <j < 3 and a3az3(a a22)
a2(a23 a223), then cot 4 -a23/a3, cot 20 (b22 a33)/(2b23) and p is given
by (2.50). If a23 0, a22 a33 or aij 4: O, <= < j <= 3 and a2a3(a22 a33)
a23 (a22 a23), then 0, cot 0 a2/a3 and /is given by (2.50). Ifa23 4:0 and a33
b22(cot -1 (a3/a23)), then cot b a3/a23, cot 0 b2/b3 and p is given by (2.50).

General case. ok, -7r/2 < ck <= 7r/2 is the solution of(2.32) given by (2.41), (2.36)
or (2.44), (2.36) or (2.47), (2.36). 0, -r/4 < 0 =< 7r/4 is given by (2.21). if, -7r/4 <
p <= 7r / 4 is given by (2.50).

The computation of the proper rotation angle b requires approximately 60 flops
and depending on the matrix, two trigonometric evaluation and two square roots or
three trigonometric evaluations, one square, and one cube root. Additional 12 flops and
three trigonometric evaluations are necessary to compute the nutation angle 0 and ad-
ditional 24 flops and one trigonometric evaluation to compute the precession angle
The total cost of computing Euler angles is approximately 90 flops, six trigonometric
evaluations, and two root evaluations.

From Remark we infer that for a given symmetric matrix A there exists a diagonal-
izing rotation matrix O Qplrl () Qp2r2 0 Qp3r (!p) with the Euler angles , 0, in
(-Tr/4, r/4]. If (Pl, rl, P2, r2) 1, 2, 2, 3), then we can compute qS, 0 (-Tr/4, 7r/4]
from (2.41), (2.42), (2.36), and (2.21). If (p, r, P2, r2) 1, 2, 1, 3), then we com-
pute 4 e r/ 4, r /4 as a solution of

(2.51) --y cot dp+(a23f+dh-z)cot2 dp+(-a3f-dk+y)cot b+ z=0.

3. Numerical experiments. We have numerically compared the Euler angles method
for diagonalizing a symmetric 3 3 matrix with the QR method and the two-sided Jacobi
method. The test matrices were generated in the following way. In each test a diagonal
matrix A with eigenvalues ki, 1, 2, 3 was chosen. Next, the diagonal matrix was
transformed into a full symmetric matrix A via a random orthogonal similarity trans-
formation Q. The three eigensolvers were then run on symmetric 3 3 matrices generated
in this way.

It was observed by Kahan [Ka that a straightforward implementation ofthe Cardano
formulas may lead to a loss of accuracy in finite precision arithmetic when the roots of
the cubic equation differ significantly in magnitude. A stable version of the Cardano
formulas may require evaluating the formulas twice. By varying ki’s we wanted to check
the sensitivity ofthe Cardano formulas to the magnitudes ofthe eigenvalues. In the tests,
we never observed any significant loss of accuracy in the computed eigenvalues.

Another way of solving the cubic equation arising in the Euler angles method is to
use the Newton iteration. In our tests the Newton method took on average six iterations
to converge and never produced a better approximation than the direct application of
the (stable) Cardano formulas.

Before running the QR method a matrix was first transformed to the tridiagonal
form. The QR method (with standard shifts) required on average three iterations.

In the Jacobi method we used cyclic-by-row ordering. On average, three sweeps (for
3 3 matrices, one sweep is equivalent to computing and applying three plane rotations)
were sufficient to diagonalize a matrix. We measured the accuracy ofeach ofthe methods
by the magnitude of the quantity e,

IIA- 00WlIFe--
llAIIF

where ( and denote the computed matrix of eigenvectors and eigenvalues, respectively.
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For all three methods e was always ofthe same order ofmagnitude. The experiments
were performed on a machine with 16 decimal digits of relative precision. A typical test
would give the following results:

)kl )k2 3

3.0, 0.0, 0.0
1.Oe + 12, 1.Oe + 6, 1.0
1.Ole + 6, 1.Oe + 6, 0.99

Euler Jacobi QR

6.52e- 16 4.12e- 16 6.53e- 16
1.83e- 16 1.01e- 15 4.33e- 16
2.02e- 15 6.81e- 16 4.03e- 16

Acknowledgments. We thank Gene Golub, for directing our attention to the related
work of Smith [Sm], and the anonymous reviewer, whose comments improved the
clarity of this note.
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HADAMARD SQUARE ROOTS*
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Abstract. IfA is an n-square positive semidefinite Hermitian matrix of rank l, then the Hadamard square
root ofA is the n-square matrix obtained by replacing each entry ofA by the principal value of its square root.
It is proved that ifA has no zero or negative entries, then the Hadamard square root has odd rank and all odd
ranks are possible.

Key words, matrix, rank, inertia, Hadamard product, Schur product
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1. Introduction. The Hadamard product of two m n matrices A and B is the
m n matrix C whose (i, j) entry is

(1) cij= aijbij, i= 1, m, j= l, n.

The matrix C in is usually denoted by

(2) C=A.B.

The matrix (2) is also called the Schur product ofA and B and, indeed, in [5, p. 458]
the fact that C -> 0 (i.e., C is positive semidefinite Hermitian) whenever A and B are, is
called the "Schur Product Theorem." Many years before [3, p. 173 ], Halmos described
this result as "a remarkable theorem on positive matrices." The proofs in both 5 and
[3 are the same and depend on writing A and B as sums of rank positive semidefinite
Hermitian matrices. Actually, the Schur Product Theorem was noted by Schur 11 ], and
several inequalities involving det (A. B) appear in [9, p. 421 ]. A history ofthe Hadamard
product with an excellent accompanying bibliography can be found in [4 ]. This article
is a valuable contribution to the matrix literature.

Thirty years ago Marcus and Khan observed that the Hadamard product of any
two n-square matrices is a principal submatrix of the Kronecker product A (R) B 7 ].
The precise location ofA. B in A (R) B is simple to determine. Define

rt=(t 1)n+ t, 1, ,n.

For any p and q among 1, n 2 the (p, q) entry ofK A (R) B is

where

(3)
and

(4)

kpq ailJl bi2J2

p i2 + n(il

q=j2 + n(jl -1).

If we set p rs and q rt in (3) and (4), it is immediate that il i2 S and j j2
t. Hence

krsrt ast bst, s, 1, n.
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The Cauchy interlacing inequalities 8, p. 203] can then be effectively used to obtain
information that relates the eigenvalues ofA. B to those ofA and B. Typically, ifA >= 0
then A r >= 0 so that H A.A r [[ aij[ 2 0 and

(5) Vkl (H) kl (A),

where Xl is the largest eigenvalue of the indicated matrix.
In 5, p. 462 there is an interesting exercise in which a 4-square A >_- 0 is constructed

for which

(6) abs (A) []a0]]
fails to be positive semidefinite. Since

the matrix in (6) shows that the entrywise square root ofa positive semidefinite Hermitian
matrix is not necessarily positive semidefinite. In order to avoid confusing the entrywise
square root with the usual matrix square root we shall designate the former as

(7) f V0].
In 5, p. 462 the matrix (7) is called the "Hadamard square root." The precise definition
of the square root of a complex number must be stipulated in order that (7) be well
defined for any complex matrix A. The principal value ofthe square root function satisfies

(8) Re z>_-0,
and the ambiguity in (8) for z < 0 is resolved with the usual

/-Z= Izl 1/2i.

Note that if d > 0 then (8) implies that

(9) /-z -z.
For angles o [-2r, 2r] the definition of" the principal value of" the square root function
implies that

e(w)ei/2,(10)

in which

ifw 7r or Il <
(11) e(w)=

-1 ifo= -Tr or I1 > .
This definition of the square root function is implemented in the MATLABTM [10, pp.
3-41 function sqrt, i.e.,

(12) sqrt (A)= /.
IfA >- 0 has a negative entry, the Hermitian property will be lost in computing f. For
example, for the rank matrix A >_- 0,

the Hadamard square root is

a non-Hermitian matrix of rank 2.

-1

i]
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The starting point for the results contained herein was a sequence of numerical
experiments using MATLABTM to evaluate ranks ofHadamard square roots ofrandomly
generated A >= 0 of rank 1, i.e., p(A) 1. In these experiments it was invariably the case
that for real A >= 0 of rank

vas computed as either or 2. As ve shall see shortly, it is easy to prove that for A >_- 0
nd p(A) 1,

ira0>=0foralli,j,
(13) P(f)=

2 if some aij<0.

Much more surprising were the results of an experiment in which

(14) p(f)
was computed for a large sample of randomly generated complex n-square matrices
A >= 0 of rank l: the rank (14) was computed as an odd integer in all cases. Despite this
numerical evidence, consider the Hermitian matrix

(15) A -1
-1

It is simple to confirm that A >= 0 and p(A) 1. Yet

(16) /-=

is a matrix of rank 2. Of course, since the principal value of the square root function is
used, the matrix (16) is no longer Hermitian. The question ofmaking a consistent choice
ofarguments for the square roots (and more general powers) so that the resulting matrix
is Hermitian is considered in the paper 2, pp. 640-641].

In order to state and prove the theorems that explain these phenomena we begin
by writing A >_- 0, 0(A) as a dyad,

(17) A uu*,

in which u is a column vector:

(18) u rleil rzei2, rnei"] T,

rt ]ut[, o [0, 2r), 1, n. Thus

(19) A rpruei(p-q)]

and since any two vectors u that serve to represent A as in (17) differ by a scalar multiple
of modulus 1, it follows that the differences 9p 9u, P, q 1, n, are the same for
all such u. It will be convenient to reorder the components of u, and to do this we need
only observe that if P is a permutation matrix corresponding to some S, then

(20) [pApr= pfpr,

so that

(21) p(]/PAPr) o(f-).
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Now

(22) Puu*pr= (Pu)(Pu) *

and thus we can assume that rl, rk are positive and rk/ 1, "’", rn are 0. But then
A consists of a k-square upper left principal submatrix bordered with 0 entries. Hence
there is no loss of generality in assuming that k n in any investigation of the rank
of f. We also remark that if D is a diagonal matrix with positive entries, then in
view of (9)

l/DAD l/dpamd

so that

23 O(I/DAD) p(I/).
Formulas (21)-(23) enable us to normalize A in (19) as follows. We can as-
sume that rl rn= by using (23) to replace A by DAD in which D=
diag (r]-1 rX 1); formula (22) can be used to reorder the components of u so that
Pl >= o2 >-- >_- on. Moreover, since replacing u by Xu, IX] 1, does not affect (17)
we may assume

(24)

Henceforth we shall assume A is in normalized form as just described, so that (from
(19))

(25) A [ei(’,- )]
and (24) holds for the arguments Pl, o. It is convenient to have a notation for
the angular spread of an arbitrary matrix A [am] [1 apu[ e’"o], Wpq [-2r, 2r], p,
q l, n, having at least one nonzero off-diagonal entry:

(26) s(A) max
pq=q

According to (26) and (24) we can assume that

(27)

Referring to the definition ofe(o) in 11 we can define an n-square matrix EA associated
with A as

(28) EA e( qgp q)

Note that from (25) and 11

f- ]/ei(’p ,q)]

(29) e( qgp- qVq)ei(’p/2-’t’’/2)

AEAA*
where A diag (ei’t’/2, ei"/2). Hence

30 p(f-) p(EA ).

The principal results ofthis paper follow. In the statement of each result A is an n-square
rank positive semidefinite Hermitian matrix.
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THEOREM 1. Assume that

(31) s(A)<- Tr.

Then

(32) 0(f)
ifthe inequality (31) is strict. Otherwise, s(A 7r and

(33) 0(f) 2.

CO.OrdinArY 1. If s(A) <- r and no off-diagonal entry of A is negative, tken

COROLLARY 2. Assume that A is real. Then o(f-) 2 ifany off-diagonal entry of
A is negative. Otherwise o(f-) 1.

Theorem is related to a result of Farjot [1 on infinitely divisible matrices. An n-
square matrix A >- 0 is said to be infinitely divisible ifA (") [a] >= 0 for all a > 0.
Farjot’s theorem states that ifA is infinitely divisible then 0(A ()) o(A) for all a > 0.

THEOREM 2. Assume that

(34) s(A)> r.

Ifno off-diagonal entry ofA is negative, then o(f-) is an odd integer.
THEOREM 3. Assume that no off-diagonal entry ofA is negative. Then o(f-) is an

odd integer.
It is Theorem 3 that explains why MATLABTM invariably computes 0(V) as an

odd integer for random rank matrices A >= 0. For, in generating random complex
column vectors u as in 18 ), the probability is 0 that

(35) Ip-ql =Tr

for some p 4 q. But
A=uu*

rpl"qei(p- q)]

and hence A has a negative off-diagonal entry if and only if (35) holds. (Recall that the
case of some up being 0 was eliminated in reducing A to normalized form.)

The next two results show that any rank is possible for the Hadamard square root
of an appropriate A >= 0 of rank 1. Specifically we have Theorem 4.

THEOREM 4. Let u be an odd integer, <- <= n. Then there exists an n-square
A >= O, o(A) 1, with no zero or negative entries such that

(36) p(f) .
If we permit negative off-diagonal entries, then p(V) can take on any integral value
between and n.

THZOnZM 5. Let be any integer, <= <= n. Then there exists an n-square A >=
O, p(A 1, with no zero entries such that

(37)

Of course, in view of Theorem 3, if u is even in Theorem 5 the corresponding A for
which (37) holds must have a negative off-diagonal entry.

2. Proofs. To prove Theorem we assume A is in normalized form. If s(A) < r

then every difference op q satisfies Iop Oql < r and hence from 11 ),

((/gp- 9q) 1, p,q= 1, ,n.
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It follows that EA Jn, the n-square matrix consisting entirely of ’s, and (32) follows
from (30). If s(A) r then there exists an integer k, _-< k < n, and an integer m, 0 -<
m _-< n (k + ), such that

"lr O tgk > gk + - --- (tgk + " tgk + + @n --0.

From 11 again, it follows that EA has the following block matrix form:

-Jn- (k + m),k Jn- (k + m),m Jn-(k + m)

where Jk, is a k m matrix of ’s, etc. Clearly, since 0 < k < n and n (k + m) >_-
it follows that 0(EA) 2, and (33) results from (30).

Corollary is an immediate consequence of Theorem 1. For, if no off-diagonal
entry is negative, then op- oq can never be r for any p and q. Hence s(A)< r
and Theorem implies that o(VA)= 1.

To prove Corollary 2 note that for a real matrix, s(A) 0 or s(A) r. If A has
a negative entry (it must be off-diagonal) then s(A) 7r and o(V) 2 from Theo-
rem 1. If all entries ofA are positive, then s(A) 0 and again Theorem implies that

We proceed to the proof ofTheorem 2. Since s(A) > 7r we know that t91 " 71". Define
k to be the largest integer such that Ol 0k < r. Note that _-< k < n; otherwise, if k
were n, the value of s(A) would be at most 7r, contradicting s(A) > r. Also, define m to
be the largest integer such that t/9 > "/1". Possibly, m 1, and by definition, m =< k. It is
helpful to graphically depict the points e/’, t 1, .--, n, on the unit circle:

(38)

q:)k +

.’ ton 2

q:)m+ / I q)n’l

%

The points ei, are labeled by ot, 1, n. The matrix EA defined in (28)
specializes to

(39) EA= Mr Jn-k
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in which M is a k (n k) matrix of the following "staircase" form:

-1 -1 -1 -1 -1

(40)

c c2 Cp
We observe that:

(a) The first row ofM consists entirely of- ’s;
(b) If m > there exist columns c < < cp such that the entries to the fight of

each of the steps that start at columns c, c2, Cp are all -1 ’s;
(c) If k > m then rows m + 1, k consist entirely of l’s.

A typical example of such an M together with a diagram of the form (38) will help fix
the ideas. Consider

-1 -1 -1 -1 -1
-1 -1 -1

(41) M -1 -1 -1
-1 -1

For the matrix (41 the parameters are n 10, k 5, m 4, p 2, c 3, c_ 4. The
corresponding diagram (38) specializes to

(42)

e9

1o

The matrix M is the submatrix ofEA e(op (q) lying in rows 1, 5 and columns
6, 10. Since s(A) > r, o is in the lower halfplane. Since t > r, 6,
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10, the first row ofM consists of ’s (see 11 )). The largest k such that 9 k < 71" is
k 5 and the largest m such that 9m > r is m 4. Since 92 9j < r, j 6, 7, and

o2 9j > r, j 8, 9, 10, it follows from 11 again that the second row ofM is

m(2)=[1 -1 -1 -1].

This is similar for M(3). The values (/4 j, j 6, 7, 8 are less than r while
r, j 9, 10. Hence

M(4)=[1 -1 -1].

Finally, 05 oj. < r, j 6, 10, so that

M(5)=[1 1].

We remark that since A has no negative entries, no two oj. are at opposite ends of a
diameter.

Next, let V be an (n k) k matrix whose first column consists of ’s and whose
remaining entries are 0. The following equations are simple to verify:

(43) VJk Jn k,k

(44) J,Vr= Jk,,, k,

(45) gJkgT- Jn_k,

(46) VM= -Jn-k,

(47) MrVr= --Jn-k.

Define the n-square matrix

(48) L=[ Ik
V In_ k

0 ]
conformally partitioned with EA in (39). Then we compute that

LEAL r [ Jk
VJk WMT

JkVT+M
gJkgT+MTvT+ VM+ Jn- k

and from (43)-(47),

(49) LEALT [ Jk Jk, k + M]Jn- k,k +Mr 0

If we refer back to the staircase matrix M in (40) we see that the matrix Jk, k + M has
the same form as M except that the -1 entries above the stairs are now 0 and the
entries below the stairs are now 2. Ifk 1, Jk,n-k -- M O,n- and p(EA) 1. Otherwise,
assume k > and let Wdenote the (k (n k) submatrix of Jk, k At- M obtained
by deleting its zero first row:

(50) Jk’" k +M= [0""w" O



HADAMARD SQUARE ROOTS 57

Define the k-square matrix K by

(51) K

1
1

and then let

1(52) s=
0 n-

conformally partitioned with (49). It is not difficult to check that

0...0

(53) Kj:KT= 0
0

and that

(54)
K(Jg"-g+M)=’ K[0’’’0]W

Jk,n_k-+-M.

Thus, from (49), 53 ), and (54) we have

55 S(LEaLr)Sr
Ell

where E is the k-square matrix with the single nonzero entry in the 1, position.
It is obvious that the rank of the matrix (55 is

(56) 2o(W) + 1.

But then

(57) O(EA) 2o(W) +
and the proof of Theorem 2 is complete.

The proof of Theorem 3 goes as follows. Since A has no (off-diagonal) nega-
tive entries it follows that Ip ql is never r for p q. Thus s(A) r. If s(A) <
r then Theorem implies that 0(/-)= 1. If s(A)> 7r then Theorem 2 implies that
o(V) is odd. In any event, o(/-) is always odd.

As remarked above, W is obtained from the staircase matrix (40) by removing the
first row, replacing the -l’s by O’s and the l’s by 2’s. For example, for the matrix (41

2 2 0 0 0

W= 2 2 0 0 0
2 2 2 0 0
2 2 2 2 2
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Obviously, p(W) is just the number of horizontal steps in W, i.e.,

(58) p(W)=p+

see (40) ).
To prove Theorem 4, write u as

(59) u= 2d+ 1.

In view of (55 and (57) we need only construct an n-square A such that the resulting
matrix W in (50) satisfies

(60) 2o(W)+ ,
or

(61) p(W)=d.

Assume first that n is even so that

(62) 2d+ =u<n

and hence

(63) n- 2(d+ )_>-0.

If d 0 so that u 1, simply take A to be Jn. Otherwise, define M to be the (d +
(n (d + )) partitioned matrix:

(64)

-1
1 -1 -1

M=d+l 1 1 -1 -1

1 1 1 -1
d+l

n-(d+l)
-1

-Ja + 2(d+

n-2(d+l)

If we set k d + so that M is k (n k), then it is obvious from the form ofM in
(64) that

(65) o(M+ Jk,,,_ k) d.

From (30) and (39) we need only construct an A such that

(66) EA= M
for the matrix M in (64). This amounts to describing a distribution of points e;’,
1, n, as in the diagram (38), such that

(67)

is the matrix (66).
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(Pd+2
(Pd+3

(P2d
2d+

(68)

q:)2d + 2

In the diagram (68)

(69) 27r > qgl > g92 > q9 > > d+ > Tr > Od+ 2 > Od+ >

and

(70)

(/0] 7r >d+ 2 > (492

(/92 7r > qgd+ >

(/d -Tr >" (/2d+ > Od+ --’Jr,

(71) 0d+ 71"> t/O2d+2>

Recalling that k d + 1, (69) and 11 imply that

(72) e(op- Oq) 1, p,q= 1,... ,d+ l=k

so that the upper left k-square block in EA is Jk. The first inequality in (70) implies that

(73) e(ol oq) 1, q=d+2=k+ 1,...,n.

From the second inequality in (70),

(74) e(g92 ggd+ 2)

and

(75) e(Oz-Oq)=-l, q=d+3=k+2, ,n.

We continue similarly through the last inequality in (70) which implies

(76) e(Oa+l-oq) 1, q=d+2=k+ 1, ,2d+ l=k+d
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and

(77) e(oa+ -oq) =-1, q=2d+2=k+d+ 1, ,n.

Finally, the fact (in (69)) that r > oa+ 2 implies that

(78) e(pp- pq) 1, p,q=d+2=k+ 1,...,n.

The statements (72)-(78) show that any distribution of ot, 1, n, that satisfies
the inequalities 69 )-(71 yields a matrix EA for which (66) holds when M is the matrix
(64). Thus, for any such set of ot, the matrix

A [ei( )]
has rank 1, satisfies A >- 0, and has no negative or zero entries (i.e., (p Oq) =f r, for
any p and q). This completes the proof for the case n even. Assume next that n is odd
and that, 2d + 1. Once again we need only construct an n-square A such that the
resulting I4: in (50) satisfies (61 ). The two cases, < n and, n are slightly different.
We dispose of, n first. Set k d + so that

n-k=n-(d+l)

(79) =2d+ 1-(d+ 1)

-d.

Define M to be the (d + d (i.e., k (n k)) matrix

-1 -1 1

(80) M=
1 -1.

11 1" 1-11
Then

M+ J,,,, . M+ Ja+ ,a

obviously has rank d. From (30) and 39 again, it is only necessary to construct A such
that the matrix EA in (67) is precisely the matrix (66). A diagram similar to (68) is
useful:

Pd+3

qn-

(81)
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In the diagram 81

(82) /91 > 2>-" >oa>Tr>qga+l>Oa+2> ’qgn-l’n--O.

Moreover,
(83)

Sincek=d+ land

Ipp-Oql <r, p q 1,’.. k,

the upper left k-square block in EA is Jk. It is routine to check that the inequalities (82)
and (83 produce a matrix EA such that the matrix M in (80) is its upper fight block.

It remains to settle the case u < n. Set k d + and note that

u+ <n, n>2(d+ 1),

and hence

d+l<n-(d+l).

Define M to be the (d + (n (d + )) (i.e., k (n k)) matrix

(84) M

-1 -1 1
1 -1 -1
1 1 -1 -1

1... 1 -1..-1

in which the -l’s in row 2 begin in column 2, the -l’s in row d + k begin in
column d + 1. The appropriate set of o’s to produce an EA with the matrix M in (84)
in its upper fight block is described by the following diagram:

qd+2
q)d+3

+4

+ qv
qv+l

q)d+l
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In the diagram (85

(86)
>99d+ 3> q93-- 7r > 0d+4 > 02d+ >qgd+ 7r > qg+ > > On 0.

It can easily be confirmed that the inequalities (86) imply that EA has the matrix M in
(84) in its upper fight block. We omit the familiar details to conclude the proof of
Theorem 4.

We proceed to the proof of Theorem 5. If u is odd then Theorem 5 is precisely
Theorem 4. Thus we may assume u is even. The remainder of the proof is in two parts:
u n and u < n. We first prove that if n is an even integer, there exists an n-square A >=
O, o(A) 1, with no zero entries, such that

(87) 0(-) n.

Define

(88) =(n-k)2r/n, k= 1, ,n

so that

qgl>’q92>

As before, we compute the column vector u [e;, ei’t’’] T and then the matrix

A=uu*

The square root ofA is defined by

which in turn is congruent to the matrix

(89) EA e (q--p)

If we set n 2m, then forp, q 1, n 2m, we have

(90)
if IP-ql <m or q-p= m,

if ]P-ql > m or q-p= -m.
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The diagram corresponding to the choice of ok in (88) is

m+3

q)m+2

q)m+l (Pn-1 (P2m

q)m -1

The matrix EA becomes

(91)

and

1 -1 1
1 1 -1

1 1 1 .1
1 1

=1,.+S,

where S is the skew-symmetric matrix with -1 in the upper triangle. Thus, from (91

EA I2@ Jm + (R)M
-1 0

("(R)" denotes the Kronecker product), which in turn is unitarily similar to

R= Iz@ Jm + (R)M
0 -i

0 Jm- iM
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Now

and

det (R) det (Jm + iM)

Jm+ iM=(1 + i)Im+H,

where H is the Hermitian matrix with in the upper triangle and 0 on the main
diagonal. Since the eigenvalues of H are real, it follows that R is nonsingular and
hence f is nonsingular.

The second part of the proof begins by using the first part with u playing the role of
n and then constructing a column u-vector u with no zero entries such that

(92) ,o(uu*) u.

As above, u, 1. Let v be the column n-vector defined by

where en-, is the column (n u)-vector, all of whose entries are 1. We show that the
required A for which (37) holds is A vv*. Note that

uu* Ue*n- ]A=
en- ,,U* en- ,,e*n-

(93)

Ul’. "U

Uv’" "Uv

Ul"" Uv_

Ul"’Uv_

Ul’" Uv_

Ul

Uv-1
1

1

1

U U

Uv_l""Uv_

where is the column( )-vector obtained from u by deleting the last component
u, 1. The matrix f results from A by simply computing the square root of every
entry in A. Since columns u, n, in f are identical it follows that p(/A) =< .
However, the upper left u-square block in f is uVu* and it is nonsingular. This completes
the proof of Theorem 5.

3. Inertia. In this section we continue to assume that A >= 0, p(A) 1, and that A
has no zero or negative entries. As we saw in the derivation of (30), V is unitarily
congruent to EA and hence the inertia off and EA [e(op q)] are the same [5, p.
223 ]. Recall that the inertia of any n-square Hermitian matrix H is the triple of integers
In(H) (pos, neg, zer) where pos is the number of positive eigenvalues ofH, neg is the
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number of negative eigenvalues of H, and zer is the number of zero eigenvalues of H.
As we saw in 1, the arguments of the vector u for which A uu* may be normalized
so that (24) holds. Ifs(A) < 7r, then from Corollary 1, 0(/-) 1. Since is Hermitian
we conclude that

(94) In(f)=(1,O,n-1).
Thus assume that s(A) > r, so that o > 7r, and, as in the proof of Theorem 2, define k
to be the largest integer such that o 0k < 7r. Define m, as before, to be the largest
integer such that m > 71". Possibly m 1, and in any event, m =< k (see diagram (38)).
Next, define kt to be the least integer such that

(95) Okt<tgt--Tr 1, ,m.

Thus the set { ok,, on } are precisely all the oj which are less than ot r, 1,
m. Note that k k + 1. Since o > rr and o >= o2 >= >= on 0 it follows that

(96) k <=k2 <= <=km.
For example, in the diagram (42), kl 6, k2 8, k3 8, k4 9. Moreover, the number
of elements in the set { ok,, Ol0 } is the number of ’s in M(t), 1, m (i.e.,
214 is the matrix defined in (39)). If two (or more) successive kt are the same, the cor-
responding rows M(t) are identical. If two (or more) successive kt are distinct, then the
corresponding rows M() are linearly independent. Also, rows m + 1, k (if any) in
M are identical and consist entirely of ’s. There are such rows of ’s only in the case
where m < k. Thus the rank ofM + J,n- is the number, 6, of nonzero differences in
the (m )-tuple

(97) k_ kl, k3 k2, km km- 1]

in the case where m k, and the rank ofM + Jk,n-k is 6 + if m < k. It is important
to note that if m < k then 0(M + J,n-) because the first row ofM + Jk, is
0 and the remaining k rows consist entirely of 2’s. We summarize these observations
in the following theorem that expresses O(W) (see (50)) in terms of the arguments of
the vector u (see 18 )).

THEOREM 6. Let A >= O, o(A 1, and assume A has no zero or negative entries.
Suppose that A uu* and that the arguments p, tgn of bl are normalized so that

Let k be the largest integer such that o o < r and let rn be the largest integer such
that 0 > 71". Also, lt W be the matrix in (50), and ifrn > let kt, 1, m, be as
defined in (95) and then define 6 to be the number of nonzero differences among the
components of(97 ). Then

0 ifk=l,
if k> and rn 1,

(98) (W)= 6+1 ifl<m<k,
6 ifl<m=k.

It is straightforward to compute the inertia off in terms of o(W).
THEOREM 7. Let A >- O, o(A) 1, and assume that A has no zero or negative

entries. Ifs(A) < r, then

(99) In(f) (1,0, n- 1).



66 M. MARCUS AND M. SANDY

Ifs(A > 7r, then

(100) In(f-)=(p(W)+ 1,p(W),n- 2p(W))

in which p(W) is determined entirely by the arguments pl, "", Pn of U in the for-
mula (98).

Proof. Ifs(A < r, then (99) was established above in (94). Ifs(A > 7r, then from
(57) and (30)

01
p(7-J) p(E)

2p(W) + 1.

Also, from (55 ), EA is congruent to the matrix on the fight side of (55), in which W is
(k (n k). If k were 1, then Wdoes not appear in (55 and the fight-hand side
of that equation is the n-square matrix whose single nonzero entry is a in the 1,
position. Then (100) holds for p(W) 0. Thus assume k > so that the fight-hand side
of(55) is

EI
R= 0

Wr

in which Ell is k-square and Wis (k (n k). Then In(f-) In(R) [5, Thm.
4.5.8]. Since R is the direct sum of and the (n )-square matrix

[0 w](102) H=
Wr 0

we write W UDV, the singular value decomposition of W. Let p(W) h and let cl >

>= Ch > 0 be the positive singular values of W. Then H is unitarily similar to

0 ]@diag (al, ,ah)@On-1-2h.(103t
0

The eigenvalues of (103) are +at, 1, h, and 0, n 2h, times. Thus

In(R)=(h+ 1,h,n- -2h).

Since h p(W), the proof is complete. E]

Theorems 6 and 7 provide us with a straightforward algorithm for computing p(W),
and from this value, both p(f) and in (f). We start with an arbitrary A uu *, with
no zero or negative entries. Following the MATLABTM convention we use "%" for doc-
umentation.

Step 1. Take u A (1), the first column ofA.
Step 2. If ut rte’’’, t 1, n, sort and translate the vector o [l, On]

so that (/91 @n 0.
Step 3. If ol < r then set o(W) 0 and end % o(f) 1.
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Step 4. Determine the largest k such that o ok < r. If k then set o(W) 0
and end. % o(V) 1.

Step 5. Determine the largest rn such that @m > 71". If rn then set o(W) and
end. % if k > and rn then o(W) and o(f) 3.

Step 6. For 1,---, m, determine the least kt such that ok, < ot r. %
k> landm> 1.

Step 7. Determine the number,/5, of positive components of k2 k, km

Step 8. Seto(W)=/5+ lifrn<kandseto(W)=/sifrn=k. % p(W)=/5+
lifl < m < k, p( W) r if < m k.

Step 9. end

The value of o(W) produced by this algorithm satisfies

(104) p(f) 2p(W) + 1,

(105) In(f-)=(o(W)+ 1,p(W),n- 2p(W)).

For, if Ol < 7r, then o(W) 0 and both (104) and 105 are correct. If o > r and k
1, then o(W) 0 and again (104) and 105 are correct. If rn 1, then the conclusion
is the same. Finally, if k -> rn > l, then (98) and (100) again confirm that (104) and
105 are correct for the value of p(W) produced by the algorithm.

As an example, for the matrix described in the diagram (42), n 10, rn 4, k
5, k 6, k2 8, k3 8, k4 9,

k2 kl k3 k2, k4 k3 2, 0,11,

/5 2 and p(W) =/5 + 3. This is confirmed by (58).

4. Some computations. It is quite simple to write a MATLABTM program to generate
random complex A >_- 0 of rank and tabulate 19(f). In Table the row headings
indicate n, the dimension of A. The integral column headings indicate rank. For each
n 3, 10, 250 random A were generated. The entry in the (p, q) position is
a count of the number ofp-square A >= 0, 19(A) 1, for which 19(V) q. For example,
the (7, 5) entry of Table indicates that of the 250 random 7-square A, 87 of the
matrices V had rank 5. The column headed is the number of elapsed seconds re-
quired to complete the computation for each n. The computation was done on a Mac-
intosh IITM computer with MB of main memory. The program does not test for zero
or negative entries in A. The listing that follows will produce an output formatted as

TABLE

n/o

3
4
5
6
7
8
9
10

3 5 7 9

199 51 17
122 128 22
80 158 12 28
51 151 48 36
27 133 87 3 46
12 114 105 19 57
8 90 117 32 3 70
5 61 116 66 2 85
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indicated in the typical session following the listing (we have omitted the sum and time
elapsed)"

B=[ ];
v=[ ];
R=[
i=sqrt --i

n=input( ’enter size of u:

j-input( ’enter number of iterations:
disp(
starttime=fix clock

for k 1
x--2, rand (i, n)--ones (i, n)
y=2,rand(l, n)-ones (i, n)
u=x+i,y
A=u’,u

B=sqrt (A)
v--[vrank(B)]

end

for r 1 n

len=length(find(v==r)
R(r,l)-r;
R(r, 2) =len;

end

disp( ’Rank Number of times

disp(R)
disp( ’The sum of the number of times is

disp(sum(R(:,2)
elapsed_time=etime fix clock ), starttime

enter size of u 5
enter the number of iterations 250

Rank Number of times

1 80

2 0

3 158

4 0

5 12

5. Further work. The authors are currently investigating various extensions of the
work in the present paper. These include:

The rank of general Hadamard powers ofA >_- 0, 0(A) 1;
2) The extent of the numerical range W(f) when A >_- 0, 0(A) l, but A has

negative entries so that f is no longer Hermitian;
3) 0(f) when A >- 0, 0(A) > 1, and A has no negative entries;
4) p(f) when A is normal, p(A >_- 1;
5) The distribution of the eigenvalues of f for A >= O, o(A) 1, and A has no

negative entries.
6) The probability distribution of o(f) for randomly generated A, A >-_ 0,

o(A) 1.
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ON SIMULTANEOUS CONGRUENCE AND NORMS
OF HERMITIAN MATRICES*

STEPHEN PIERCEf AND LEIBA RODMAN

Abstract. Let A, , Am, B, , Bm be n n complex Hermitian matrices. It is said that B, Bm
are simultaneously congruent to A, , A if there exists an invertible S such that S*AiS Bi, 1, ,
rn. In this paper, inf I S[[, as S ranges over all invertible matrices which afford this simultaneous congruence,
are studied. If one of the Ai is positive definite, it turns out that the growth of inf I S[I is of the same
magnitude as that of B A tll + + Bm Am [I. A counterexample with rn 2 is given to show that this
result can be false ifnone ofthe Ai’s is positive definite. An analogous result for simultaneous unitary congruence
of matrices is also proved.

Key words, simultaneous congruence, norms

AMS(MOS) subject classifications, primary 15A57; secondary 15A60

1. Main results. Let .4 (.41, Am) be an (ordered) m-tuple of (complex)
Hermitian n n matrices, and consider the set C(A) of all m-tuples B (B1, Bin)
of (necessarily Hermitian) n n matrices that are simultaneously congruent to A, i.e.,
for some S e GL (n, C) the equalities Bj S*AjS, j 1, m hold. (As usual, we
denote by GL (n, C) the group of all invertible n n matrices with complex entries.) In
this paper we study the following property ofthe tn-tuple A as above. There is a constant
K > 0 (depending on A only) such that for every (B1, Bm) e C(A) there is an
S e GL (n, C) with

Bj: S*AS, j= 1, m,
m

i=1

(here the norm I1" is chosen in advance). It will be convenient to use in this paper
mainly the Frobenius norm

a 2Ill ijli, j =1 Z aijl
i,j

occasionally, the operator norm A II. (the largest singular value ofA will be used; the
operator norm will be distinguished by the subscript "H." If such K > 0 exists we say
that A has the Lipschitz property with respect to simultaneous congruence.

Lipschitz properties of similarity of matrices have been studied in [GR]. Problems
related to the Lipschitz properties of congruence and similarity have been studied in the
operator-theoretic context (existence of local and global continuous cross sections); see,
e.g., [DF], [P], [AFHV], and [AFHPS]. We also mention (as an inspiration to this
paper) that Lipschitz behavior of solutions to various other problems recently became a
subject of extensive study (see, e.g., MS ], A ).
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It was shown in PR that in the case where m every Hermitian matrix has the
Lipschitz property with respect to congruence. This is no longer true if m >= 2; for the
reader’s convenience we reproduce here the counterexample given in [PR].

Example 1.1. Let

A-A1
0

It is easy to see that for every a 4:0 the matrices

B1 (=AI)
0

are simultaneously congruent to A1, A2 (in fact,

a 0
Aj =Bj j=l 2).

O/ 0

However, any invertible matrix T for which T*AT B, j 1, 2 has the form

i(o+/2) Iol-leiT=
lale_iO 0

for some r > 0 and some real 0. For any such T we have

As a 0 we see that (A, A2) do not have the Lipschitz propey with respect to si-
multaneous congruence.

Our main results are the following.
THEOREM 1.1. Let A (A, ,Am) be an (ordered) m-tup# ofn n Hermitian

matrices, and assume that at least one ofthem is positive definite. ThenA has the Lipschitz
property with respect to simuBaneous congruence.

In fact, A has the Lipschitz propey with respect to simultaneous congruence pro-
vided that some linear combination ofA1, Am is positive definite (we are indebted
to C. R. Johnson for this observation). To prove this, apply Theorem 1.1 for the
(m + )-tuple

A1, ,Am, iAi

where the real numbers c, ..., Cm are such that

iAi
i=1

is positive definite.
Thus, Theorem 1.1 settles in the affirmative the conjecture stated in PR].
An analogous result (without the positive-definiteness assumption holds for simul-

taneous unitary congruence of matrices. To describe this result, we introduce the following
notation. For an (ordered) m-tuple N (NI, "", Nm) of n X n complex matrices, let
UC(N) be the set of all m-tuples (MI, Mm) that are simultaneously unitarily similar
to N, i.e., Mj. U*Nj. U, j 1, m for some unitary n X n matrix U.
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THEOREM 1.2. Let N (N1, "", Nm) be an (ordered) m-tuple of n n ma-
trices. Then there is a constant K >= 0 (depending on N only) such that for every
(M, Mm) UC(N) there is a unitary U with

and

M= U*NU, j= 1, ,m

m

i=l

This theorem can be obtained as a corollary ofTheorem 1.1. Indeed, apply Theorem
1.1 to the (2m + )-tuple of Hermitian matrices

1.1 (/,Re Nl,Im N, ,Re Nm,Im Nm),

where we denote Re X 1/2 (X + X* ); Im X /2i(X X* ). The (2m + )-tuple of
Hermitian matrices which is simultaneously congruent to 1.1 is taken in the form

(I, Re M, Im M, Re M,Im Mm).

The proof of Theorem 1.1 will be given in the next two sections.

2. A local theorem. In this section we prove a local result on which the proof of
Theorem 1.1 is based.

Let A A, ..-, Am) be a finite family of n X n Hermitian matrices. Let U(n)
be the group of all n X n complex unita matrices. We say that U U(n) centralizes A
if UA AU for all k 1, n. For each U U(n) but not centralizing A, define

(2.1) (U) UA AV]

THEOREM 2.1. There exist positive constants K, e depending only on A, A,
such that if

IIUA-AgUI[ 2 <e,
k=l

then there exists a V U(n) such that V*AV U*AU, k 1,..., m, and
k(v) <x.

Remark 2.1. Note that UA AUI 1U*AU A [].
Remark 2.2. For V to satisfy V*AV U*A U, k 1, m, it is necessaw and

sufficient that V WU where W is unita and centralizes A. In this case, the denom-
inators in(U) andS(V) will be the same; only the numerator can change.

Remark 2.3. If the theorem is false, there must be a sequence { in U(n) such
that limj I,,() is increasing, and lima (-) m. Moreover, we may
assume that the sequence { . } is the best possible in the following sense. If . is any
sequence of unitaw matrices centralizing A, then I .-I I [. This means
that evew subsequence of the() diverges and cannot be "repaired." We will show
that there is a subsequence of the () that can, in fact, be "fixed" and thus prove the
theorem.

The proof involves consideration of several cases.
Case I. The irreducible case. We assume in this section that A {A }= forms

an ieducible set, i.e., they have no common proper invafiant subspace in C’. Then the
centralizer of A consists of scalar matrices only and hence we may modify the only
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using multiplication by a scalar of modulus one. We will therefore assume that one
occurs as an eigenvalue in every U;. For each j, let Xj be the eigenvalue of U; such that
[1 ,1 >= I1 X[ for any other eigenvalue X of U;.

For each j, choose V; e U(n) such that

and if t, X are eigenvalues of Xj. and Y;, respectively, then

I-Xl >_- 1-},jI/n.

The possibility of such choice of V; follows from elementary geometric considerations.
In addition, let Bkj. 17;*AkV, k 1, m. Clearly,

III-X(R) Y,.ll
y(u;) 2.__, u(x,.(R) Y;)- (x;(R) Y,.)u "

Partition B; conformally wifia X. (R) Y;, obminin

B= [ B, B ]Bj Bj4

Note that

Z xu_ ;
k=l

is part of the denominator in the representation ofJ (U;) above.
Now X (R) I I (R) Y; is a normal linear transformation whose smallest singular

value is at least l1 Xl/n. Set

t BI[ .
k=l

Since {A, Am } are irreducible, we can never have t; O.
A simple reasoning will verify that fA (U;) =< n3/t. Indeed, the eigenvalues of X; (R)

Y; are also those of U;. So

I- Xj.@ Y;112 =< nl kj[ 2.

Also,
m

Z IIX;B;2-B;2Y;II 2= Z [I(X;(R)I-I(R)Y;)B;2I[2>o;
k=l k=l

where c; is the smallest singular value of X; (R) I I (R) Y;. Now

;5(u.)< Ill-X;@ Y;II 2 nll-X;I z n
n__ 2

as claimed.
Next, we also must have { t; } bounded away from zero. If this were not the case,

some subsequence ofthe V; would converge to a unitary matrix Vsuch that the matrices
V*AkV would have a commonly placed zero block indicating reducibility. B

Remark 2.4. The sizes of the B2 in general will not be the same. This causes no
problem with the above argument. If some subsequence of the t approaches zero, we
may assume that the corresponding subsequence of the Bg2 all have the same size.
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Case II. The reducible case. Preliminary results. This case does not seem to yield
to a simple induction argument. Thus we will prove a series of propositions to be
used later.

PROPOSITION 2.2. Let { B1, Bm }, { C1, Cm } be two sets ofHermitian
matrices. Assume that the only matrix X satisfying BiX XCi, 1, m, is X O.
Then there is a constant K > 0 independent ofX such that for all matrices X ofsuitable
size the inequality

(m )[IX[[ 2=<K Z [[BX-XC][

holds.
Proof. Define a linear transformation T on matrices the size of X by T(X)

(BlX XC BmX XCm). Obviously the kernel of Tis zero and hence its smallest
singular value Cl is positive. Thus we can take K /c, which depends only on the Ci
and Bi. V1

PROPOSITION 2.3. Let X and Y be upper triangular matrices of sizes m and n,
respectively. Suppose ((X { )t km } and r(Y #, }. Assumefurther
that O < p min ]hi- jl. Then for any m n matrix B [bij]l <=i<-_m; <-_j_n, we have

where q is defined as follows:
q ]broil unless bml 0; otherwise,
q max Ibm,2[, Ibm- ,[) unless bm,2 bm- ,1 0; otherwise,
q max (Ibm,3l, Ibm-,21, bm-2.l), etc.
Remark 2.5. Note the ordering of the entries in B, starting at the lower left-hand

corner and working toward the upper fight-hand corner in a back and forth fashion.
Proof. We can assume that the diagonal ofX is , km (in this order) and the

diagonal of Yis #l, #, (in this order). Let Z XB BY= [Zij]l_i<__m;1 <j-<n. Since
X and Y are upper triangular, we observe that zml bm ()tm lal ). Thus, if bml 4 O,
then we are done. If bm 0, then we note that

Zm2 bin2( )km U2) and Zm- 1,1 bm- 1,1 km- 1 ).

Thus we are done unless bin,2 bm-1,1 0. Continue inductively until the result is
established. V]

Remark 2.6. IfX and Ywere diagonal, we could use an argument as in Proposition
2.2 and replace pq with the better bound p I1BI], because p is then the minimum singular
value of the linear map X (R) I I (R) Y.

PROPOSITION 2.4. Let W be an rs rs matrix partitioned into s s blocks
Wo( i, j 1,..., r). Assume that W is a contraction, i.e., 11WllH <= 1. Then there
exists an r r unitary matrix P such that the matrix Z W( P (R) Is s) has the property
that the blocks Z12, Zls are all singular.

Moreover, given an e > O, there exists a 6 > O, such that if 11I- WI] < 6, then P
may be chosen so that 11I- P]] < e.

Proof. The validity of the second statement of the proposition will be evident in
the text of the proof. Also, we will choose P so that for j 2, r the jth column of
P lies in the span of the first j standard vectors e, ej.
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First pick PI2 and P22 SO that P2W + P22 W12 is singular, IP1212 -+- p222 1, and
P22 0. This is clearly possible, and if WI is close enough to Is s, then (because W
is a contraction) WI2 is close to zero, and consequently P22 will have to be close to one.
In fact, if W12 is already singular, we will choose P12 0 and P22 1. Now set P32

Pr2 0, and we have selected column 2 of P. To get column 3 of P, first choose
a vector v3 in span { el, e2 ) which is orthogonal to column 2 ofP, say v3 pzzel -/2e2.
Then choose numbers and P33 so that tPz2 WI1 //12 WI2 -[- P33WI3 is singular, P33 >--
0, and 12p222 + tZlP12[ 2 + P3 1. Note, as before, that if W is close to Iss, then we
will have to choose P33 close to one. Now we let column 3 ofP be tpz2el --//12e2 - P33e3.
Continue in this fashion, to obtain columns 4, r of P and then choose column
by Gram-Schmidt with the 1, entry close to (if WI is close to I). U]

PROPOSITION 2.5. Let { B1, Bm} be an irreducible set of n n Hermitian
matrices. Then there is a constant L > 0 depending only on the Bi such that for any
singular matrix X we have

(m )[IXII 2<=L E I[BkX-XBkI[ 2

k=l

Proof. This inequality is homogeneous in X, so we will confine our examination
to those X which lie on the unit sphere S consisting of all X such that X 1. Let V0
be the matrices of determinant 0 and V1 the scalar matrices. The V0 n s and V1 n S are
disjoint closed sets in S and hence have a positive distance between them. Let T be the
linear map on n n matrices given by T(X) (BX-XB, BmX- Bin). Clearly,
the scalar matrices are exactly the kernel of T. Thus { T(X)II 2, X V0 n S } must be
bounded away from zero by a constant depending only on T. This completes the proof.

PROPOSITION 2.6. Let B, ..., Bm be an irreducible set ofs s Hermitian matrices.
Then there is a constant L > 0 depending only on B, Bm and on thepositive integer
r such that thefollowing holds: Given any rs rs contraction W (Wij) (the Wo are all
s s), there is an r r unitary matrix P such that Z W(P (R) Is) [Zij] _i<r;1 <=j<=r

satisfies

(mZ IIZ,jlI  L, E Z II  Zo-Z,j  ll
i<j k= i<j

Proof. By Proposition 2.4, we will first assume that W12 Wlr are all singular.
If W12, Wit are all zero, we can finish by induction on r (observe that for r 2
Proposition 2.6 is easily gotten by combining Propositions 2.4 and 2.5). Otherwise, let
W0 be the (r )s (r )s principal submatrix of W obtained by deleting the first
block row and column. By induction, choose an (r- (r- unitary matrix P0
such that Zo Wo(Po (R) Iss) [Zij]2<=i<-_r;Z<=j<-_r satisfies the result of the theorem,
namely, that

<i<j
)z,j I1’- z., Z B Zo- ZoB 

k=ll "<j

where L depends only on B, ,Bm. Now let P= (R)Po, and set Z=
W.(P (R) Iss). Now

[Z12, ,Zlr]-- [WI2, Wlr][eo@Isxs].
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Of course Zl2, Zlr do not have to be singular, but since Po (R) Iss is unitary,
[El2, Zlr] 112 Ill W12, Wlr] 2. Since WI2 Wlr are all singular and not

all zero, we have from Proposition 2.5 that

=i<j =1

where L2 > 0 depends only on B1, Bm and r. This completes the proof. V1

We will use Propositions 2.4 and 2.6 when the contraction Wis a principal submatrix
of a unitary matrix. In connection with this we remark that any contraction is a principal
submatrix of a unitary matrix.

Case III. Proofs for the reducible case. We will assume that A {A l, Am }
and the sequence { U } are as before. In other words, ( Uj. }=1 is a sequence of n n
unitary matrices with the following properties:

(i) lim:._ U I;
(ii) The numbersj(U) I U:. - / = U:Ak AkU 2 tend to infinity;
(iii) If { V:. )= is any sequence of unitary matrices centralizing A, then

III- vj. uj. III- u II, j=l,2,....

We have to prove (by contradiction) that this sequence is impossible.
Because there have to be several stages ofpartitioning theA and U, we will introduce

the required partitioning now. First, a definition. Two ordered sets of n n Hermitian
(1) S{"(2).i.,T)}arecalledequivalentifmatrices T(1) { T ,’" T)} and T(2) 1

Tthere existsSeGL(n,C such that S-T 1) 2) i= 1,...,m).Infact, ifsuch
an S exists, it can be chosen unitary. Since A { A1, , Am } is reducible, A is equivalent
to { Bi (R) C/} ,.m= 1, where B {B B ) is irreducible. If C { C Cm } has an
irreducible component equivalent to B, then A is equivalent to (12 2 () Bi) C } 7’=
for some C’ { C’l, C }. Continuing this process, we may assume that every A
has the form

A=(Irr(R)B)Ck, k 1, ,m,

where the Bk are s s, { B, Bm } is irreducible and no irreducible component of
{ Cg } = is equivalent to { B, B, }. By Schur’s lemma, the latter condition means
that there is no nonzero matrix Q such that

(Irr(R)Bg)Q QC; k 1, ,m.

Next, partition U conformally with the above partition of the Ag as

where Wj. is the same size as L () Bk, namely, rs rs. Next, partition Wj. conformally
with the block diagonal matrix/rxr @ Bk as (Wj)pq where each (W)pq is s s. If the ith
block row of (W) is (W)il, (W)ir, then the corresponding th block row of Y is
denoted Y)i.

There is one deeper partition that we will have to make. It will be necessary to
choose for each j a block diagonal rs rs unitary matrix P (the blocks on the diagonal
are of size s s) such that the (p, p)th block of Pj.* WPj is upper triangular for every
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p 1, r. We will denote the (p, p)th block of P. (I (R) B.)P as (/ki)p, and the
(p, p)th block of Pj* WjPi as (P. WjPi)pp. These blocks will have the form

(BkJ)=
Ej Fkj

(Pj*WiPj)= Ri Sj
0 Qjp"

The sizes of Rip and Qjp will depend on j and p. The way Rip and Qip are chosen
will be indicated later in the proof.

Let a,/3 be increasing integer sequences (not necessarily ofthe same length between
one and n. If U is n n, we let U[ a,/3] be the submatrix of U in the intersection of
rows a and columns/3. If Rj Uj[ a, 3], we shall say that Ri is bounded if there is a
constant L3 independent ofj (and hence dependent only on A,, Am), such that

(n )IIRjlIZL3 Z IIA[o,o]Rj-RjA[,I3]
k=l

If Rj Uj[ a, a] is a principal submatrix of U, then we shall investigate instead the
boundedness ofI- Ri. We want to demonstrate the boundedness ofI- Wj, I- Zi, Xj,
and Yj (or some subsequence thereof). As an example of this idea, we note that Xj and
Yj must be bounded by Proposition 2.2. We will use the boundedness of Xj and Yj in
our proof.

Now we consider the rs rs matrix Wj. We will show how to investigate Wj and
from this it will be clear how to treat Zi. First we observe that any unitary matrix of the
form (P (R) Is s) (R) It t commutes will all Ak. If all (Wj)pq are zero, we can continue to
the next step and bound I- (Wj)pp by using the irreducible case inductively. Otherwise,
we use Proposition 2.6 to allow the assumption that if p < q, then (Wj)pq is bounded.
We do this by multiplying through by a matrix of the form (P (R) Iss) I.

We now observe that since Uj is unitary, we have Xj 2 Yj 2, and hence

Z II(Wj)qll 2= Z II(Wj)ll =.
P<q P>q

Therefore, since

’= Z,<u lIA(Wj)pa-(Wj)pqAzII 2

is bounded in terms of the Ag alone, the same is true for

=, p u A(Wj),u- (Wj)paA 2"

It may be that for particular p > q, (Wj)pq is not bounded; the weaker statement
above, however, will suffice for our purposes.

The most difficult part is to bound I- (Wi)pp. We assume that every eigenvalue of
(Wj)pp has a positive real part (indeed, { Uj } is a sequence ofunitary matrices approaching
I, so any principal submatrix of { Uj } will be close to I as well (for j large enough) and,
in particular, all its eigenvalues will have positive real parts).

We may also assume that each (Wj.)pp is "adjusted" by multiplication by some scalar
aip of modulus one. The choice of aip is crucial. Since (Wj)pp is s s, let ,,, ,s be
the eigenvalues of (Wj)pp after a suitable choice of
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We consider two cases. In the first case, it is possible to choose ajp such that

This would occur, for example, if all Xv were on or in the circle r cos 0, i.e., the circle
with center 1/2 and radius 1/2. We now wish to examine

Let (Uj.)p be the pth block row of U with (W)pp removed. Since II(g)ll 2

I1() 2 / ,q Wq 2, g) is bounded. Pick a block diagonal unitary matrix

P(n n) such that in Pf UPj., the pth s s principal block is upper triangular with
main diagonal X, Xs and IXsl >- Xol, v 1, s (this holds for
p 1, ..., r). Set @ Pf UP. Let ., , lj. be defined in the obvious way. Note that
all s s blocks in U have the same norms as the corresponding s s blocks in U.

For notational convenience, let Tbe the pth principal s s block in 0j- (this is short
notation for (I)p). The last row of T is (0, 0, Xs) and hence Xs 12 is the norm
squared of a submatrix of ()p. Thus IXsl 2 is under control and hence so is

I),o 12). Let N be the strictly upper triangular part of T and note that I)kll 2 +
/ s [2 / Nil / )p s since this is just the sum of squares of the absolute

values of the entries in s rows of a unitary matrix. But

III- T[I -- 1-Xol=+ IINII=--2 Z 1-Xol-- II(g)ll

=<2 (1-I Xo12)- II(U)II 2,

and hence I TII 2 is clearly bounded because Eo Xo 12) u)p 2, and Uj-)p is
already bounded. This concludes the first case.

Remark 2.7. The first case above is the one in which the Xv are clustered sufficiently
close together. It includes, in fact, the case ),1 X. The next case occurs when
the Xo are close to one in modulus, but far from one in actual distance. This forces
I- (W)pp 2 to be relatively large. We should also note that it was not necessary to

inspect the denominator in the quotient

i- wj.)p 2, ’= Bk( W)pp W)ppBk 2"

The numerator could be bounded by direct comparison with other bounded submatrices
in U.

For the second case we assume that T is as before and the corresponding s s block
in/kj is /kp as indicated previously. We further assume that ), is positive and, greater
than 1/2, that Xs kl Xv Xt for all v, u, and that o ),o ]2 v Xo 2).
Split the eigenvalues into two disjoint sets { X l, "", X,}, { X, / l, "’", Xs } such that the
distance r between the two sets is at least X I/s. If this were not possible, all Xo
would lie in the circle centered at X with radius Xs, which is interior to the circle
r cos 0 and we would be in the first case. Clearly, X and Xs must be in different sets.
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Moreover, by choosing a subsequence of the Uj. if necessary, we will assume that the size
of the first set is independent ofj. We now observe that for any v,- _x12+ ix_Xl 2]I-XI(<2 < 4,

IX1- Xs Xo- Xsl 2

and this inequality is independent ofj as long as we are in the second case.
Next observe that we can never have Ekjp 0 for all k for any p or j. This would

contradict the irreducibility of BI, Bm. Also, for the same reason there can be no p
such that there is for all k 1, rn a subsequence of the Ekjp approaching zero.

Order the positions in Ekjp starting with the lower left-hand corner and proceeding
toward the upper fight as in the proof of Proposition 2.3. Thus if the size of Ekjp is y
z, then the ordering of the positions is (y, ), (y, 2), (y 1, ), (y 2, ), (y 2, ),
(y 1, 2), (y, 3 ), 1, z). Let (Yo, z0) be the first position in this ordering satisfying
lim_ I(Egp)yozol 4: O. By Proposition 2.3 we must have

RjEkj Ekj Q2p 2 >_- 21(Ekj ozo I! 2.
Recalling that 7r >= IX1- Xs[/S, we now see that if D is the diagonal part of T
(D diag (1, "’", Xs)), then [lI- 9112 is also under control. Let N be the nilpotent
(strictly upper triangular) part of T. Then

; X / Nil 2 / .) 2 s.

Since o I1 Xol 2 2o (1 IXolZ), and III Dll 2 is controlled, we have concluded
the second case.

At this point we have shown the existence of a subsequence of the Uj. (which we
will take to be { U } such that (see (2.1))

where the L are constants obtained in terms of the Ai only. A glance at the proofs of the
propositions in this section shows that the Lj can be chosen independent ofj, i.e., all L9
can be chosen the same. This concludes the proof of Theorem 2.1.

3. Proof of Theorem 1.1. We start with a lemma.
LEMMA 3.1. Let A (A, Am) be an m-tuple of n n Hermitian matrices,

and assume that at least one ofA, ..., Am is positive definite. Then there are positive
constants K and e such thatfor every (B, Bm) E C(A) with

i=1

there exists S GL (n, C) with

Bj= S*AS,

and
m

III-sll <-KZ IIBj-AI[.
i=1

Proof. It is easy to see that if Lemma 3.1 holds for an m-tuple A
(A, Am), then it holds also for any m-tuple of the form (/1, /m)
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(T*AIT,’", T*AmT), where T is an invertible matrix. Indeed, let el[IT-Ill 2

and let

(/1, ,Jm)-C(A)
with

m

i=1

Defining Bj T*-l/j T-l, we find that

IIBi-Aill <e,
i=1

and hence (since we have assumed Lemma 3.1 holds for (A1, Am)) there is S e
GL (n, C) with

Bi S*AiS, 1, m

and with

I- SI! <= K ., Bi-A [1.
i=1

Letting T-1 ST, we see that

Bi g*Ag,

Moreover,

I- I- T-ISTI] <= Z-ll I- all Zll
m

=< T-ill Tit g[[ T-’l[ 2 E B- A, II,
i=1

and the result of Lemma 3.1 is verified for the m-tuple J.
Using this fact and the assumption that one of the Aj’s, say A, is positive definite,

we shall assume without loss of generality that A I.
Suppose S is an invertible matrix such that Y ’= S*AiS Ai < e, where e is a

fixed positive number. We need to replace S with an invertible T such that

and

T*Ai T S*AiS (i 1, m)

(mIII-Zll <=K Z IlZ*AiZ-Ail]
i=1

where the constant K depends on A only, for a suitable choice of e. Let S UH be the
polar decomposition ofS, with unitary Uand positive definite H. In the sequel we denote
by Kl, K2, positive constants that depend on A only. As

S*AIS-A =S*S-I=H2-I,

it follows that
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So
m m., I]U*AiU-Aill <= , [IS*AiS-Ai[I + , [[U*AiU-S*AiS[I
i=1 i=1 i=1

<+ E II(I-H)U*AiU(I-H)II
i=l

+ X II(I-H)U*AiUHI[ + , [IHU*AiU(I-H)I[
i=1 i=1

Using Theorem 2.1, and choosing a suitable e > 0, we find unitary W such that

W*AiW U*AiU (i= 1, ,m)

and

(m )III- wll Ks Z IIW*A,W-A,
i=1

Now put T WH. Clearly, S*AiS T*Ai T (i 1, m).
Furthermore,

(3.1)

(3.2)

and

(3.3)

I- WHI[ =< I- W + I- HI[,

III-Hll <=K.IIH*H-III =K41IT*T-AII <=K. IIT*AT-AI[

I- W <= K3 W*AiW-Ai

KK HW*AiWH-Ai

(m )
i=1

Combining the inequalities (3.1)-(3.3 ), we finish the proof of Lemma 3.1. Fq

Proof of Theorem 1.1. Using Lemma 3.1 choose e > 0 and K > 0 such that
the inequality

(3.4) I- S[I <- K Bi-Ai
i=1

is satisfied for some SGL(n, C) with Bi S*AiS, 1,
(B1, Bm) - C(A) and

m whenever

i=1
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Since one of the Ai is assumed to be positive definite, without loss of generality we
may assume that A I (see the proof of Lemma 2.3 in PR ]).

Next, we note the following fact (which can be easily verified arguing by con-
tradiction, for instance). For every QI > 0 there exists Q2 > 0 such that whenever
(B1, Bm) E C(A), Bi S*AiS, for 1, m and some S E GL (n, C), and

(3.5) IIBi-AII Qe,
i=1

then all Q,.
Now consider the quotient

(3.6)
IIs*s-IIl

There is a q > 0 such that the quotient (3.6) is bounded when SII >- q. Indeed,
write the polar decomposition S UP, where U is unitary and P is positive semidefi-
nite; then

(3.7)
I- SI[ I- UPII

Jig*S-Ill p2-III

and it clearly follows that (3.7) does not exceed

(3.8)
(1 + ell)

(lip211 V)
and using the fact that sll P[I 2 11P21I (the constant s depends on n only) and all
ell, we obtain our assertion from (3.8).

Combining the boundedness of (3.6) when all > q with inequality 3.5 ), we note
that there exist constants M, K2 > 0 such that whenever

(3.9) Z IIBi-Ai[I >M,
i=1

and B1, Bm are simultaneously congruent to A, ..., Am, the quotient (3.6) is
bounded above by K2.

We now consider the case where

(3.10) e <= , I[Bi-Ail[ <=M.
i=1

We show that there exists K3 > 0 such that for every (B1, Bm) c=_ C(A) for which
(3.10) holds and every S e GL (n, C) with

(3.11 Bi S*AiS, 1, m,

the inequality 111 SII =< K3 holds. If (3.10) and 3.11 hold, then, in particular,

(3.12) S* S- Ill M.

It is easy to see that the set of all n n matrices S that satisfy (3.12) is bounded
(indeed, for such S we have s* sII/ --< / M and hence sIl --< /1 / M). Now the
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existence ofK3 with the required property is obvious. So for every (B1, Bm)E C(A)
and for every S for which (3.10) and 3.11 hold we have

i- sII Z A; II.
i=1

Theorem 1.1 now follows with K max (K, K2, K3e
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ON THE QUADRATIC CONVERGENCE OF THE
FALK-LANGEMEYER METHOD*

IVAN SLAPNI(AR" AND VJERAN HARI

Abstract. The Falk-Langemeyer method for solving a real definite generalized eigenvalue problem, Ax
,Bx, x :/: O, is proved to be quadratically convergent under arbitrary cyclic pivot strategy if the eigenvalues of
the problem are simple. The term "quadratically convergent" means roughly that the sum of squares ofthe off-
diagonal elements of matrices from the sequence of matrix pairs generated by the method tends to zero qua-
dratically per cycle.

Key words, generalized eigenvalue problem, Jacobi method, quadratic convergence, asymptotic convergence

AMS(MOS) subject classifications. 65F15, 65F30

1. Introduction. In this paper we study the asymptotic convergence of the method
established in 1960 by Falk and Langemeyer in [2]. Their method solves generalized
eigenvalue problem

Ax Bx, x :/: O,

where A and B are real symmetric matrices oforder n such that the pair (A, B) is definite.
By definition the pair (A, B) is definite if the matrices A and B are Hermitian or real
symmetric and there exist real constants a and b such that the matrix aA + bB is positive
definite.

The Falk-Langemeyer method is the most commonly used Jacobi-type method for
solving problem ). Its advantage over other methods of solving problem is that it
applies to problem for the widest class of starting pairs. Although it is not, in general,
the fastest method for solving the given problem, in some cases it is the most appropriate.
The QR method [1 1] is usually several times faster, at least on conventional computers,
but it solves problem only if matrix B is positive definite (or positive definitizing shift
for the pair is known in advance) and if matrix B is well conditioned for Cholesky
decomposition. The Falk-Langemeyer method is superior to the QR method in terms
of numerical stability if matrix B is badly conditioned for Cholesky decomposition. It is
also superior to the QR method ifapproximate eigenvectors are known, i.e., ifthe matrices
A and B are almost diagonal. This happens in the course of modeling the parameters of
a system where a sequence of matrix pairs differing only slightly from each other must
be reduced. This also happens in various subspace iteration techniques (see 11 ]). Another
reason Jacobi-type methods have attracted attention recently is that they are adaptable
for parallel processing (see 12 ], 10 ).
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The Jacobi-type method for solving problem recently proposed by Veseli6 in
15 is somewhere in between previously mentioned methods in both speed and require-
ments. Although Veselir’s method works for definite matrix pairs, a linear combination
oA XB which is reasonably well conditioned for J-symmetric Cholesky decomposition
must be known in advance. This method is one of the implicit methods, i.e., it works
only on the eigenvectors matrix, and is therefore approximately two times faster than
the Falk-Langemeyer method.

The Jacobi-type method considered by Zimmermann in [19 is closely related to
the Falk-Langemeyer method (this is briefly described in 3) but requires positive-
definite matrix B. In 19 the convergence ofthis method is proved under the assumption
that the starting matrices are almost diagonal. The same conclusion holds for the Falk-
Langemeyer method as we show in this paper.

In 4 Haft studied the asymptotic convergence of complex extension of Zimmer-
mann’s method (also for positive-definite B). He showed that his method converges
quadratically under the cyclic pivot strategies if the eigenvalues ofthe problem are simple,
while in the case ofmultiple eigenvalues the method can be modified so that the quadratic
convergence persists. We are interested only in cyclic pivot strategies since some ofthem
are amenable for parallel processing.

These results, the informal analysis of the convergence properties of the Falk-Lan-
gemeyer method performed by Haft in 7 ], and the numerical investigation suggested
that the Falk-Langemeyer method behaves in the similar fashion. In this paper we prove
that the Falk-Langemeyer method is quadratically convergent if the eigenvalues of the
problem are simple and the pivot strategy is cyclic. The technique ofthe proof, originally
established by the late Wilkinson in 16 (cf. 6 ), is similar to that used in 4 ].

Two main problems that had to be solved are that neither of the matrices A and B
had to be positive definite and that the transformation matrices are not orthogonal and
therefore difficult to estimate. Both problems were solved using the results about almost
diagonal definite matrix pairs from [7].

The paper is organized as follows. In 2 we state the known results about almost
diagonal definite matrix pairs from 7 and 14 to the extent necessary for understanding
the rest of the paper. In 3 we describe the Falk-Langemeyer method, show that it
always works for definite matrix pairs (without use of definitizing shifts), and give its
algorithm. We also briefly describe the Zimmermann method from [19] and [4] and
relate it to the Falk-Langemeyer method. Section 4 is the central section of the paper.
We first state the known result about the quadratic convergence of the Zimmermann
method from [4 and show to what extent this result can be applied to the Falk-Lange-
meyer method. We introduce measure k which we use for defining and proving qua-
dratic convergence. Then we prove the quadratic convergence of the Falk-Langemeyer
method under the assumptions that the eigenvalues of the problem are simple, the pivot
strategy is arbitrary cyclic, and the matrices A and B are almost diagonal. At the end we
show that the quadratic convergence implies the convergence of the Falk-Langemeyer
method. In 5 we give the quadratic convergence results for parallel and serial strategies,
briefly explain the possible modification of the Falk-Langemeyer method in the case of
multiple eigenvalues, and briefly discuss numerical experiments.

2. Almost diagonal definite matrix lairs. Here we consider the structure of almost
diagonal definite matrix pairs. We first state some properties of definite matrix pairs.
Then we introduce chordal metric for measuring distance between eigenvalues ofdefinite
matrix pairs. We define the measures for the almost diagonality ofthe square matrix and
of the pair of square matrices. Finally, we state an important theorem from [7 ]. The
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theorem and its corollary reveal the structure of almost diagonal definite matrix pairs.
All results are given for the general case of Hermitian matrices even though in the rest
of the paper we shall consider only the case of real symmetric matrices.

Definite matrix pair (A, B) has some important properties:
(a) There exists a nonsingular matrix F such that

F*AF diag (al, an) DA,
(2)

F*BF diag (b, bn) DR.

The ratios ai/bi, l, n, of real numbers ai, bi are the eigenvalues of the pair
(A, B) and are unique to the ordering. If [fl, ,f] denotes the partition by columns
of F, vectors f, 1, n, are the corresponding eigenvectors. Matrices DA and DR
are not uniquely determined by the pair (A, B). In the real symmetric case F* can be
changed to FT in the relation (2).

(b) The Crawford constant c(A, B),

(3) c(A,B)=inf { x*(A + iB)x[;xCn, [Ix]] 1}

is positive. Therefore, A and B share no common null-subspace and ]ai] + ]bi] > 0,
1, ..., n, independently of the choice of F. Note that the choice x ei (the ith

coordinate vector) in the relation (3) for 1, n implies

(4) di "/( aii
2 -l- bii 2 > O,

where A (aij) and B (bo). Hence the matrix

(1(5) D=diag 1’""

i= 1, ,n,

is positive definite. In the real symmetric case for n :/: 2 only real vectors x can be taken
in the relation (3).

(c) There exists a real number , such that the matrix Be from the pair (A, Be),

A A cos -B sin

(6)
Be A sin p + B cos

is positive definite. The matrices A and B can be simultaneously diagonalized if and only
if the same holds for the matrices A and Be.

The proofs of the above properties are simple (see [14]). If somef is a vector from
the null-subspace ofB, the eigenvalue hi is infinite. Such eigenvalues are not badly posed
because they are zero eigenvalues of the pair (B, A counting their multiplicities. Hence,
it is better to define eigenvalues as pairs of numbers hi ai, bi], 1, n. It is also
necessary to choose a finite metric for measuring the distance between eigenvalues. Such
is the chordal metric.

Let R2= R X R and R R2\ ([0, 0]}, where R is the set of real numbers.
We say that the pairs [a, b], [c, d] e R are equivalent if ad-bc 0 and write
a, b ]o c, d]. It is easily seen that o is an equivalence relation on R. Let R p be the set
of equivalence classes. Let , tz e RoZlp and let [a, b], [c, d] be their representatives, re-
spectively. Chordal distance between [a, b] and [c, d] is defined with the formula

lad- bc
x([a,b],[c,d])=

+ b +
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It is easily seen that is constant when a, b and c, d] vary over X and u, respectively.
This defines metric :" R201p R)lp -- R by (k, u) ([a, b], [c, d]), where [a, b
and [c, d] are any representatives of k and t, respectively. However, for the sake of
simplicity we shall use x for both the functions X and X. We see that ;(k, t) -< for all
k, # R 1. The proof of these and some other properties of the chordal metric can be
found in [1 1], [14], and [13].

From now on, let n denote the order of the matrices A and B and let p denote the
number of distinct eigenvalues of the pair (A, B). We assume that

n>=3, p>=2,

and that the pair (A, B) is definite. Note that ifp then A XB, so k k2
kn k and all vectors are eigenvectors of the pair (A, B).

The off-norm ofthe square matrix A is the quantity

S(A) aij. 12= IIA diag

i4:j

where I[" denotes the Euclidean matrix norm.
The off-norm ofthe pair (A, B) is the quantity

(7) e(A,B) ]/S2(A) + SZ(B).

Where no misunderstanding can arise, e shall be used instead of e(A, B). Let

(8) )1 Xt, )t +1 kt2, ktp_ +

where

(9) kti si ci] s + c =1, =l,...,p,

be all eigenvalues ofthe pair (A, B). Thus, we assume that the pair (A, B) has p distinct
eigenvalues kt,, "’", kt with the appropriate multiplicities

(10) ni=ti--ti_l, 1, ,p, t0=0,

and the representatives which behave as sine and cosine are chosen. Since p > 2 we can
define quantities

(11) 6i=1/2 rain (kt;,kt.), 6= min 6i.
l<=j<=p l<=i<=p
j4:i

Note that 6 > 0.
In the analysis we shall need matrices J and/ defined as

(12) d DAD, DBD,

where matrix D is defined with relations (5) and (4). Since D is positive definite, the
matrices and/ are congruent to the matrices A and B, respectively. Let us partition
the matrices and/,

(13) A
pl /pl /pp

where ii and :ii are diagonal blocks of order ni, 1, p, and ni’s are defined with
relation (10). The relation (13) shall be written as (i) and/ (/i9).
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Let the matrices A and B be partitioned according to the relation (13). Departure
from the block-diagonalform ofthe pair (A, B) is the quantity

r(A,B) /rZ(A) + 2(B),
where

p p p p

"r2(/) 1110112 -r2(B) [IBoll 2.
i=lj=l i=lj=l

j4=i j4=i

THEOREM 1. Let A, B) be a definite pair and let the matrices and be defined
by the relations (12), (5), and (4). If

(14) e(,/) < 6,

then there exists a permutation matrix P such that for matrices ’ pTp and ’PTP, partitioned according to the relation (13), holds"

P

(15) it}i- Sinai <= iij-_l c,-s, , 1, ,p.

On both sides ofthe inequalities 15 the Euclidean matrix norm can be substituted with
the spectral norm.

Proof. The proof of this theorem is found in [7]. ff]

COROLLARY 2. Let the relation (14) hoM for the definite pair (A, B). Then
there exists a permutation matrix P such that for the matrices ’ Pr.P (dj), ’prgp (.), A’ PTAP (aij); and B’ PBP (big)’, partitioned according to the
relation (13), holds:

(’,’)
16 Z Cirri- SiJi 2 =< 262

i=1

(17)

p ti p

X2([si, ci],[a)j,b}j]) Z
lj=ti + lj=ti- +

"/"
4 (dr,/t

[cia,s- siD)9 2

x( si, cil aj, bj] cigti-sibj[ <
(18) 26

Proof. By Theorem there exists a permutation matrix P such that the relation
15 holds for the matrices ’ and/’. The Cauchy-Schwarz inequality implies

(19)
Ilci-s,ll2 (I c,.I I111 + Isil II/ll) =

I1 2 + IIB =, 4=j.
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From the relations (15) and (19), the definition of r(A’, /’), and the symmetry of
matrices A’ and/’ follows:

(20)

p

Z (IIA.II -+ I1112)CiAi- SiJi
j+i

-<--r2(A’,/’) =1 "’,p.
-2/5

Finally, the relations 15 ), (19), and (20) and the definition of r(A’,/’) imply that

IlciA}i-si}ill2<= r2(A’,/’) (IIAII=+ I1.11 =)
i=1 i=1

ji

__-< -7 r4(A’,/’),

which completes the proof of the relation (16).
The equalities in the relations 17 and (18) follow from the definition of the chordal

metric and the fact that it does not depend upon the choice of the representatives. In-
equality in the relation (17) now follows from the relation (16) and inequality in the
relation 18 from the relation (20).

Theorem and Corollary 2 reveal the structure of almost diagonal definite matrix
pairs in both the Hermitian and the real symmetric case. The relation 18 implies that
for 1, p, pairs [a., b)j],j { ti-1 + 1, ti } approximate the eigenvalues
with an error of order of magnitude r2(’,/’) in the chordal metric. The relation (16)
implies that the blocks; and/;, 1, p, are proportional with the proportionality
constants being t<als.o with the error of order rz(A,,/,). This proportionality becomes
apparent when z(A’, B’) is small enough compared to 6. Note that the relations 15 and
(18) do not imply that the off-diagonal elements of blocks Ai and/i tend to zero
together with z(A’,/’). The relation (15) shows that for fixed the proportionality of
the blocks Ai and/i depends on the local separation 6 of the eigenvalue )t from other
eigenvalues and on quantities ci si 2, j 1, ..., p, j i.

3. The Falk-Langemeyer method. In this section we define the Falk-Langemeyer
method, show that it always works for definite matrix pairs, and give its algorithm. At
the end of the section we briefly describe the method of Zimmermann from [4] and
19 ], because it is closely related with the Falk-Langemeyer method. This relationship

is also described.
The Falk-Langemeyer method solves problem (1) by constructing a sequence of

"congruent" matrix pairs

(22)
A(1)=A’ B (l)= B,

A(k+l)=FA(k)Fk, B(k+l)=FB(k)Fk, k>= 1.

Note that the transformation (22) with nonsingular matrix Fg preserves the eigenvalues
ofthe pair (A (k), B(g)). This is a Jacobi-type method, hence the transformation matrices

(21) (A(I),B()),(A(2),B(2)),
where
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are chosen as nonsingular elementary plane matrices. An elementary plane matrix F
(fj) differs from the identity matrix only at the positions (l, l), (l, m), (m, l), and
(m, rn), where =< < rn _-< n. The matrix

fml fmm

is called (l, rn)-restriction of the square matrix F (fj).
For each k > 1, the (1, rn)-restriction of the matrix Fk has the form

--ilk

where real parameters Ck and flk are chosen to satisfy the condition

(k+) (k+)(24) alm =0, blm --0.

n(k) h(k)Here A (k) (-ij and B (k) (ij ). Indices and rn are called pivot indices and the
pair (l, m) is called pivot pair. As k varies, the pivot pair also varies, hence l(k) and
m m(k). The transition from the pair (A (k), B (k)) to the pair (A (k+ ), B(k+ )) is
called the kth step of the method. The manner in which we choose elements which are
to be annihilated in the kth step (or just the indices (l, m) of these elements) is called
pivot strategy. The pivot strategy is cyclic if every sequence ofN n (n / 2 successive
pairs (l, m) contains all pairs (i, j), =< < j < n. A sequence of N successive steps is
referred to as a cycle. Two most common cyclic pivot strategies are the column-cyclic
strategy and the row-cyclic strategy. The former is defined by the sequence of pairs

(1,2),(1,3),(2,3),(1,4),(2,4),(3,4), ,(1,n),(2, n), ,(n- 1,n),

and the latter by the sequence of pairs

(1,2),(1,3),... ,(1,n),(2,3),(2,4), ,(2, n),(3,4),... ,(n-l,n).

These two strategies are also called serial strategies. Parallel cyclic strategies are cyclic
strategies which enable simultaneous execution of approximately n/2 steps on parallel
computers. These strategies have recently attracted considerable attention (see 12 ], 10 ).
We state the quadratic convergence results for serial and parallel strategies in 5.

Note that ifthe eigenvectors are needed, we must calculate the sequence ofmatrices
F(1), F(2), where

(25) F(1)= I, F(+ 1)= F()F, k>-_ 1.

From the relations (22) and (25) we obtain for k >_- 2

F(k) F1 "Fk-1, A()=(F(k))TA()F(k), B(k)=(F(k))TB()F(k).

We shall now derive one step of the algorithm. Note that only (l, rn)-restrictions
of the involved matrices are needed. Since (22) is the congruence transformation, the
pairs (A (), B ()) are definite for every k >_- and the pairs of the corresponding (l, rn)-
restrictions are definite as well.

Let (index k is omitted for the sake of simplicity)

PJP A’, PBP B’,
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or, respectively,

(26)
ce alm amm -- a}m am

o/ blrn bmm -/ bm bnm
Condition (24) now reads am bm 0. From the relation (26) the system in unknowns
a and/3 is obtained

am aalz + a)azm [Jamm O,
(27)

bm abu + a)him bmm O.

Eliminating nonlinear terms in both equations we obtain

m(28)
p p

where u is solution of the equation

.:--im,--m=O(29)

and

(30)

Defining

(31)

we obtain

allbtm- blzalm,

m ammblm- bmmalm,

lm allbmm amm bll.

=(lm)2Walm

u+ =1/2 sgn (m)(llml ++- f).
The algorithm is more stable if a and/3 are smaller in modulus, so we take

(32) u= u+ =1/2 sgn (/m)(l/ml + f).
From the above formula we see that the necessary condition for carrying out this step is

>= 0. Let us show that this condition is fulfilled in each step due to the definiteness of
the pairs ((A (k), B(k)), k >_- ).

PROPOSITION 3. Let the pair (A, B) be definite. Then thefollowing holds:
(i) >- O,
(ii) Tkefollowing statements are equivalent:

(a) 0,
(b) lm l-- m O,
c There exist real constants s and t, sl / tl > 0, such that

sA + t:=o.

Proof. The proofcan be found in 4 and 13 ], but for the completeness ofexposition
we present it below.
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Using the relation (6) we can define the pair (A, Be) such that the matrix Be is
positive definite. Let us calculate the quantities (lm), (l), (m), and () from the
pair (A, Be) using the relations (30) and (31 ). It is easy to verify that

Therefore, without loss of generality, we can assume that the matrix B from the pair
(A, B) is positive definite. The statement (c) is now equivalent to the statement
c,cR.

(i) With the notation

-/bmm -/ bll Dim
X all -ll’ Y= am //bm’ z= Vbb,---’

the following identity holds:

bllbmm[ (x- y) 2 + 4(xz alm)(YZ alm) ].

Since the fight side of the above relation is the square polynomial in aim, we have

(33)
=bllbmmP2(alm)>bllbmmP2( X+y)--2" z

=bllbmm(X-Y)2(1-z2)=m( bllbmmbm )>0.=
In the last inequality we have used the assumption that the matrix B, and therefore the
matrix/, is positive definite.

(ii) Let (a) hold. The relation (33) implies that lm 0. Matrix B is by the as-
sumption positive definite. Therefore ba > O, bmm > 0, and the equality lm 0 can be
written as

bmm
hll all amm.

Using this relation we can write

m ammblm bmmalm -ll (allblm bllalm) l,

or bllm bmml. From the definition of, since lm 0, we conclude that l m
0. This gives (b).

Let (b) hold. Then

n all all
aim blm--.amm ’mrn bll bll

Therefore, A c/, where

aH amm
C"-’--

bll bmm

and (c) holds.
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Let (c) hold. Then obviously (b) holds, and if (b) holds, then (a) holds.
Now we see that the Falk-Langemeyer method can be applied to all definite matrix

pairs. Note that definitizing shifts are not used and need not be known.
We have two special cases in the algorithm. If 0, then the matrices . and/ are

proportional as shown in Proposition 3. Therefore, the two equations in the system (27)
are linearly dependent and the system has a parametric solution in one of the following
forms:

(bmm-blm) (Camm-alm)(ce’/3)=
btl- Cblm

,c, (a,/3)=
alz- cal,

,c

( cb,,+b,m ) ( ca,,+am )(Ce,) C,
bmmWCbl

(o,/) c,
atom + Calm

where c is real. For every c at least one ofthe quotients is well defined due to the definiteness
of the pair (,/). It is best to set c 0 to ensure that ak and/Sk tend to zero together
with e(A k), Bk)) as k -- (see step (5)(a) in Algorithm 4). Setting c 0 also reduces
the operation count. This choice yields four possibilities for (a,/3):

(34) -5---,0 -,0
all

(35) O,m O,
amm

Due to the definiteness of the pair (A, B), we have

(36) laul + Ibiil >0, 1, ,n,

so at least one quotient is defined in each of the relations (34) and (35). In order to
obtain better condition of the transformation matrix, we choose the relation in which
the defined quotient has smaller absolute value. If both quotients in the chosen relation
are defined, then they are equal, and for numerical reasons it is better to choose one in
which the sum of squares of the numerator and the denominator is greater.

The second special case is when > 0 and lm O. This means that diagonals of
the matrices and/ are proportional, while the matrices themselves are not. Then
sgn (tm) is not defined. Since lm " O, we have sgn (l) sgn (m)- Substitut-
ing sgn (m) with sgn () in 32 gives

u sgn (t)/lm-
Inserting this in (28) gives, after simple calculation,

-/bmm -/amm
(37) =/--=/ , =.
The relation (36) implies that at least one ofthe quotients bmm/b and atoma is defined
and different from zero. If both quotients are defined then they are equal and it is better
to choose one in which the sum of squares of the numerator and the denominator is
greater.

We can now define an algorithm of the method.

ALGORITHM 4. Definite matrix pair (A, B) is given.

), Set k 1, A (l) A, B() B, F(l) I and choose the pivot strategy.
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(2) Choose the pivot pair (l, m) (l(k), re(k)) according to the strategy.
(_k) /., (k)(3) If arm Vim O, then set k k + 1, A (k+ 1) A(k), B(k+ 1) B(k), F(k+ )

F(k) and go to step (2). Otherwise go to step (4).
(k)(4) Calculate the quantities Ik) ), t, and (k) from formulas

k) a)&(k)vlm b alm(k) mmUlm lm

(k)= a)(k) (k) (k) (k))2lm a b
(5) (a) If () 0 perform the following steps: If Ib) la) I, then set a

Olm I

(). ()otheise set a -alm / a lz

() ()If b () > a () then set lm / mmmm

.(k) (k)otheise set =.lm / amm

Finally, if I1 I1, then set a 0; otheise set 0.

(b) If () > 0 perform the following steps:
()(i) If tm 0, then calculate

(k)z (k)Pk= sgn (O’lm)[lm [+ ()),
(k)m k)
Pk Pk

()(ii) If o lm 0, then, according to the relation (37), calculate

/ mm= /mm

Ifboth quotients for are defined, then choose one in which the sum
of squares of the numerator and the denominator is greater.

(6) Perform the transformmion

(38) A (k + 1) FA (F, B( + 1) FB(F,

(39) F( + F(IF.
(7) Set k k + and move to step (2).

Since matrices A (, B(, A (+ 1, and B(+ 1) are symmetric, it is enough to store
and to transform only upper triangles. In the transformation (38) only/th and ruth row
and column of the matrices A ( and B( are changed and in the transformation (39)
only/th and ruth columns of the matrix F( are changed. Note that the eigenvalues can
be found without calculating the matrices F(, k 1, and therefore the transformation
(39) can be omitted. This reduces the operational count about 50 percent.

Stopping criteria of the infinite iterative procedure defined with this algorithm are
described in 5.

From now on, the term Falk-Langemeyer method" denotes the method described
by Algorithm 4.

Te immerma meting. We shall now relate the Falk-Langemeyer method with
another method for solving the generalized eigenvalue problem. This method is due to
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Zimmermann, who roughly described it in her thesis [19]. Later on, in his thesis [4],
Haft derived its algorithm and proved its quadratic convergence.

The Zimmermann method is defined for symmetric matrix pairs (A, B) where
matrix B is positive definite. We shall denote this fact as B > 0. At the beginning of the
iterative procedure the initial pair (A, B) is normalized such that

where

A () DAD, B() DBD,

(1D diag
b’ b-

Therefore, ,,h..k) 1, 1, n. The Zimmermann method constructs a sequence of
pairs ((A (k), B (k)), k >= by the rule

Ak+ 1)= ZAk)zk, Bk+ )= ZBk)zk, k> 1.

The nonsingular matrices Zk are chosen to preserve the units on the diagonal of
B(k +i) (automatic normalization at each step) and to annihilate the pivot elements. In
[4 it is shown that for k >= holds

[ cos Pkk= /1 (b(k)) 2 I--sinlm

sin ok ]COS lpk

where

cos Pk cos Ok + k(sin Ok--k cos Ok),

sin k sin Ok- k(cos Ok + 0k sin 0k),

cos Pk cos Ok- k(sin Ok + Ok cos Ok),

sin Pk sin Ok + k(COS Ok nk sin Ok),
g)
lmk= V1 + h(k) r- V1 b(k)’

lm lm

h(k)
,r]k

lm

+ /1 + b(k))( + /1 h(ki)lm lm

(k) (k) 1.(k)
alm --(al) + amm,t,m

tan 2G
a (k) a)) /1 (b(k)) 2’lm

----Ok--.
4 4

.(k) t,(k)Ifulm Ulm =O, wesetOk O. Ifthe(l,m)-restrictionsof A(k)andB(k)areproportional
(k) (k)and tm and bm are not both equal to zero, we set Ok 7r/4.
If the matrix B is not positive definite but the pair (A, B) is, then there exists a

definitizing shift such that the matrix A B is positive definite. If this shift is known
in advance, then the Zimmermann method can be applied to the pair (A, B) in the sense
that each Zk is computed from the pair (B (k), A (k) ixB(k)).

Although the Zimmermann method seems quite different from the Falk-Langemeyer
method, the two methods are closely related. The following theorem gives precise for-
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mulation of this relationship. For this occasion only we assume that in step (5)(a) of
Algorithm 4 (that is, when (k) 0), parameters ak and/3k are computed according to
(37). For this version of the Falk-Langemeyer method the following theorem holds.

THEOREM 5. Let A and B be symmetric matrices oforder n and let B be positive
definite. Let the sequences ((A (), B()), k >= and ((A ()’, B()’), k >= be generated
from the starting pair (A B) with the Falk-Langemeyer and the Zimmermann method,
respectively. Ifthe corresponding pivot strategies are the same, then

where

A (k)’= D(k)A (k)D(k) B (k)’= D(k)B(k)D (k) k >

Proof. The proof of this theorem is found in [4, 2.3 ].
Let us again suppose that the matrix B is not positive definite while the pair (A, B)

is, and that a positive definitizing shift tz is known in advance. Let us apply to the pair
(A, B) the Zimmermann method in the sense mentioned above and the version of the
Falk-Langemeyer method which we used in Theorem 5. It is easy to see that the param-
eters a and/3 from the Falk-Langemeyer method are invariant under the transformations
(A, B) -- (B, A #B). Therefore, Theorem 5 holds in this case, as well, with

D( diag
/a])- tb]])’ /a ()n Ibnn

We can conclude that/fthe starting pair is positive definite or the definitizing shift
is known in advance, then the Falk-Langemeyer (Zimmermann) method is thefast scaled
(normalized) version ofthe Zimmermann Falk-Langemeyer) method.

4. Quadratic convergence. In this section we prove that the Falk-Langemeyer
method is quadratically convergent if the starting definite pair has simple eigenvalues
and the pivot strategy is cyclic. Definitizing shifts are not used and need not be known.
We first state the result about the quadratic convergence of the Zimmermann method,
and show to what extent this result can be applied to the Falk-Langemeyer method if
the matrix B is positive definite. Then we define the quadratic convergence for the Falk-
Langemeyer method. In 4.1 we prove preliminary results which we use in the proof of
the quadratic convergence of the Falk-Langemeyer method in 4.2.

The result about the quadratic convergence of the Zimmermann method can be
summarized as follows. Let the sequence ((A (k), B()), k >= be generated by the
Zimmermann method from the pair (A, B), B > 0, and let
is defined with the relation (7). Note that ek is the natural measure for convergence of
the Zimmermann method since each matrix B() has units along the diagonal.

We say that the Zimmermann method is quadratically convergent on the pair
(A, B) if e -- 0 as k - and there exist a constant Co > 0 and an integer r0 such that
for r >- r0 holds

C(r+ 1)N+
< 2CO, rN+

Hence of special importance are conditions under which the above relation holds for
r 1. We call them asymptotic assumptions. Let

r spr (A, B) max hi l, 3’ 1/2 min
<=i<=n i4:j
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THEOREM 6. Let the sequence ((Atk), B(k)), k >= be generated by the Zimmer-
mann methodfrom the starting pair (A, B), B > O, and let the asymptotic assumptions

(40) S(B))<=-, 2/1 +e <-y,

hold. Ifthe eigenvalues ofthe pair A, B) are simple and the pivot strategy is cyclic, then

(41) U+l =< /U( + rz) e.
Proof. The proof of this theorem is found in 4, 3.3 ].
In Theorem 6 the term a appears in the assumption (40) and in the assertion (41

because matrix B is not diagonal and matrix A is not normalized. From Theorem 5 we
see that Theorem 6 holds for the Falk-Langemeyer method provided that step
5 )(a) of Algorithm 4 is appropriately changed, the matrix B is positive definite, and the

pairs (A k), B k)) generated by the Falk-Langemeyer method are normalized so that
t_(k)
oii ,l l’"n,k>= 1.

In the rest of this section we prove that the Falk-Langemeyer method defined with
Algorithm 4 is quadratically convergent on definite matrix pairs with simple eigenval-
ues if the pivot strategy is cyclic. We must first define the measure for the quadratic con-
vergence.

Let (A, B) be a definite pair. We shall use the measure (A, B) defined by

(A,B)=(A,),
where and/ are given by the relations (12), (5), and (4). The measure enables us
to use the results of Corollary 2 and it takes into account the diagonal elements of
matrices A and B. Note that the measure e(A, B) is generally not the proper measure
for almost diagonality of the pair (A, B) since it takes no account of the diagonals of
matrices A and B.

Let the sequence of pairs

(42) (A (), B()), (A (2), B (2)),
be generated by the Falk-Langemeyer method from the starting definite pair (A, B). For
k >_- we set

(43) k (A (k),B(k))= e( (k),/ (k)),

(44) (k)=DkA(k)Dk, (k)=DkB(k)Dk,

(45) Dk diag dk, dk
(k))2 (k) 2(46) dk)=’/(aii +(bii i= 1, ,n.

From the relations (44), (45), and (46) we see that the pairs ((k),/(k)) are nor-
malized in the sense that

"~(k)\2 (k)2 i= n.(47) laii --(bii
DEFINITION 7. The Falk-Langemeyer method is quadratically convergent on the

pair (A, B) if kk -- 0 as k -- 0 and there exist a constant Co > 0 and an integer r0 such
that for r >= ro holds

(48) (r+ 1)N+I CO2rN+ 1.



98 i SLAPNIAR AND V. HARI

From Definition 7 we see that ultimately k decreases quadratically per cycle. At the
end of 4.2 we shall show that the quadratic convergence implies the convergence of
the sequence (42) towards the pair of diagonal matrices (DA, DB), where

(49) DA diag (a, an), D, diag (b, bn).

Here Xi [ai, bi], 1, n, are the eigenvalues of the pair (A, B)..Finally, we shall
show that ultimately the quadratic reduction ofrN+ implies the quadratic reduction of
erN+l and vice versa.

In order to be able to observe the measure we must solve one more problem. The
transformation matrices Fk are calculated from unnormalized pairs (A (k), B(k)) and are
therefore difficult to estimate. To solve this problem we shall observe the sequence obtained
from the pair (A, B) with the following process:

normalization, step ofthe method, normalization, step ofthe method,

This sequence reads

(50) (3(1), /(1)), (d(2),/(2)), (d(2), j(2)), (d(3), B(3)), (3(3), (3)),
where

(51) (3(1) /(1)) (d(1), (1)),

and for k >= holds

(52)

(53) (k+ 1)= k+ (k+ 1)k+ /(k+ 1)__/k+ ,/(k+ 1)/k + 1,

(l)(54) Dk +1 diag
alkl+l)’ d(nk +1)

(55) dk+ I) ,//(i(k + 1))2
__
(b(k+ii ii ))2 i=l n

Of course,the sequences (42) and (50) are generated using the same pivot strategy The
matrices/Vk are calculated accordingto Algorithm 4, but from the pairs
Since, in the transition from ((k),/(k)) to ((k+ ),/(k+ 1)) of all diagonal elements
only those at positions (l, l) and (m, m) are being changed, we conclude that

(56) __4,, -(k 1)) _.(b(k+ )) "/(a.) +(bii)t’l"!k+l) \4/[ai + 2 2__ ~(k) 2 ~(k) 2
ii

i=1, ,n, i4:l,m.

We will now show that the operations ofnormalization and ofcarrying out one step
of the algorithm commute. This is equivalent to showing that (k) (k) and/(k)
/() for k _>- 1.

Let k be the transformation matrices obtained according to Algorithm 4. from the
pairs (J(k),/ (k)), k >= 1. The following proposition shows that the matrices Fk and/k
are simply related.

Here measures off-diagonal elements of the pairs from the sequence (42) and should not be confused
with the quantity used in connection with the Zimmermann method.
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(57)

PROPOSITION 8. For k >= 1, k D-IFkDk holds.
Proof. Because of the relations (44), (45), and (46) we have

(k) b) b(k)a aim lm

d(k) (dk)) 2 dtk)d(mk) /(k) (dk)) 2 dk)d
,.,(k) (k) /.,(k) h(k)
lm amm lm mm

(&)(k, (d)) 2 ()(,
Ul m Ul m

The assertion is now obtained by simply using the relation (57) in Algorithm 4 and
calculating the matrix

PROPOSITIOn. 9. For k >= thefollowing holds"
(i) (d(k), (k)) (d(k), (k)),

(ii) Dk D1/2/3"""/k.
Proof. The proof is by induction in respect to k.
(i) For k the assertion holds due to the relation (51 ). Suppose that the assertion

holds for some k >= 1. This means that

From the relation (52)it follows that d(k+ ’) PfdK)K, which, because of the
relation (58), implies that dtk + 1) _/dk)#k. Since the relation (44) and Proposition
8 imply

d(k+ 1)= DkFD-lDkA (k)DkD-l FkDk DkFA (k)FkDk

(59) DkA (k+ l)Dk,

we conclude that normalizations of the matrices A (k + ) and (k + ) give the same ma-
trix. Now we use the same argument to show that/(k+) /(k+l) for k >_- and to
prove (i).

(ii) For k the assertion is trivially fulfilled. Let the assertion hold for some
k >= 1. From the relations (59), (53) and the assertion (i) we obtain

k+ 1DkA (k + l)Dkk + k+ z(k + )lk +
d(k+ l) z(k+ 1) DK+ A(k+ 1)Dk+ l-

It is obvious that Dk +l DkDk+ and inserting the induction assumption we conclude
that (ii) holds.

From Proposition 9 we see that the relations (50), (52), and (53) can be writ-
ten as

(60)

(61)

(62)

The relations (60), (61 ), (62), 54 ), and 55 define the normalized Falk-Lange-
meyer method. We use the normalized method only as an aid to obtain information
about the quantity kk.

4.1. Preliminaries. Here we define asymptotic assumptions and prove several lem-
mas which are used later in the proofofthe quadratic convergence ofthe Falk-Langemeyer
method. The quadratic convergence proof is based on the idea of Wilkinson (see [18])
which consists in estimating the growth of already annihilated elements in the current
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cycle. To this end we must estimate the transformation parameters k and k and also
the growth of all off-diagonal elements in the current cycle. These two tasks are solved
in Lemmas 11, 13, 14, and 15. Lemma 10 gives us two numeric relations which are used
in the proof. Lemmas 11 and 12 estimate the transformation parameters &k and/3, and
the measure k in one step. Lemmas 13-15 estimate the growth of &,/3g, and during
N consecutive steps. Lemma 15 is the most important for the proof of the quadratic
convergence. In this section we do not assume that the pivot strategy is cyclic. Therefore
the results of this section hold for any pivot strategy. However, if the pivot strategy is
cyclic, then Lemmas 13-15 explain the behaviour of &k,/, and during one cycle.

As we said in 1, the quadratic convergence can always be expected if the eigenvalues
ofproblem are simple. We will therefore use two quadratic convergence assumptions:
(A1) The eigenvalues of the pair (A, B) are simple, i.e.,

p=n>=3.

(A2) The pair (A, B) is almost diagonal, i.e.,

2N"

Asymptotic assumption (A2) is similar to the assumptions used in Theorem 6 and
in convergence results of some other Jacobi-type methods (see [4 ], [1 ]). Assumption
(A implies

(63) N>=3

and

(64) eg rk, g "k, k ->_ 1,

where rk r(A (), B ()) and rk r(A (),/()). We shall use the notation

7,(k) (k)(65) lUlm [, bk [blm 1, k>= 1.

LEMMA 10. Let r be an integer such that r >= 3 and let x be a nonnegative real
number satisfying 2xr < 1. Then thefollowing inequalities hold:

(1--x)-r<=l+.r.x, (l+X)r<=l+.r.x.
Proof. The proof of this lemma is elementary and can be found in 4 ]. 73

The following lemma shows how the transformation parameters & and/ from
matrices/ are bounded with .

LEMMA 11. Let the assumption A hold. Iffor some k >= holds

2
(66) k < --6,
then

(67) max { I1, I1} -<0.34-
/(a)- + (b)

Proof. Suppose that for some k >= the relation (66) holds. Then Theorem and
Corollary 2 hold for the pair ((),/()) as well. Assumption (A1) and the relations
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(63), (64), and 18 imply that there exists an ordering of the eigenvalues of the pair
(A, B),2 such that

rT(k) L(k) 46 2 2
(68) X(X;,[_, ,u, 1)_-<-<--/.-<--.6<0.025.6, 1, ...,n.

Applying twice the triangle inequality and using the definition 11 and the relation (68),
we obtain

m I". ’-’mm x([ ,.mm ’-’mmj

(69) X(kl,km)--X(kl,[ b/k)] )- X( km r(k),,,, b (k))mm

> 3.6 2.0.025.6 2.95.6.
(k)It is obvious that Itm 4: 0. This excludes cases (5)(a) and (5)(b)(ii) of Algorithm 4.

Therefore, we have

(70) max Ikl, Ikl)

From the Cauchy-Schwarz inequality and the relations (47) and (65) we have

i$, i,/ob,_b. 2v f(k))2 2
lm ll Ulm < /(/k))2 +(b (lm +((k)]lm

f(k)2 + (hA) 2

The same estimate holds for ) and therefore

(71) max {1 I, I } g(k) 2 +(b)2.

Since

(72) (&)2 q_ (bk)2 1/2 .,
the relations (69), 71 ), and (72) imply

=7(2)+4>_- (2.9)2- 4./2

>= 1/(2.956)2-2.(4/9N2)62>-2.9336.
The assertion (67) now follows from the relations (70), (69), (71), and the above
relation.

The following lemma gives the relation between k and k/ . It is used later in the
proof of Lemma 15.

LEMMA 12. Let the assumption (A1) hold. Iffor some k >= the relation (66)
holds, then

(73) +,__< +0.494.k/6[_2(+b)].
--0.077"k/6

Proof. Suppose that the relation (66) holds for some k >_- 1. The relation (62),
together with the definition of k, implies

S2 lz(k + S2 (k +(74) + (/k+ )/k+ )+ (/k+ )/k+ ).

Since p n, the eigenvalues can be ordered so that the matrix P from Theorem and Corollary 2 is the
identity matrix.
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If

m+l =min { dl +’), d+’)},

Therefore,

The off-diagonal elements of the matrix J) which are changed in the transformation
(k)(61 ), are exactly the elements of vectors , m t, and m with the exception of,m and

) which are annihilated. Since  [112 112, we conclude that

Since ff ]12 (see fuaher in the proof), we conclude that

S2(d(k+ 1)) Pk ($2( j(k))-

By applying the similar analysis to matrix ), we obtain

Adding two previous inequalities and using the definitions of + and , gives

Inseing this inequality into relation (75 ), we obtain

(76) 1l11)4 [ 2(a+b{)]+ (mk+

To complete the proof we must find the upper bound for ff and the lower bound
for m+ .

The relation (56) implies that

(77) m+ =min {1, d+ ) d+)}

then the relation (74) implies

)2
B(k+ 1) ’+1"(m+ 1) 2 (m+, (m+ 1) 4

Let us define vectors
(k) ,,(k) .,(k) (k) (k) (k) 7.(k),l--(l,1 l,2 1,l-1l,l+1 Ul,m-letl,m+l

m (.,(k) .g(k) (k) ..(k) (k) ,,(k) ,H(k)
m, m,2 m,l 1, m,l + 1 m,m 1, m,m + 1 m,n

aT"" ("1,l ,"2,l, ,a 1,l,"l+ 1,l, 1,l, m+ 1,1, ,an,l ),

2 a a),.(k) ~(k) ..(k) (mk) 1,m, + 1,m, n,mTm=(al,m,az,m, ,
1,m,Ul+ 1,m,

where generally a denotes the transposed vector a. Let H, , H, and be row and
column vectors defined in the same way, but from elements ofthe matrixk+ 1). Relation
(61) implies that

a a [H,aml=[&,am]Fk.
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Relation (61 implies that

ZJka lm qt_ tO kUmm

21l ,(k).,(k)ff k + qt_ Z k (.l lm -mm

Therefore

/k+l) b/k)_/ .,(k)
/_,tOktlm --b (k)

ZOl.kO lm ’JI-

...(k) 2 ..(k) 2(k+l))4 (dff+l))z+(b+l))2 l+4/3,[alm) +(’lm)

+ fi 4ilk( a"(k)ll a’(k)lm + bblm 4fi( .(k)mm.X(k)lm + b ram(k)b(k)]lm.
K(k)K (k)(78) + 2fi(a)a + u,, vmm)

=> 4 Illazz "Zm + Zm --411 Imm"Zm +b)L)mmzm

+bb21-,, -mm

Using the relation (47) and the Cauchy-Schwarz inequality in the relation (78),
we obtain

(79) + ))4> -41( + l2)(())2 + (L())2- 2.lm lm

Using a similar argument we obtain

(80) d+ ))4> -41(1 + 12)())2 + (L))2-2lm lm

Relations (77), (79), (80), (72), and Lemma 11 now imply

0.34 + (0.34  0.34(81) N+l-4"’ ’ "-2"’
Since x is chordal metric, from the relation 11 we see that N . The relations (66)
and (63) therefore imply

2 2

Inseing the relation (82) and the assumption (66) into the relation (81) we obtain

0.34 [4.(1+(0.34 2)) 2 2 ]m+l>l ’N 27
+0"34

Finally, taking into account that N 3 we obtain

(83) m+l -0.077

We shall now estimate N. Since

where IAI max i a0, AI maxi ai for A (a), we obtain

IIH(1 +max {, 1}).
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Lemma 11 and the relation (66) now imply

(0"34’)2

IIPII--< +--
I/2o0"34k ((84) _-< +--:-_ --;- 2 0.34f3_N2)
0.494 ek.

The relation (73) now follows from the relations (76), (83), and (84). 1

We shall now prove that if the assumptions (A and (A2) hold, then Lemmas 11
and 12 hold during N consecutive steps.

LEMMA 13. Let the asymptotic assumptions A1) and (A2 hold. Then for each
k { 1, N} holds

k 2

1-0.3.(k- 1)1/i 6 3N"

Proof. The proofis by induction. For k 1, the lemma is trivially fulfilled. Suppose
the lemma holds for some k { 1, ..., N- }. From the second inequality in the
induction assumption we conclude that, for the chosen k, Lemmas 11 and 12 hold. From
Lemma 12 it follows that

],+1 < +0.494"k/6 -2

--0.077"k/6

(85) -<
(1 --0.494(k/6))( --0.077(7:k/6))

]

(1--0.3(k/6))2"
Hence

k+=< "k.
--0.3"7:k/6

Inserting the induction assumption in this inequality, we obtain

k+l < 0.3(k-
-0.3

0.3(k- )/6

<-- "1 "I,
0.3(k- )l/i-- 0.3(1/) -0.3"k’/b

and the first assertion of the lemma is proved. From this assertion for k + 1, because of
the asymptotic assumption (A2), we now have

k+l< 2
6 1-0.3.k./6 6 1-0.3(N-1)/2N2N 2-0.3 N 3N’

which completes the proof. []
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LEMMA 14. Ifthe asymptotic assumptions A and A2 hold, then the assertions
(67) and (73) ofLemmas 11 and 12 hoMfor every k { 1, N}.

Proof. The assertion follows immediately from second assertion ofLemma 13.
The next lemma explains the behaviour of S(k)), S(/k)) and k, and of

the transformation parameters &g and /g during N consecutive steps. Let us define
the quantity

+ 0.494.2/3N
(86) CN’-- 0.077.2/3N"

LEMMA 15. Let the asymptotic assumptions A and A2 hold. Then"
Fork= 1, N holds

S2(/(k+ 1)) (CN)k $2(/(1)) 1.566 $2(j(l))

(ii) For any choice e { , }, <= k <-_ N, holds
N ~2

E --< 0.091 "5.k=l

Proof. (i) Because of Lemmas 12 and 14, for k 1, N holds

+, =< CN(,--2(a +
(87) <--CN{CN[---2(a-+ b_ )]- 2(a+b)}

k
<’’" <(CN)k21 -2 Z (CN)k-j+ ’(aj + b).

j=l

From the relation (87) immediately follows

(88) +1 (cN)k(cN)N21, k=l, ...,N.

Using Lemma 10 we obtain

(89) (CN)N< +’0.494"-2V" N + "0.077"

Inserting this inequality into relation (88), we obtain

+-< 1.566., k= 1, ,N.

From the proof of Lemma 12 we see that the above estimates hold for the quantities
S2(k+ 1)) and $2(/+ )), as well. Therefore (i) is proved.

(ii) Since CN > 1, from the relation (87) for k N we have

N

2N + <= cN)N’2 2 ,
k=l

Since V+l 0, this inequality implies

U

CN) el <

=
0.783.2.
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The above inequality, together with Lemmas 11 and 14, implies

N N N

&--< Z max {&,/}-< 0.342.(+b).-5
k=l k=l k=l

~2 21
_-<0.1156.0.783._-< 0.091 "5

and the lemma is proved. F-1

4.2. The proof. Here we prove that the Falk-Langemeyer method is quadratically
convergent if the assumptions (A and (A2) are fulfilled and the pivot strategy is cyclic.
Then we prove that the quadratic convergence implies the convergence of the sequence
ofpairs (42 towards the pair ofdiagonal matrices. At the end we prove that the measures
k and ek are equivalent in the sense that ultimately the quadratic reduction of ku+l
implies the quadratic reduction of of ekN+ and vice versa.

We can now prove our paper’s central theorem.
THEOREM 16. Let the asymptotic assumptions A1) and A2 hold and let the

sequence ((A (), B()), k >-_ be generated with the Falk-Langemeyer methodfrorn the
pair (A, B). Then for any cyclic strategy holds

Proof. Let us fix some k { 1, N}. Then the pivot pair (l, rn) is also fixed.
We want to know what happens with the element on this position until the end of cy-

a(r)cle. Therefore, we will observe the elements Ulm, r k + 1, N. We know that
~(k+ 1) 7,(r)a lm 0 and that the elements U ml actually change at most 2(n 2) times. Let rl,

Z(r), rs, s < 2n 4, denote those values of r for which u lm changes in the rth step. Let
us introduce the notation:

-_(ri + e(r +
Zi l lrn i (.l lm

j(.i) //(gT{.ri + 1))2 --(b (ri+ 1))2(90)

,m min { d’), d)}, dN fl- 0.077.2/3N.

Performing the rth step according to Algorithm 4 gives

(0.1 + 8(rl)r

where &r { &r, r and 6rl is some off-diagonal element of the matrix ). Since

(91) z. d( d)
s,

from the relations (90), (83), and Lemma 12, it follows that

(92)

Furthermore, in the rzth step, we have

(93) z-2 1. 1 + 8(r2)&r2),
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where r2 { &r2, /r }, and d r2) is some off-diagonal element of the matrix 3r). The
relations (93), (92), and (91 imply

By induction we obtain

J
(94) I-I--<, It(ri)

(dN)j-i+ dri

For k 1, -.., N + 1, the following notation is introduced:

(95) k)=/Ak) +/), /A) diag (d/)).
Matrix/N+ ) obviously consists of elements which have undergone the maximal num-
ber of changes. If s(i, j) denotes the number of changes of the element on position
(i, j), then

s( i,j) <= 2n 4, i, j { 1, n }, 4:j.

The quantity s(i, j) depends on (i, j) and the pivot strategy. Elements of the matrix
/(U+l) can therefore be denoted as Zs;,j).

Having in mind relation (94), we can now write

(96) i/(N+ 1) (dN)Zn-4(I
Here the notation CI (I col) for C (co) is used. Matrix P) consists precisely of
those elements of l(k)th and m(k)th row and column of the matrix) which already
were pivot elements, 3 i.e., of elements which contribute to the final estimate. All other
elements of the matrix P) are zeros.

Asseion (i) of Lemma 15 gives us

(97) P)I I{)[] 5S(J{g)) 71.566. S(Jt)), k= 2, ,N.

From the relations (96) and (97), Lemma 15, and the Cauchy-Schwarz inequality we
obtain

(98)

S((N+ 1))__ [I/(N+ 1)l i/(N+ )lll

S(z(1)) (N- 1) &(&)2n-4
=2

1.242 [N= ]1/2_< .si).
(du)2n-4

Here (l(k), m(k)) denotes pivot pair in the kth step, so this k should not be confused with the k that
was fixed at the beginning of the proof.
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Since N >- 3, from Lemma 10 it follows that

(dN) 2n-4 (1-0.077(2/3N))n-2

12 2
<1 +-- 0.077 -(n 2)

12 4 -=1< 1.059.< +--.0.077.. n

Finally, inserting this inequality and assertion (ii) of Lemma 15 into relation (98), we
obtain

S((N+ 1))=< 0.4. S((1))/-..

Applying a similar analysis to matrices/(k) yields

S(/(N+ 1)) 0.4" S(/(1))V.1

From the last two inequalities and the definitions of N+I and l follows

~2

U+ 0.4" /-. _.I
6’

and the theorem is proved. []

Note that in the proofofTheorem 16 it is not necessary to assume that the affiliation
(k)is preserved, i.e., that the pairs [aii ii approximate the eigenvalues h for 1,

n, k 1, N. However, for large enough k this fact follows from Theorem 17.
From Theorem 16 and the assumptions (A and (A2) it follows that

(99) N+ < Vr-’--" 1 -"1 < 0.3 "1

Applying inductively the relation (99) we obtain

(100) rN+l =<(0-3)r’l, r>_- 1.

Therefore,

101 lim rN+ =0.

From the relation 101 and the assertion (i) of Lemma 15 we conclude that

(102) lim kk 0.
k--

The relation (102) and Theorem 16 imply the quadratic convergence of the Falk-
Langemeyer method according to Definition 7 ifthe eigenvalues are simple and the pivot
strategy is cyclic.

Next we prove that under assumptions of Theorem 16 the sequences of matrices
(A (), k >= and (B(), k >- ), generated by the Falk-Langemeyer method, converge
towards diagonal matrices.
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THEOREM 17. Let the assumptions of Theorem 16 hold. Then

lim A (k) D, lim B (k) D,

where DA and De are diagonal matrices.

Proof. The relation (44) implies that

(103) A()=(D)-I.(k)(D) -1, B()=(D)-I()(Dk)-,
where diagonal matrices D are defined with the relations (45) and (46). It is therefore
sufficient to prove that the sequences ((), k ), ((), k ), and ((D) -, k
converge towards diagonal matrices. The relation (102) implies that the off-diagonal
elements of matrices) and) tend to zero as k . Therefore, it remains to prove

(k) (k)that for n the sequences (_, k and (, k converge. The relation
(18) and the assumption (A imply that for each k there exists an ordering of the
eigenvalues Xi [s, c], 1, n, such that

.(k) (k)(104) ciaii -sioii , 1, ,n.

k) k)Let us consider unit vectors [si, c] r and [ai i in R The left-hand side of the
inequality (104) is ]sin )1 where ) is the angle between these two vectors. The
relations 102 and (104) imply

lim sin =0, i=l,...,n.
k

Hence, for each the sequence of vectors ([6), ,,L)] k > has only finite number
of accumulation points in R2. Therefore, it suffices to show that for large enough k the

(k) (k)changes in aii and bii are arbitrarily small. From the relation (102) and Lemma 11 we
(k) (k)see that k 0 and k 0 as k . Therefore, the changes in aii and bii tend to

zero as k . This proves that for each {1, ..., n} limits limk d) and
k)limk ii exist.

We shall now prove that ((Dk) -, k is a convergent sequence. Looking at
the definition of Dk (relation (45)) we see that it suces to prove that for each

(k)n } the sequence (-i k 1) converges to a nonzero number. From Proposi-
tion 9 we have

d(&) 1)(2)=d i =l,’’’,n,

From the definiteness of pairs (3(), B()) and ((), ()) we conclude that d) and
d) are different from zero for all and &. Hence it suces to prove that the infinite
product =2 converges. This product converges if and only if the product=2( converges. Therefore, it suces to show that the latter product is absolutely
convergent. From the relation (78)we see that for i (1,...,n} and & 2we can

()write .))4 + ui so It suces to show that the series u are absolutely
convergent for all 1, n ).

The relmion (83) of Lemma 1E implies that

d+ 1))a > 0.077
e
8

l=l n

Since all factors in the product are nonzero, the limit, if it exists, is also nonzero.
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Looking for upper bound instead oflower bound in the relation (78) and making similar
estimates as in the relation (83), we obtain

(k+ 1))4< +0.077 k
6’

1=1, ,n, k>l

Therefore,

(k+ 1) -(k+ l) 4 ...k[ui [(di 11 _-<0.077.6 1, ,n, k>= 1.

Hence it suffices to show that the series 7 ff--i k converges. From the assertion (i) of
Lemma 15 we have

rN+i 1.3"rN+ l, <=i<=N, r>= 1,

hence it suffices to prove the convergence of the sequence T_- rN+ 1. From the relation
(100) we see that the later series is majorized by the convergent series E--l (0.3)r’l-
This proves the absolute convergence of the series E if_-2 ulk) for { 1, n } and
therefore the convergence of the sequence ((Dk) -1, k

Note that the global convergence (i.e., the convergence for all definite pairs (A, B))
of the Falk-Langemeyer method in the case of cyclic pivot strategies is not yet proved.

We end this section by showing that our asymptotic assumptions also imply ultimate
quadratic reduction of erN+l. Indeed, for r >- the relation (103) implies

(rN+ 1))2erU+ (,,max "erN+ 1, erN+ ](rU+ 1) 2 erN+ 1,
(--min

where

d(rN+l)=max {dtrN+l) d(nrN+l)},max

d(r.+=min {dtrN+ l) cl(rN+ l)}
Theorem 6 implies

,-]((r + 1)N+ 1))2 V~2H((r+ 1)U+ 1))2e(r+ I)N+I
< (,max TerN+(r+ 1)N+ (,max

"--/?r2N+ 1--C" e r >

d(r.N+ 1)) 2[d((r+ 1)N+ 1)/(,’m,nwhere c is an upper bound ofthe convergent sequence (tmx ]2, r
In a similar way we can prove that the quadratic reduction of erN+ ultimately implies
the quadratic reduction ofN+ 1.

The techniques described in this section can be used for studying asymptotic con-
vergence properties of various different Jacobi-type algorithms.. Conelmling remarks. In Algorithm 4 only (l, m)-restrictions of the pair (A
B(k)) are used in each step. Therefore, parallel strategies are in fact cyclic (see I10]) and
Theorems 16 and 17 hold for them as well.

In 13 it is proved that ifthe assumptions ofTheorem 16 hold and the pivot strategy
is serial, then
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Modified method. If the problem has multiple eigenvalues, the method can fail
to be quadratically convergent. This failure occurs because when pairs and
a(k)mm, b(k)mm (here (1, m) is the pivot pair in the kth step) approximate the same eigen-

values, then parameters &k and k can be of order O( and, therefore, some previously
annihilated elements can become of order O(k) again. This situation is described in
detail in 7 and 13 ]. Simple omitting ofthese critical steps does not yield to the quadratic
convergence, even though the measure k T(z(k) /(k)), k >= 1, from Corollary 2 tends
to zero. The relation (16) does not imply that the off-diagonal elements of diagonal
blocks tend to zero together with k, but merely that the diagonal blocks become more
and more proportional. Therefore, k does not have to tend to zero at all and the con-
vergence of Z’k can considerably slow down. If we modify the method so that in such
cases we use triangular transformation matrices similar to the matrix from step (5)(a)
of Algorithm 4, the quadratic convergence persists.

Modification of the Falk-Langemeyer method and the proof of quadratic conver-
gence of the modified method will be topics of our subsequent paper.

Numerical results. Our test program is written in FORTRAN in double precision.
Test pairs were generated in the manner that A G TDA G and B GTDzG, where
diagonal matrices DA and De are being read and G is random. For elements of matrix
G only numbers which are sums of the powers of 2 were used, so the test pairs were
stored as accurately as possible.

The iterative process is terminated when, after some cycle r, inequality

erN +, < eps. ]/I[ A 2 + oil 2" 2N

is fulfilled, where eps is machine precision. After the end of the process, the maximal
error of the residual

max{ IlbAf-aBfllmax }l<-_i<=n ]/(a) 2 iii ]iii ] + Bf []2

is calculated. Here [a, b] are the calculated eigenvalues of the pair (A, B) and f are
the corresponding eigenvectors. Also the maximal absolute values of the off-diagonal
elements ofmatrices (F’) TAF’ and (F’) TBF’ are calculated. Those three quantities were
usually oforder ofstopping criterion. Infinite eigenvalues were represented with numbers
of order of magnitude O( 1/machine precision).

We observed the convergence of both measures ek and kk. Observations confirmed
all theoretical results. For starting pairs that were not almost diagonal, convergence was
in the beginning linear and several cycles were needed before quadratic convergence
started. The asymptotic assumption (A2) appears to be very adequate because in almost
all cases quadratic convergence started after it was fulfilled. Algorithm behaved very
regularly in the sense that the condition k) >_ 0, k ->- (see assertion (i) of Proposition
3) was always fulfilled for definite starting pairs. This condition was fulfilled even in
some cases when the starting pair was semidefinite, or slightly indefinite.

Average number of cycles for smaller matrices (n =< 15) was around 10 and for
larger matrices (n =< 100) around 15. Last cycles were usually empty, i.e., not all N steps
were executed. For orientation, the approximate duration of the process is five minutes
for n 40 and one and a half hours for n 100 on IBM PC/AT with a coprocessor,
and about 30 times shorter on IBM 4371.
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In the presence ofvery close eigenvalues several additional cycles were usually needed
because the quadratic convergence was delayed. The existence of additional cycles does
not disagree with theoretical results since the quantity i5 from the asymptotic assumption
(A2) is in this case very small.

We observed that the results are generally better if increasing or decreasing order of
numbers defined with diagonal pairs [a), b/) is preserved by interchanging pivot rows
and columns if necessary. However, interchanging must be stopped after the asymptotic
assumption (A2) is fulfilled. Otherwise some off-diagonal element which was not yet
annihilated can "run away" from annihilation and therefore terminate quadratic con-
vergence.

Example. We give an example of the pair of order 10 generated in the previously
described manner. Elements of the matrices DA and DB are

-2, 1, 10,0,-0.001, 10, 1,5,5,4

and

-1,0.1,-1,-100,-100,0,-1,0.1, 1, 1,

respectively, so the exact eigenvalues of the problem are

2, 10, 10, 0, 0.00001, o,-1,50, 5,4.

Elements ofthe matrix G are uniformly distributed integers from the interval [-10, 10].
Note that both matrices A and B are indefinite, while the pair (A, B) itself is definite
(for example, A 3B > 0). In order to increase the stability of the computation, the
process started from the normalized pair (,/).

Only upper triangles of the matrices A and B are displayed. Each row begins with
the diagonal element. Asymptotic convergence is described as follows: in column CYC
is the number of cycle; in column ROT is the number of rotations performed in the
cycle; columns SUMA, SUMB, SUM and SUMT display values of S(A(’)), S(B(k)), ek
and ? after the cycle, respectively.

ORDER OF MATRICES N i0
COLUMN CYCLIC PIVOT STRATEGY
STOPPING CRITERION" SUM(K) < .49D-13

MATRIX A
ROW

1 21350D+04 41900D+0 II600D+OZ I140D+04 I0490D+04
44002D+0 13750D+04 20027D+02 51903D+O3 60802D+0

2 14310D+04 32700D+03 34200D+03 26100D+03 10390D+04
29600D+03 43200D+03 50000D+03 13100D+03

3 18320D+04 28000D+03 93300D+03 64100D+03 91000D+03
38500D+03 74500D+03 58200D+03

4 11860D+04 85799D+03 34099D+03 56100D+03 40001D+03
49101D+03 57401D+03

5 99295D+03 68695D+03 22402D+03 53006D+03 69606D+03
90965D/02

6 13360D+04 57298D+03 43106D+03 97606D+03 43035D+02
7 13470D+04 29703D+03 10027D+02 67399D+03
8 87292D+03 32992D+03 49550D+01
9 88792D+03 40105D+03
10 ". 82798D+03
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MATRIX B
ROW

i 72420D+04 81550D+04
Z1460D+04 7Z170D+04

2 99425D+04 50853D+04
79655D+04 68774D+04

3 26020D+04 14878D+04
34409D+04 16500D+02

4 I0848D+04 15558D+04
83980D+03 18888D+04

5 5909ID+04 46836D+04
I0755D+04

6 50607D+04 28013D+04
7 72920D+04 8253ID+04
8 12938D+05 81476D+04
9 82005D+04 4609ID+04
i0 88056D+04

.40130D+04
83650D+04
28814D+04
11530D+03
14297D+04
39654D+04
55260D+03

20630D+04 39800D+03
27080D+04 78930D+04
28007D+04 93320D+03
79841D+04
63790D+03 39712D+04

20896D+04 11306D+04

ASYMPTOTIC CONVERGENCE
CYC ROT SUMA

23130D+03 41948D+04 61837D+04

1 45 .60D+O0
2 45 .72D+00
3 45 .57D+00
4 45 .31D+O0
5 45 ISD-OI
6 45 .39D-02
7 45 56D-04
8 44 .18D-09
9 29 .26D-20
TOTAL NO. OF ROTATIONS 388 TIME(sec)

69463D+04
.26803D+04
10050D+05

CALCULATED EIGENVALUES
I A(I, I)
1 3677430 ID+O 1
2 29605919D+01
3 24951699D+00
4 62005903D+00
5 16044487D+00
6 94464581D-04
7 43510239D-16
8 .62365226D-01
9 .42815492D+01
i0 .32339485D+01

62826D+04 43479D+04
78484D+04

SUMB SUM SUMT

35D+01 35D+01 18D+O 1
32D+00 79D+00 12D+O 1
28D+00 64D+00 72D+00
2 ID+O0 38D+00 24D+00
23D-01 .30D-OI 25D-01
13D-O 1 13D-O 1 93D-02
15D-03 16D-03 92D-04
6ID-09 63D-09 19D-09
19D-20 32D-20 93D-20
5.68

B(I)
.91935754D+00
.59211837D-01
.24951699D-01
.12401181D+00

-.80222433D-01
-.94464581D+01
-.23229057D+01
-.62365226D-01
-.25722206D-13
-.32339485D+00

MAXIMAL(relative) ERROR 15D-13 FOR I 3
MAXIMAL OFF-DIAGONAL ELEMENTS:
Ft A F .35D-14 Ft B F .30D-13

D(I)
4000000000000ID+O 1
5000000000000ID+02
i0000000000015D+02
50000000000011D+O 1
19999999999999D+01
I0000000000004D-04
18730953468577D- 16
99999999999990D+00
16645341957511D+15
99999999999999D+01
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LEAST SQUARES APPROXIMATION BY REAL NORMAL MATRICES
WITH SPECIFIED SPECTRUM*

MOODY T. CHU"

Abstract. The problem of best approximating a given real matrix in the Frobenius norm by real, normal
matrices subject to a prescribed spectrum is considered. The approach is based on using the projected gradient
method. The projected gradient of the objective function on the manifold of constraints can be formulated
explicitly. This gives rise to a descent flow that can be followed numerically. The explicit form also facilitates
the computation ofthe second-order optimality condition from which some interesting properties ofthe stationary
points are related to the well-known Wielandt-Hoffman theorem.

Key words, least squares, projected gradient, normal matrix, spectral constraint

AMS(MOS) subject classifications. 65F15, 49D10

1. Introduction. A matrix A C is normal ifand only ifA *A AA *. Normality,
as it includes the Hermitian, unitary, and skew-Hermitian matrices, defines a rather
general and important class of matrices. In [7 ], 70 equivalent conditions are listed to
characterize a normal matrix. This again reflects that normality may arise in many dif-
ferent ways.

One interesting question that has received considerable attention is the determination
of a closest normal matrix to a given square complex matrix. This problem has only
recently been completely solved (in the Frobenius norm) in [4], and independently in
2 ]. It turns out that finding a nearest normal matrix is equivalent to finding a unitary

similarity transformation which makes the sum of squares of moduli of the diagonal
elements as large as possible [8]. The Jacobi algorithm, therefore, may be derived from
this perspective to solve the nearest to normality problem.

In this paper we assume the following situation happens. Experimental data has
been collected in the matrix A which, by some prior knowledge, should be a normal
matrix with known spectrum. Generally, due to measurement errors, A will not satisfy
these requirements. Since A still contains some useful information, we would like to
retrieve its least squares approximation that satisfies these requirements.

In practice, we may well be interested in real matrices. It is well known [5, p. 284
that a real normal matrix is always orthogonally similar to a real quasi-diagonal matrix

(1) diag { I ’1-/1 klPl] .., I k
pq k

q ] k2q +

where kk, Uk are real numbers and Uk 4:0 k 1, 2, q). Therefore, we consider the
following problem in this paper.

Problem A. Given a matrix A R n and a set of eigenvalues { k +--- iul, kq
___

iUq, k2q+l, kn where kk, Uk are real numbers and Uk :/: 0 (k 1, 2, q), find
an orthogonal matrix Q that minimizes the function

(2) F<Q)’= 1/211QTAQ-AII 2
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where A is the quasi-diagonal matrix given by (1) and I[" means the Frobenius ma-
trix norm.

A special case of Problem A has been considered in 3 ]. There it is shown that
whenA is symmetric and when A is diagonal with distinct elements arranged in descending
order, the columns of the optimal Qr should be the normalized eigenvectors of A cor-
responding to eigenvalues arranged in the descending order. In this paper we study the
extension to more general classes of matrices.

Our idea is closely related to the setting in [1]. Our approach is parallel to
that in 3 ]. Without using the Lagrangian function, we first formulate explicitly the
projection of the gradient of the objective function F onto the feasible set O(n)"=
{ Q E Rn’lQrQ I}. This formula gives rise to the construction of a descent flow
that can be followed numerically. We then derive the so-called projected Hessian on
the tangent space of O(n). Wherever possible, we classify the stationary points from
the second-order condition. Finally, we discuss the connection between our results and
the well-known Wielandt-Hoffman theorem [9].

2. Preliminaries. Let (A, B) denote the Frobenius inner product of two matrices
A,B_Rnxn’.

(3) (A,B)’= trace (ABr) Z aobo.
i,j

We first consider the function F in (2) to be defined everywhere in R n. For Z, H
Rnxn, the Frrchet derivative of F at Z acting on H is calculated to be

F’(Z)H=(ZrAZ-A,HrAZ+ ZrAH)
(4)

((AZ)(Z rAZ-A),H) + ((AZ)(Z rAZ-A),H).
In the second equation above we have used the adjoint propey

(A,BC) (BrA, C) (ACLB)
to reaange tes. With respect to the Frobenius inner product, the equation (4) suests
that the gradient of F at a general matrix Z e R n x n may be intereted as the matrix

(5) VF(Z := (AZ)(Z rAZ A r+ ArZ Z rAZ A ).

Let S(n) denote the subspace of all symmetric matrices in R"n. It is easy to see
that the tangent space ToO(n) of the feasible set O(n) is given by [3 ]:

(6) TQO( n := QS(n -L

where S(n)+/-, the orthogonal complement of S(n) in R n, is precisely the subspace of
all skew-symmetric matrices. It is also easy to see that the orthogonal complement of
TQO(n) is the subspace

(7) NQO(n)’=QS(n).

Therefore, an orthogonal matrix Q is a stationary point of Problem A only if

(8) (AQ)(QrAQ-A) r+ ArQ)(QrAQ_A)6 QS( n).

For convenience, we define in the sequel

(9) X.=QrAQ.
Then (8) is equivalent to

(10) X(Xr-A r) +Xr(X_A)eS(n),
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or

(11) XAr+X7"A =AXr+A rX.
Let [A, B] := AB BA denote the Lie bracket. Lemma 2.1 follows.

LEMMA 2.1. A necessary conditionfor Q O(n) to be a stationarypointfor Problem
A is that the matrix [X, A 7"] with X defined by (9) is symmetric.

We remark that if A is symmetric and A is diagonal, then X is symmetric and
[X, A 7"] is skew symmetric. In this case, we conclude, from Lemma 2.1, that at a sta-
tionary point the matrix X must commute with A. This is one of the results discussed
in [3].

The projected gradient of F on the manifold O(n) can be calculated without any
difficulty. Mainly this is due to the understanding that for any fixed Q O(n),

(12) Rnxn= ToO(n)NoO(n)=QS(n)+/-)QS(n).
Any matrix Z R" n has a unique orthogonal splitting

(13) Z=Q{1/2(QT’Z-ZTQ)}+Q{1/2(QTZ+ZTQ)}
as the sum of elements from ToO(n) and NoO(n). Accordingly, the projection g(Q) of
TF(Q) onto the tangent space ToO(n) can be calculated explictly as follows:

Q
g(Q) { Q7"VF(Q)-VF(Q)7"Q}

_Q QT T+-- { {(AQ)(QT’AQ-A) (A7"Q)(QT’AQ-A)}
(14)

{ (AQ)(QT’AQ-A) 7- + (AT’Q) QT’AQ-A } TQ }
Q

T] TIT)
2
{[QT’AQ’A -[QT’AQ,A

It is clear that the vector field

dQ Q 7"] 7"]7"(15)
dt =-g(Q)=-J {[QTAQ’A -[QTAQ’A }

defines a steepest descent flow Q(t) on the manifold O(n) for the objective function F
in (2). Upon substitution, the corresponding X(t) is governed by the ordinary differential
equation

dX dQT dQ
d ---AQ+ Q T"A

d
(16)

=[x,[X,ATI-[X,AT] T]2

Starting with an appropriate initial value, say X(0) A, the positive orbit of(16) marches
to a limit point which is a (local) least squares normal matrix approximation to A.

We remark again that if A is symmetric and A is diagonal, then the flow (16) is
reduced to

(17)
dX

=[x,[X,A]],
dt

which is analyzed in [3].
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It is worth mentioning that the second term in the bracket of (16) is skew symmetric.
Therefore, the solution flow X(t) of (16) naturally is isospectral [2] to the initial value
X(0). In particular, we have []X(t)X(t) r- X(t)rX(t)[[ [[X(0)X(0) r- X(0)rX(0)
for all t. Thus, apart from numerical errors induced when solving the differential equa-
tion (16) on computers, the deviation of normality of X(t) will remain the same as
that ofX(0).

The function g in (14) is defined for orthogonal matrices only. We now derive an
explicit formula for the projected Hessian of the objective function F without utilizing
the Lagrange multiplier. Readers are referred to 3 for an explanation ofwhy this tech-
nique works. Obviously we may extend g smoothly to cover the entire space R" x simply
by defining

Z
rlr }.18 G(Z)’= ( [Z rAZ,A [Z TAZ,A T]

The FrSchet derivative ofG can easily be calculated. In particular, at any stationary point
Q of Problem A and for every tangent vector QK where K S(n)+/-, it holds that

(G’(Q)QK’QK)=( [[X’K]’Ar]r-[[X’K] At])2,K

(19) =-([[X,K],Ar],K)
=([X,K],[A,K]).

It can be proved that formula (19) is precisely the evaluation of the projected Hessian
of the Lagrangian function of Problem A [6, p. 80]. Thus a necessary condition (and a
sufficient condition if the strict inequality holds) for a stationary point Q to be a local
minimum is that

(20) ([X,K],[A,K])>=O forevery KS(n)-.
3. Application I--real eigenvalues. We now apply the first-order condition (11

and the second-order condition (20) to classify the stationary points for Problem A. It
will prove useful if we define

(21) E’=QAQ.
We observe that the first-order condition 11 and the second-order condition (20) are
equivalent to

(22) AET+ AE EA +EA
and

(23) ([A,K],[E,K])>=O forevery KS(n)-,
respectively.

In this section we first consider the case when A has only real eigenvalues. It follows
that the matrix X QTAQ must be symmetric for any Q O(n). For any general matrix
A Rnn let

(24) As’=1/2(A+A )

and

(25) AK’=1/2(A-A T)
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denote the symmetric and skew-symmetric parts ofA, respectively. We observe that

(26) IIX-AII 2-- ]IX-Asll

Since the second term in (26) is fixed once A is given, a least squares approximation to
A amounts to a least square approximation to As. Therefore, it suffices to consider the
case when A is symmetric.

Suppose A is symmetric. We shall arrange eigenvalues ofA in the natural ordering

(27) #i >-#2>= >=#n.

We further divide our discussions according to whether or not A has simple eigenvalues.
Case (A has only distinct eigenvalues). For clarity, we shall assume the diagonal

elements of A are arranged in the descending order

(28)

The following theorem completely classifies all the stationary points.
THEOREM 3.1. Suppose A is symmetric and has eigenvalues arranged as in (27).

Suppose A is diagonal and has elements arranged as in (28). Then the stationary points

ofProblem A are classified asfollows:
1. An orthogonal matrix Q is a stationary point off only ifcolumns ql, qn of
Q are orthonormal eigenvectors ofA.

2. A stationary point Q is a local minimizer (or, a local maximizer) off only if
columns ql, qn ofQ correspond with eigenvalues #1, #n (or, the reverse
order), respectively. All other stationary points are saddle points.

3. Any least squares approximation X to A is oftheform

(29) X XlqlqT[+’" + anqnqr
The least squares approximation X is unique ifA itselfhas distinct eigenvalues.

4. The minimal value ofF is equal to 1/2 -- i ui) 2.
5. Local extreme points are also global extreme points.

Proof. The proof of this theorem can be found in 3 ]. The main point is that the
simplicity of eigenvalues ofA and the condition (22) require that E be a diagonal matrix
11, p. 416 ]. Also, part 5 follows from the fact that all extreme points yield the same
function value as specified in part 4.

Case 2 A has multiple eigenvalues). When multiple eigenvalues occur, the analysis
becomes more complicated because the matrix E is not necessarily a diagonal matrix.
For demonstration purpose, we shall only consider the special case when all eigenvalues,
except the one which has multiplicity two, of A are simple.

We shall assume the diagonal elements of A are arranged in the ordering

(30) kl>

with _-< k _-< n 1. Then the first-order condition (22) implies that at a stationary point
E must be a quasi-diagonal matrix of the form [11]

(31) E=diag el, "",e-l, ,e+2,’",en
e, ek+

It follows from (21 that el, ek-1, ek+ 2, e, must be n 2 eigenvalues of A
(note that we are assuming that A is symmetric), and that columns q, q_ 1,
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qk+2, qn of the matrix QT must be the corresponding orthonormal eigenvectors.
Obviously, the 2 2 matrix

(32) R’=[ eke, ek+e* ]
determines the remaining two eigenvalues, denoted by #s and ilZt, of A. The columns
qk and qk/l are two orthonormal vectors in the spaced spanned by eigenvectors of
#s and

It is not difficult to see that

(33)

([A, KI,[E,K])=2 E ki-- Xj)(ei-- e)k
i<j

i4:k,k+
j4=k,k+

+2 (X-X){(e-ej)kj+2e,kjk+ ld+(e+ l-e)k+ ld}
k+l<j

+ 2 (h kk) { (ei-- ek)ki2k 2e,kikki,k+l +(ei-- ek+ 1)ki2,k+l }.
i<k

We note that the three summations in (33) are mutually exclusive. Therefore,
( A, K], E, K] ) >- 0 for every K e S(n) +/- if and only if every single term in 33 is non-
negative. Because of the specified ordering of the eigenvalues Xi, we conclude that for a
stationary point Q to be a local minimizer, it is necessary that

(34) el>=e2 >-’.. ek_ >ek+2 ’’" >e,
and that the matrices

(35)

ei- ek --e, ] eiI-- R for k,every
--e, ei- ek +

ek- ej e, ] R for k +ejI every <j
e, ek+ ej

be positive semidefinite. From the above, we have proved the following theorem.
THEOREM 3.2. Suppose A is symmetric and has eigenvalues arranged as in (27).

Suppose A is diagonal and has elements arranged as in (30). Then the stationary points
ofProblem A are classified asfollows:

1. An orthogonal matrix Q is a stationary point of F only if columns ql,

qk-l, qk / 2, qn ofthe matrix Qr are n 2 orthonormal eigenvectors ofA,
and qe, q/l are linear combinations of the remaining two orthonormal eigen-
vectors.

2. A stationary point Q is a local minimizer off only ifcolumns ql, q- of
QT correspond with eigenvalues #,..., #k-l, and qk+ 2,’’’, qn correspond
with eigenvalues #k + 2, #n, and qk, qk+l are linear combinations of eigen-
vectors corresponding with eigenvalues #k, #k + 1. Similarly, a stationary point Q
is a local maximizer ofF only ifthe above correspondence is in the reverse order.
All other stationary points are saddle points.

3. Any least squares approximation X to A is oftheform
(36) X=X,qlq+’’’+Xk(qkq[+qk+,q[+,)+’’’+Xnqnqrn.
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The choice of qk and qk+l is immaterial. The least squares approximation is
unique ifthefirst k and the last n k eigenvalues ofA are distinct.

4. The minimal value ofF is equal to 1/2 Z --1 (ki- IAi) 2o
5. Local extreme points are also global extreme points.
We remark that the proof for the above theorem can be generalized to cover other

cases of multiple eigenvalues. The details are left to the readers.

4. Application llmcomplex eigenvalues. One ofthe difficulties associated with this
case is that there is no clear way to order the eigenvalues. Even so, we have made some
interesting observations.

Case 3 (A is a 2 2 matrix). The simple 2 2 case offers considerable insights
into the understanding of higher-dimensional problems. Let

(37) A=

For any E R2 2, it is easy to see that the matrix AEr + ArE is always symmetric.
This is to say that any Q 6 O(2) is a stationary point. Indeed, we find that

A ifdetQ=l,
(38) X’=QrAQ=-

Ar ifdetQ=-l.

So the least squares approximation problem is trivial. The objective function value is
given by

(39) F(Q)= 1/2((all- )2 + (a22- ,)2 + (a12-T-v) 2 +(a21

depending upon det Q + 1, respectively. It is readily seen from (39) that the signs of u
and a12 a21 determine which one of A or AT better approximates A.

Case 4 (A is a symmetric matrix). Again, for demonstration purpose, we shall
consider only the case when A is of the form

(40) A=diag )1,’", ,"-,Xn
-u, ,

where

(41) kl> k2>""" >kn

and v, > 0. Since A is symmetric, so is E. We write A As + Ac as the sum of its own
symmetric and skew-symmetric parts. The first-order condition (22) requires

(42) (AT+ A)E= E(AT+ A).

Because AT + A 2As is diagonal, it follows that E must be a quasi-diagonal matrix of
the form (31 ). Furthermore, we know that

(43) ([A, KI, [E, KI) ([As, KI, [E,K])
since [A:, K] is skew symmetric and [E, K] is symmetric. We state Theorem 4.1.

THEOREM 4.1. Suppose A is symmetric and has eigenvalues arranged as in (27).
Suppose A is quasi-diagonal and has elements arranged as in (40) and (41 ). Then the
stationary points ofProblem A are classified asfollows:

1. An orthogonal matrix Q is a stationary point of F only if columns ql,

qk-l, q/ 2, qn ofthe matrix QT are n 2 orthonormal eigenvectors ofA,
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and qk, qk +1 are linear combinations of the remaining two orthonormal eigen-
vectors.

2. A stationary point Q is a local minimizer off only ifcolumns q, q_ of
QT correspond with eigenvalues t,"’, t-, and q/,..., q correspond
with eigenvalues #/ 2, #, and qk, q+ are linear combinations of eigen-
vectors corresponding with eigenvalues t, t/ . Similarly, a stationary point Q
is a local maximizer off only ifthe correspondence above is in the reverse order.
All other stationary points are saddle points.

3. Any least squares approximation X to A is oftheform

(44) X= XlqqT +’’’ + Xk(qkq+ q+1 q+
T+ u, qq[+ q+ q) + + Xnqnqn

The choice of q and qk+l is immaterial. The least squares approximation is
unique ifthefirst k and the last n k- eigenvalues ofA are distinct.

4. The minimal value ofF is equal to v z, + 1/2 --1 Xi ti) -.
5. Local extreme points are also global extreme points.
Proof. The analysis of stationary points for this case is essentially identical to that

of Case 2 in the preceding section.
Case 5 (A is a normal matrix). Obviously we should suppose A has complex ei-

genvalues, otherwise A would be symmetric. Now we have real difficulty in the analysis
of the stationary points. In fact, we do not even have a clear way of identifying all
stationary points. We can only report some partial results.

For simplicity, we shall assume that A is given by (40) and that (41 holds. We
partition A into three blocks A A (R) J2 () A3 where

A =diag {1, ,- },

v,
(45) A2

-v,

(46) A3 diag { kk+2, ,kn}.

It can be verified easily that any E of the form

(47) E=EI@Ez@E3
satisfies the first-order condition (22) if Ei + E is a diagonal matrix for 1, 3 and
E2 6 R2 _. This, of course, is only a sufficient condition of being a stationary point.

We consider a simple 3 3 example. Let

-0.44910244205626 -2.69770357656912 -0.84185971635958 ]A-- 0.02746606843380 -0.23010080980457 -2.76631903691207
-2.82587649838907 -0.61291990656488 -1.32079674813917

and

15.0 0.0 0.0 ]A 0.0 -3.0 12.0
0.0 -12.0 -3.0

We calculate that IIAA T_ A rAil 4.5540 10 -14. So up to the fourteenth digit A is
a normal matrix whose eigenvalues are { + 2i, -4 }. Starting with X(0) A, we follow
the descent flow (16) by using the subroutine ODE in [13 ]. The local error tolerance is
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set at 10 -13 We regard that the flow has converged to its limit point and the integration
is terminated automatically whenever the difference between two consecutive output
values is less than l0 --. At 0.5, we obtain an approximate limit point

5.047565112549
X= 1.946294703163

-12.486964555620

12.481140871140
0.447719348364

-3.288091746472

1.983297617463
12.759402874230
3.504715539087

for the flow (16). The corresponding stationary point is approximated by

0.668645609196
Q= 0.437652789090

0.601143148929

-0.437652789090
0.885212316658

-0.157667975945

-0.601143148929 |
-0.157667975945 J0.783433292538

We calculate that ]IXXr- XrXII 2.7084 10-, IIQrQ- III 1.3866 10 -13.
So x and Q are reasonably normal and orthogonal, respectively. The corresponding
matrix E’= QAQr is given by

[ 0.644444444445 -0.801988510684 2.173413906502
E= 2.314685340881 -0.608926976624 -1.676627286676

-0.095631338793 -2.743293953342 -2.035517467820

We calculate that IIAEr + ArE- EAr + ErAII 1.2299 10 -11. So we may say that
up to the numerical error the matrix E satisfies the equation (22). But obviously E is
not of the form (47). We think this complication is due to the fact that the spectra ofA
and A are "incompatible," i.e., the two triangles in the complex plane connecting eigen-
values ofA and A, respectively, point to opposite directions.

In perturbation theory, we should not expect the spectrum of A to be distributed in
a significantly different pattern from that ofA. In part, this is because eigenvalues depend
continuously upon components of the matrix. In part, this is because A, representing a
sensible empirical data, should more or less reflect the physical reality. Now that A is
assumed to be of the form (40), let us suppose that A also has only one pair of complex
conjugate eigenvalues. Thus A can be reduced to the matrix

(48) E’= diag el, en
--e, ek

Now we shall see how the ordering of { el, en affects the definiteness ofthe projected
Hessian ofF at such a point. By direct computation, we obtain

([A,K],[E,K])=2 , (i-j)(ei-ej)k.
i<j

ik,k+
jk,k+

(49) +2 Z (ki2k - 2ki,k + 1)( (ei- e,)( k kk) "+ v.e.
i<k

+2 (kk+kZg+l.j)((ek--ej)(Xk--Xj)+V,e,).
k+l<j

Every single term in (49) needs to be nonnegative in order that the projected Hessian of
F is positive semidefinite. This, of course, will be the case if the ordering of { el, en }
is "compatible" with (41 ), that is, if

(50) el >- e2 >-- --> en
and e, > 0. We, therefore, have established a result of the following sufficient condition.
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LEMMA 4.1. Suppose A is normal. Suppose A can be reduced by orthogonal trans-

formation Q to the canonicalform E (48) whose elements are arranged as in (50). Suppose
A is a quasi diagonal in theform of(40) whose elements are arranged as in (41 ). Then

1. The orthogonal matrix Q is a local minimizer ofF.
2. The local optimal value ofF is given by 1/2 A Ell z.
Remark. In the 3 3 numerical example above, we have -4 e < e2 1. Thus

(49) is positive only if e, > (e2 e)(, 3)/u, 7.5. Since e, +2 in our example,
we find that our descent flow X cannot converge to an E in the form of (47). In fact, it
turns out that such an E is a local maximum for F.

In contrast to the preceding three theorems, it is rather surprising that when A has
complex eigenvalues the differential equation (16) may have multiple limit points. This
phenomenon can be observed numerically by starting with different initial values on the
surface M(A) := { QAQIQ O(n) }. For instance, if we start with X(0) A M(A)
for the above 3 3 example, the flow converges to another limit point

13.442778205310 -0.124823985983 -6.168244962433 ]X- -5.831716696280 -2.460547718025 10.728214876180
-2.013431726775 12.210156961630 -1.982230487286

which is quite different from the one obtained earlier. The least squares distances from
these two distinct limit points to A, nevertheless, are the same. We have experimented
with many other numerical examples. It seems true that when A is normal and has
complex eigenvalues, Problem A does not have a unique solution. Different least squares
approximations to A may result in different optimal values of F. Problem A, therefore,
has multiple local solutions.

At this point, it is worthwhile to look at Problem A from another aspect. The following
general perturbation problem 15 is of significant imlortance in many areas.

PROBLEM B. Suppose we know exactly the eigenvalues of the matrix A and that A
is perturbed to become A + B. How do the eigenvalues change?

Usually we are interested in finding bounds of the perturbed eigenvalues in terms
of the perturbing matrix B. In application it is not uncommon to have a situation in
which both the original matrix A and the perturbing matrix B are real and symmetric.
In this case, and in the more general situation in which both A and A + B are normal,
a comprehensive bound, known as the Wielandt-Hoffman theorem (see [9 ], [10, p.
368 ], and [15, p. 104 ]), is available on the perturbation to all the eigenvalues.

THEOREM 4.2. Let A, B Cn n. Assume that A and A + B are both normal. Let
t.l, In be the eigenvalues ofA in some given order, and let , be the eigen-
values ofA + B in some order. Then there exists a permutation a( i) of the integers 1,
2, ..., n such that

(51 ])ka(i) -/2i 12 nil 2,
i=1

In Problem A we have the situation that all the eigenvalues (the original ones and
the perturbed ones) are known and that we want to minimize the norm ofthe perturbing
matrix B.

What we have shown in Theorems 3.1 and 3.2 is that, in the real and symmetric
case, the minimum of IIBII is attained if A + B QrAQ where columns of Qr are
orthogonal eigenvectors ofA in a certain order. In this case, the equality in (51 holds.
In other words, we have shown that the bound in (51 for eigenvalues is sharp. This is
a reproof of the Wielandt-Hoffman theorem. We think our proof, being different from
both the original proof of[9 and the one given in [15 ], is of interest in its own fight.
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When the matrix A is real and normal, we can see immediately that the proof given
in 9 for Theorem 4.2 breaks down if the perturbed matrix A + B is restricted to be
only real and normal. Problem A, in which we try to minimize the fight-hand side of
the inequality (51 ), becomes an interesting but difficult question. In Lemma 4.1 we have
proved that if eigenvalues of A and A + B (both real and normal) are "compatible,"
then again the equality in (51 holds. Our numerical experiments seem to indicate,
however, thatgenerally the minimal B[I maybe farlargerthan anyrearrangement ofeigen-
values on the left-hand side of the inequality (51 if only real matrices are allowed in
the perturbation. Taking the 3 3 example to demonstrate our point, we calculate
]IX- All 2 , 496.2 in comparison with the eigenvalue variation

min i) til 2 461.
i=1

Case 6 (A is a general matrix). Given a quasi-diagonal matrix A as in (1), an
arbitrary matrix A R n, and letting X := QTAQ, we have established that necessary
conditions for Q O(n) to be a local minimizer for Problem A are

(52) XA T+XTA =AXT+A TX,

(53) ( IX, K], [a, K]) >_- 0 for every K S(n).
If the strict inequality holds in (53), then the above conditions are sufficient for Q
O(n) to be a strong local minimizer of Problem A.

Thus far, we are able to characterize an analytical solution of Problem A from (52)
and (53) for the following cases:

1. All eigenvalues of A are real, and A Rn n is arbitrary.
2. A has complex conjugate eigenvalues, and A e R n is symmetric.
3. A has complex conjugate eigenvalues, and A Rnn is normal but not symmetric.

(Indeed, only partial results are obtained for this case.)
For a general nonnormal matrix A, the analytic comprehension of solutions satisfying
both (52) and (53) becomes a much harder problem.

We have pointed out (Case 3 that when n 2, all orthogonal matrices Q O(2)
are stationary points and the corresponding X can only be either A or AT. From here,
we might be able to characterize some stationary points for higher-dimensional cases.
For example, suppose A is given by (40). Suppose A can be reduced by orthogonal
similarity to the matrix

(54) E’=diag e, e(k21 e(k22), ,en,

which is conformal with A except that e), < i, j < 2 are arbitrary real numbers. Then
we can show that (52) is satisfied. This, of course, is just one special type of stationary
points.

Recently, the Wielandt-Hoffman theorem has been generalized to nondefective
matrices 14 ], 16 ].

THEOREM 4.3. Let A, B C n. Suppose both A andA + B are nondefective, i.e.,
suppose there exist nonsingular matrices S and T such that

S-IAg- diag (Ul, Un }

T-’(A +B)T=diag { X,, ,kn).
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Then there exists a permutation r( i) ofintegers 1, 2, n such that

(55) IXi)-tti[z<=(K2(SIK2(TI)ZIIBI[ 2

i=1

where K2(S) := sii2/I 5-112 is the condition number ofS and I[" 112 means 2-norm.
In the context of our discussion, the matrix A + B is required to be a real and

normal matrix. In this case, clearly 2(T) 1. Suppose the given matrix A is nondefective;
then the inequality (55) becomes

(56) IX(i)-u12<=(z(a))ZllBII 2.
n=l

The inequality (56) suggests that when A is a general nonnormal matrix, the min-
imum value of x- A may be smaller than the so-called eigenvalue variation. That it
indeed is the case can be seen from the 2 2 matrix considered in Case 3--Suppose
a_ 0, a2 > 0, v > 0. Then it holds that

2

(57) min IX(i)-t.ti12=(a-X)Zw(az2-X)2+2v 2

i=1

while

(58) min IlQrAQ-A]12=(a-x)2+(a22-x)2+(a2-)2+u2.
Q O(2)

Obviously, the value in (58) is less than that in (57) if a2 < 2u. This observation is
interesting when compared with the Wielandt-Hoffman theorem for normal matrices.
In the latter case, the minimum value of X- A[[ is always bounded below by the
eigenvalue variation.

Although closed forms of solutions of(52) and (53) generally are difficult to obtain,
our approach offers an alternative way to solve Problem A. We note that the differential
equation (16), derived from the projected gradient of the objective function F, is nu-
merically traceable for an arbitrary matrix A. Thus, by following trajectories of (16), we
may locate stationary solutions ofthe least squares problem numerically. Different starting
points may lead to different stationary points. The asymptotic rate of convergence is
expected to be similar to that of the usual steepest descent method. But the flow, by its
definition, is guaranteed to converge regardless of the location of the starting point. Our
numerical experience is that the flow usually reaches a stable equilibrium point within
a reasonable interval of integration.
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DIVIDE-AND-CONQUER SOLUTIONS OF LEAST-SQUARES PROBLEMS
FOR MATRICES WITH DISPLACEMENT STRUCTURE*

J. CHUNk" AND T. KAILATH

Abstract. A divide-and-conquer implementation of a generalized Schur algorithm enables (exact and)
least-squares solutions of various block-Toeplitz or Toeplitz-block systems of equations with O(a3n log
operations to be obtained, where the displacement rank a is a small constant (typically between two to four for
scalar near-Toeplitz matrices) independent of the size of the matrices.

Key words, divide-and-conquer, least squares, displacement structure, fast convolution, Toeplitz, Schur
complements, generalized Schur algorithm
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1. Introduction. In recent years, there has been considerable research on fast al-
gorithms for the solution of linear systems of equations with Toeplitz matrices. The
Levinson and Schur algorithms allow solutions with O(n2) floating point operations
(flops) for systems with n n Toeplitz matrices.

In 980 Brent, Gustavson, and Yun 5 described a scheme for obtaining a solution
with O(n log2 n) flops. This was based on two ideasmthe use ofthe Gohberg-Semencul
formula ], 13 ], 17 ], 26 for the inverse of a Toeplitz matrix, and the use ofdivide-
and-conquer (or doubling) techniques for computing (generators of) the Gohberg-
Semencul formula.

Let x and y denote the first and last columns of T-1 Rnn. Then if the
first component of x, say x, is nonzero, Gohberg and Semencul 13 showed that we
could write

T-1 =l[L(x)Lr(]ny)-L(Zny)Lr(Zn[nX)], xl 4:0,
Xl

where In is the reverse-identity matrix, Zn is the shift matrix,

1 0
/ 1 0I"= 1 Z-- 1.

1 1 0

and L(v) is a lower-triangular Toeplitz matrix with first column v. The significance of
the Gohberg-Semencul formula in the present application is that the product ofa vector
and a lower- or upper-triangular Toeplitz matrix is equivalent to the convolution oftwo
vectors, which can be done using O(n log n) flops (see, e.g., [4]).

Brent, Gustavson, and Yun used a divide-and-conquer scheme for a certain Euclidean
algorithm to factorize row-permuted Toeplitz matrices (i.e., Hankel matrices), and to
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obtain the vectors { x, y } of the Gohberg-Semencul formula with O(n log2 n) flops.
Later Bitmead and Anderson [3] and Morf [21] used another approach based on the
displacement-rank properties of matrix Schur complements, to obtain similar results;
while this approach allows for generalization to non-Toeplitz matrices, the hidden coef-
ficient in their proposed O(n log2 n) constructions turned out to be extremely large (see
Sexton, Shensa, and Speiser 25 ). Later Musicus 22 ], de Hoog 11 ], Ammar and Gragg
2 used a more direct approach based on a combination of the Schur and Levinson
algorithms to obtain better coefficients; in particular, Ammar and Gragg made a detailed
study and claimed an operation count of 8n log2 n flops. With this count, the new (called
superfast in 2 method for solving (exactly determined) Toeplitz systems is faster than
the one based on the Levinson algorithm whenever n > 256. We should mention here
that Schur-algorithm-based methods are natural in the context of transmission-line and
layered-earth models, so it is not a surprise that similar techniques were also conceived
in those fields (see Choate [7], McClary [20], Bruckstein and Kailath [6 ]). A good
source for background on the Levinson and Schur algorithms, transmission line models,
displacement representations as mentioned and used in the present paper may be 14 ].

The method we have taken in this paper is in the spirit of the generalized Schur
algorithm (see, e.g., [8], [9]). Our algorithm can be applied to non-Toeplitz matrices,
and is simpler than the methods ofBitmead and Anderson [3] or Morf[21 ]. Furthermore,
we can readily handle matrices such as (TTT) -1 and (TTT)-T, where T may be a
near-Toeplitz matrix or a rectangular block-Toeplitz matrix, or a Toeplitz-block matrix;
in particular, therefore, we can also obtain the least-squares solutions of overdetermined
Toeplitz and near-Toeplitz systems with O(n log2 n) flops. Our algorithm is closely related
to the algorithm ofMusicus 22 ]. However, our presentation is conceptually much simpler
(especially for the non-Toeplitz cases treated in 22 ]) than previous approaches; in par-
ticular, we do not use the relationship between the Schur algorithm and Levinson al-
gorithms needed in 2 ], 11 ], and 22 ].

An outline of our approach is the following. For a matrix E,

[El1 EI,]E2,2
El,1, nonsingular,(1) E= E21

the Schur complement ofE, in E is

S E2,2 E2,1E -, El,2.
Note that matrices such as

(2) S= T-, S2=-(TrT)-, S3=-(TTT)-T
can be identified as the Schur complements of the northwest blocks in the following
extended matrices"

(3) E
_i

E2 -I 0
E3 -I

Now the matrices E in 3 have the following (generalized) displacement representation,
for suitably chosen matrixes { Ff, F }"

E= , K(xi,Ff)KT(yi,F),
i=1

Fwhere K(xi, Ff) and K(yi, are lower triangular matrices whose j columns are
(Ff)- )x and (Fb)(j- )Yi, respectively. The smallest possible number c is called the
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displacement rank of E with respect to { Ff, Fb}. For an example, let T be an m n
scalar Toeplitz matrix, with m >- n. Then the matrix E2 has displacement rank four with
respect to { F, F} where F [" oz,], and has a displacement representation [15],

(4a) E2 . K(yi,F)KT(xi,F)

_
K(yi,F)KT(xi,F) yi xi.

i=1 i=3 O -I

If we define x jr w f, v f], note that the matrix K(xi, F) in (4a) has the form

I L(wi) ]ER2n2n OERnn(4b)
L(v/)

where L(wi) and L(vi) are lower triangular Toeplitz matrices with first columns wi
and vi.

Given a displacement representation of E, we use a certain generalized Schur al-
gorithm (see 2) to successively compute displacement representations of the Schur
complements of all the leading principal submatrices in E. For the above example, n
steps of the generalized Schur algorithm will yield

2 40 _, K(ui,F)KT(ui,F)_ K(ui,F)KT(ui,F),(TTT) -1
i=1 i=3

where the top n elements of ui are zero. Therefore, if we denote the bottom n elements
of ui as u2,i, we can have the displacement representation

2 4

(TZ’T) -1 L(u2,i)L T(II2,i)- Z L(u2,i)L T(Ii2,i).
i=1 i=3

Now, the generalized Schur algorithm, which is a two-term polynomial recursion,
can be implemented in a divide-and-conquer fashion with O(a3f(n) log n) flops, where
f(n) denotes the number of operations for the multiplication oftwo polynomials. There-
fore, if the multiplication of two polynomials is done again by divide-and-conquer, i.e.,
by using fast convolution algorithms, then the overall computation requires O(c3n log2 n)
flops. Once we have a displacement representation of the desired Schur complement S,
the matrix-vector multiplication, Sb, can be done with O(cn log n) flops using fast con-
volutions. As an example, we can obtain the least squares solution for the Toeplitz system

Tx b, TERmn, m >= n
as follows:

(i) Form TTb using two fast convolutions,
(ii) Obtain a displacement representation of(TTT)- using the divide-and-conquer

version of the generalized Schur algorithm,
(iii) Form TTT)- (TTb) using eight fast convolutions.

If we had obtained the displacement representation of (TTT)-T7 directly (using E3),
then step (i) above would not be needed.

2. Generalized Schur algorithm. After a brief review of basic concepts and defini-
tions, we shall describe the generalized Schur algorithm of references 8 ], 9 ], and 15 ],
but in a polynomial form important for the divide-and-conquer implementations. We
shall need to recall some definitions and basic properties.
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Generators of matrices. Let Ffand Fb be nilpotent matrices. The matrix

V(Ff,Fb)A A FfAFbT

is called the displacement of A with respect to the displacement operators { Ff, Fb}.
Define the (Ff, Fb)-displacement rank of A as rank [V(Ff,vb)A]. Any matrix pair
{ X, Y } such that

(5) V(FT,Fb)A =XYr, X[X1,X2, ,X,], Y[Yl,Y2, ,Y]

is called a (vectorform) generator ofA with respect to { Ff Fb}. The generator will be
said to have length a. If the length a is equal to the displacement rank ofA, we say that
the generator is minimal. A generator such as Y X2, where is a diagonal matrix
with or -1 along the diagonal, is called a symmetric generator.

The following lemma [15], [16] establishes the connection between generators and
displacement representations.

LEMMA. Let E be an m n matrix. IfFf and Fb are nilpotent, then the equation

(Ff,Fb)E . xiyf has the unique solution E K(xi, Ff )KT(yi, Fb), where
K(xi, Ff) [xi, Ff xi, Ff(n- 1)xi] and g(yi, Fb) [yi, Fbyi, Fb(n- 1)yi].

Choice of displacement operators. The generalized Schur algorithm operates with
generators, and needs O(amn) flops for sequential implementation and O(o3r/log2 n)
for divide-and-conquer implementation. Therefore, for a given matrix A, we should try
to choose the displacement operators that give the smallest a. If the matrix A is an n
n Toeplitz matrix, the appropriate displacement operator F is Z, an n n shift matrix.
IfA has some near-Toeplitz structure, then F would have forms such as

F=Zn@Zm, F=+ Z,,,, F=Z,
i=1

where (R) denotes the direct sum Z @ Z )n 0
_

Zm], and @ denotes the concatenated
direct sum.

Example 1. Let T (ti_j) be an m n pre- and post-windowed scalar Toeplitz
matrix, i.e., ti,j 0 ifj > or > m n + j with m >= n. Then it is easy to check that
the matrix C (ci_ ) TrT is also an (unwindowed) Toeplitz matrix, and with respect
to {Zn () Zn, Zn @ Zm }, E3 in (3) has a generator { X, Y } of length two, where

X [Co,Cl ,Cn- 1,--1,0, ,oIT/c)/2,

X2 [0,1, ,n-l,--1, 0, ,o]T//2,

Yl=[C0,Cl, ,Cn-l,tO, tl, tm-n,O, ,o]T/c/2,

r2-- --[0, Cl, ,Cn-1,/0,tl, tm-n,O, ,o]T/c/2.

Example 2. If T is a Toeplitz-block matrix, i.e.,

T, T,2" T,N
(6) T T21 T22 T2 U ERmxn

TM,1 TM,2 TM,N
Tid scalar mi t’tj Toeplitz matrix,
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then for the matrices E in (3), we choose 9 ], 15 the following displacement operators:

(7a) El’ff=[ zmii=1

() El fb=[DZni] (fl’i=1
m=n,

(7c) E3’ff=[)Zni] fb=[)Zni]([i=1Zmi]
where Fl can be either Zn or iN= Zn. However, for the divide-and-conquer implemen-
tation, we prefer to choose (R)/N= Z,; see the remark in 4.

Example 3. On the other hand, if the matrix T in (3) is a block-Toeplitz matrix
with/3 /3 blocks,

Bo B_ B-N+I
(8) T= B Bo B-N+9_ ERmn, BkERt, m--M, n=-N3,

BM- BM__ B-N+M
then for the extended matrices E, we should choose 8 ], 9 the displacemerit operators

(9) FT=z(R)z, Fb=ZZm,
where for E we assumed that T is a square n n matrix.

Generators ofthe above and other extended block-Toeplitz or Toeplitz-block matrices
can be found in [8].

Polynomial form of generators. In general, the displacement operators Ff and Fb

for both extended block-Toeplitz matrices and extended Toeplitz-block matrices have
the form

N N

(10) F= ( Z, n-- ni.
i=1 i=1

We shall say that the displacement operator F in (10) has N sections. One of the key
operations in generalized Schur algorithms is matrix-vector multiplication Fv, i.e., a
sectioned shift operation. With the polynomial representation of vectors, the shift oper-
ations has a nice algebraic expression. For a given vector v, let v(z) denote the polynomial
whose coefficient for the term z is the (i + )st component of the vector, i.e.,

Zn-I(11) ’-[/)0,1)1,1)2, ,’I)n-1]T--’V(Z)’-VoAr’VlZ-{"I)2ZzAr" l)n

Then,

Z,vv’ [0, Vo, v, v,,_2]rv(z)z mod z".

In general, for the matrix whose displacement operator is the F in (10), let us define
integers { 6i } by

6= n, 6 <2 <-,. <6N,
k=l

Let v(z) and 0(z) be polynomials of degree less than or equal to n 1, and define the
degree at most (ni polynomial, v;(z), by

(12a) v(z)=v(z)+ z’v2(z)+ z2v3(z)+ + zU-tVnu(Z).
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Given two polynomials v(z) and 0(z), and the displacement operator F in (10), the
(polynomialform) displacement operator (R)F is defined by the following operation:

(12b)

where

(12c)

v(Z)rO(z)=--r(z)=--r(z)+ z’rz(z)+ z2r3(z)+ + zU-’rnu(Z),

ri( z) l)i( z)O( zfl mod Zni,

i.e., ri(z) is the polynomial vi(z)O(z) after chopping offthe higher degree terms, so that
ri(z) has the degree at most (ni- ).

Let

X-- [Xl,X2, ,xa] Y- [Yl,y2,

be a generator of a matrix A with respect to certain { Ff, Fb ), and let

Xi- Xi( Z y -- yi( w

Then we call the pair of polynomial vectors {X(z), Y(w)}, where

X(z)--[x(z),x_(z), ,x(z)], (w)=-[y,(w),y(w), ,y(w)],

a (polynomial form) generator ofA, with respect to (polynomial form) displacement
operator { (R)FS, (R)Fe }.

Example (continued). The matrix E3 in 3 has a generator {X(z), Y(w) } with
respect to { (R)FS, (R)Fe }, where Ff Zn 6) Zn, F6 Zn 6) Zm, and

XI(Z): [Co 47 CIZ 47 47 Cn_ zn- zn]c-l/2,

X2(Z) [ClZ + CZ2 47 -Jr- Cn- 1Z zn]c-l/2

wn-1 +1yI(W)=[CoWClWW +Cn +tOWnWtW 47"’’ 47tm-nWm]CI/2

Y2(w) C w-I- AI- C -1 wn Af_ town + wn + .Al_ ....At_ Wm - 2

Also note that

Zn- Zn+ 1/2Xl Z)(FfZ CoZ 47 ClZ2 47 47 Cn- 2 ]C-

Yl( W)()FbW

Wn-1 + Wn+2 Wm+l /2.[COW+ CI W2 47 47 Cn_ 2 47 town 47 tl 47 47 tm-n ]C [S]

Next we note that for given vectors a and b such that a rb 4: 0, we can always find
[8] matrices 0 and q such that

(13) arO= [a’,0,0, ,01, br= [b’,0,0, ,01, O-qr=I,

and therefore, a rl0 a’ b’l. We define polynomial matrices 0(z) and q(w) by

Z W

(14) 0(z)----- 0 q(w)-- q

We also remark that if a b, then we could choose q(w)= 0(w), and if b
where 2; Ip(R) Iq, then q(w) O(w)X, so that we only need to find, and post-
multiply by, 0(z).
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Generalized Schur algorithm. Let a matrix E have a generator { X0(z), Y0(w) } with
respect to { (R)e, (R) }, and define Ei, j by

E= [ E E ’2 ] R
E2,:z -

where E, is a k k strongly nonsingular matrix, i.e., the one with all nonsingular leading
submatrices. The k-step generalized Schur algorithm [8 ], [9], [15] presented below in
polynomial form gives a generator of the matrix

[00] SE22_E21El_,E12GR(m_k)(n_k)
0 S .....

with respect to {(R)Fe, (R)re}, or equivalently, a generator of S with respect to
{ (R)pc, (R), }, where fff and fib denote the trailing square submatrices of size (rn k)
and (n k) ofFfand Fb, respectively.

ALGORITHM (k-step generalized Schur algorithm).
lnput" Generator of E, { X0(z), Y0(w) } displacement operator { (R)re, (F }

Number of steps k.
Output" Generator of S { X(z), Y(w) }
Procedure GeneralizedSchur

begin
fori’=Otok- Idobegin

a T.-- [z-ixi(z)]z=O.
bT-= [z-iyi(z)]z:O;
Find 0i(z) and i(w) to transform a v and b r such as 13 );
Si+l(Z)-- Xi(z)()Ff)i(z); Yi+ l(W) Yi(w)()Fi(W)

end
return {X( z), Y( w) }

end

Remark. The polynomial vectors, Xi(z) and Yi(w), have degrees m and
n 1, respectively, for all i. Each step eliminates the nonzero lowest degree term, and
therefore the terms of Xi(z) and Yi(w) whose degrees are less than z and w are zeros.

By applying the generalized Schur algorithm we can obtain generators, or equivalently
displacement representations, for various interesting Schur complements.

3. Divide-and-conquer implementation. The (sequential) k-step generalized Schur
algorithm in 2 can also be implemented efficiently using the divide-and-conquer ap-
proach. We shall only explain how to find X(z); essentially the same argument applies
for Y(w).

Let us define 0p:u(z) and Xp:q(Z) by

Op:q(Z)Op(Z)Op+ I(Z) Oq(Z),

Xp:q(Z)Xo:o(Z)(FfO0:p_ I(Z), Xo:q(Z)--Xo(z mod z+ ’,
where 0 =< p =< q. The polynomial matrix Op:q(Z) has a degree q p + 1. The polynomial
vector Xp:u(z) has degree q, and is obtained by dropping from Xp(z) all terms of degree
higher than zu. Also note the useful properties,

[X( Z)(FOI Z) ](FO2( z) X( Z)(F[ OI Z)O2( z) ],

[Xl(Z) - X2(Z)](FO(Z) [Xl(Z)()F0( Z)] qt_ IX2( Z)()FO( Z)].



DIVIDE-AND-CONQUER LEAST SQUARES SOLUTIONS 135

These properties and the fact that Op:q(Z) is completely determined by Xp:q(Z) allow a
divide-and-conquer implementation of the generalized Schur algorithm.

Given Xp:q(Z), we can compute Op:q(Z) as follows. Ifp q, then we are successful,
and compute Op:p(z) Op(z). Otherwise, we choose an "appropriate" (see 4) division
point r such that p < r < q, and try to solve the smaller subproblem of finding Op:r- I(Z),
given Xp:r- (z). Once we know Op..r- l(Z), we can compute X.q(Z) by

(15a) Xr:q( z) S0:q( Z)(FfO0: 1(Z) [S0:q( Z)()FfO0:p 1(Z) ](FfOp: 1(Z)

Xp:q( Z)@Ff@)p: (Z).

Now we again try to find Or:q(Z) given Sr:q(Z). After we obtain l)r:q(Z), we can combine
the two results, Op:r-l(z) and Or:q(Z), by multiplication,

(16) )p:q( Z) l)p:r Z)@)r:q( Z).

Programming details of the above recursive generalized Schur algorithm are shown in
the Appendix.

The previous recursive description can be visualized nonrecursively using trees
(See Figs. and 2). Each node in the tree is annotated with the rules: "find," "apply,"
and "combine,"

fp:p" Find Op:p( z),

ap:q" Xr:q( Z) Xp:q( Z)()F@)p: 1(Z),

Cp:q" Op:q(Z)"-- @)p:r Z)@)r:q(

We traverse the tree in post-order (i.e., follow the order labeled on each node ofthe tree),
and evaluate the rules.

4 ce.

f0:0 a&l f1:1

C0:3

lo

CO:7
22

5 11

ao:3 a&7

6’2:39

6 7
f2:2 a2:3 f3:3

12-21

FIG. 1. Sequence ofcomputationsfor Example 4.
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C0:9

C4

ao:9 14

4 CI

f.o al fl:l

ao:4 !5 c3:4 11

f22
f3:3 a3:4

f4:4
0

9

FIG. 2. Sequence ofcomputationsfor Example 5.

Now, we shall consider two examples in detail.
Example 4. Pseudoinverse of pre- and post-windowed Toeplitz matrices. Consider

the matrix E3 in Example 1, where

16 8 4 3 2 -1 0 0 0
8 16 8 4 Tr= 0 3 2 -1 0 0TrT
4 8 16 8 0 0 3 2 -1 0

4 8 16 0 0 0 3 2 -1

We would like to find a displacement representation of (TTT)-1Tr. This can be done
by the four-step recursive generalized Schur algorithm. The input to the algorithm is a
generator { Xo(Z), Yo(w) } of

with respect to { (R)f, (R)F }, where Ff= Z, (R) Z,, Fb Zn () Zm. The output
{X4(z), Y4(w)} is a generator of(TTT)-TTwith respect to {(R)z,, (R)Zm}" The com-
putational sequence is illustrated in Fig. 1, where it is assumed that the division points
were chosen successively by two, one, and three.

[1]

[2]

[31

[41

J:’O(z)[" -10][z because Xo.o(Z)[4,0]..

ao: Xl:l Z) Xo:I Z)(R)F,OO:O( Z) [4 + 2Z, 2Z]O)F,OO:O( Z) [4Z,--2Z].

.]q:l" 1}1:1 (Z) "" 7a2 z z/ 2 ]CO:I’O0:I(Z)=OO:O(Z)OI:I(Z)=
.) --Z/2
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2
ao:3" X2:3 (z) Xo:3 (z)F/00:1 (Z) S-_" 3Z2 + 3Z3 / 2, --Z / 4 ].

V3

[6] J:2"02:2(Z)=
0 --1

[7]

2
because X2.2(z) _-_--. 3Z2, 01.

V3

2
a2:3" X3:3(z) X2:3(z) @F/02:2 (Z) --_" 3Z3, Z / 4 ].

V3

[8] J:3"03:3(Z)-- fi-" --2 --1

9 c2:3" 02:3 (Z) 02:2 (Z) 03:3 (Z)

[10]

[11]

24 [ z4-z2/24 z3/12-z/12]CO O0 Z IO Z O2 Z ]/-r- Z /12 -t- Z/12 --Z2/24 --ao:7" S4:7(z) [4 + 2z+ z2 + z3/4-za/4,2z+ z2 + 23/4--Z4/4]()FfO0:3(2)

[(4nt-2a-t-z2-t-z3/4,2z-t-z2--t-Z3/4)--Z4(1/4,1/4)](FfOO:3(Z)

----Z4[(1/4,1/4)00:3(Z) mod z4l
6z4

.r:-_. .r.=-_ [z/12-- zZ/24-- z3/2, z/2-- z2/24 + z3/12].
V3V143

Because TrT is symmetric, I/0:3(W) 00:3(W), where Z @ 1, and therefore,

Y4:13(W) [(4+2zWz2+z3/4)+z4(3/4+z/2+z2/4--z4/4),

(2z + z2 + z3/4) + Z4( 3/4 + z/2 + z2/4 -t- Z3/4 Z4/4)]()FbO0:3( W)

246
f-- 1/4z+ z2/24 3z3/2 + 49z4/24 + lz5/8 + 13z6/24 + 3z7/2,

--3--z/2+z2/8--2z3/3+ lz4/8 13/24zS--z6/8--z7/12].

Therefore,

(TTT) -l Tr= "y 2 [L(x1 )L T(yl + L(x2)L T(y2) ],
6

where L(xi) and L(yi) are the lower triangular Toeplitz matrices whose first columns
are xi and yi, respectively, and

x,

x:
yl [0,,2, ,4924, 1 13 ] T

,24,

11 211 13 1_121Tr2 [--3, 2, 8, 3, 8, 24
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Remark 1. For a symmetric generator oflength two with/3 1, the 2 2 polynomial
matrix 0(z) in (14) can have the form (hyperbolic reflection)

chiz shi ] ch-sh 1.0i(z)=
-shiz -hi

Let

)p:q( Z) I)p( Z)I)p + Z) )q( Z) [)12,1 (Z),1(Z)

Then, by induction, we can easily prove that

Zq-p+ III,I(Z-1)--(-- 1)q-p+102,2(Z), Z
q-p+ lo1,2(Z-1) (-- )q-P+

Therefore, we need to compute and store only two entries of lp:q(
Remark 2. For an unwindowed scalar Toeplitz matrix, the matrix E2 in (3) has

displacement rank four, whereas the matrix E3 has displacement rank five. Therefore,
when we solve Toeplitz least squares problems, it is more efficient to find a displacement
representation of (TrT) -1 rather than of (TrT)-lT. With the notation in (4), the
matrix E2 for an unwindowed scalar Toeplitz matrix T (ti_ j) R (m >= r/) has a
generator 15 ],

T
WI TTtl / ]]tl 1[, w2 t2, W3 ZnZ *W1, W4 Znl,

t =-[to,t, ,tm- ]T, t2----- [0, t-l, ,tl-n] T, l=--[tm-1, ,tm-n] T,

1 v3- el/Iltlll, 2=4 --0,

where II" denotes the Euclidean norm, and el is the vector with one in the first position,
and zeros elsewhere.

Example 5. Displacement representation for the inverse of a Sylvester matrix. Let
T denote the following Sylvester matrix,

2 0 0 0
2 0 2

(17) T-- 3 2 2
0 3
0 0 3 0

and suppose that it is desired to obtain a displacement representation of T-1. Then the
appropriate extended matrix is

(18) El= --I O

and it is easy to see that the following { Xo(z), Yo(w) } is a generator of E1 with respect
to { (R)FZ, (R)Fb }, where Ff= Z5 @ Zs, F6 Z3 ( Z2 q) Zs;

(19a)

(19b)

XO(Z)-[Xl(Z),X2(Z),X3(Z)], Yo(W)[yl(W),y2(w),y3(w)],

xl(z)=2+z+3z2-z5, x2(z) -[-2z+zZ-kz3--Z8, X3(Z) 1,

Yl(W) 1, Y2(W) W3, Y3(W) W5.
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Now the five-step recursive generalized Schur algorithm gives a desired generator of T-1,
with respect to {Zs, Z5 }, and a possible computational sequence is shown in Fig. 2,
where the division points are chosen successively as two, one, three, and four.

[1]

[21

Jg:o’Oo:o(Z)= 0 0 qo:o(W)= w/2 0
0 0 w/2 0

ao:’X. (z) 2z, 3z/2, -z/2 ], Y:(w)=[w,O,O].

[31

[41

[61

[7]

[8]

[9]

[lO]

jq.’O.(z)= 0 0 q:(w)= 3w/4 0
0 0 -w/4 0

Z2 --3Z/4-- 1/2 Z/4-- 1/2"]
C0:’O0:(Z)= 0 0 J0 0

W2 0
o:(W) W2/2+3W/4 0

W2/2--W/4 0

ao:4"S2:4(z) [2z2 q- z -I-- 3z4, -5z2/4 5z3/4,-5z2/4 q- 3z3/4],

Y2:4 (w) YO:4(W)()Fb’ffO:I(W

[( 1,0, O)qo:(w) mod w3]+ w3[(O, w,O)o: (w) mod W2

[W2+3wa/4, W3,0].

:’O:(z)= 0 0 :(w) -5w/8 0
0 0 -5w/8 0

a2:4"X3:4(Z)-- [2z --1- Z4,--5Z3/8 -[- 15Z4/8, 11Z3/8 -k- 15Z4/8],

Y3:4(w) Y2:4( W)()Fb ’It2:2 (W)

[(W2, O, 0)’I/2:2(W) mod w3]+ w3[(3w/4, 1, 0)2:2( w) mod w2]

[--5W4/8, W3, 0].

0 0]J:3 03:3 (Z) Z
16 11

0 0

a3:4"X4:4(z) [-5z4/8, 7z4, 6z4],

-16w/5 O]It3:3 (W) W 0 0
-llw/5 0

Y4:4( W) W4,--5W4/8, 0].

z/(2V)_
C4:4" 04:4 (Z) --5Z/(16V2)

0

w(2V)
’It4:4 (W) -28w_/ 5W)

-12V2w/5

28/(5_V)
1/(2V2)

0

5/(16_)
1/(2V21

0
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Operations 11 ]-[ 13] are obvious. After evaluating, C3:4, C2:4, and C0:4, we obtain
00:4(z) and 0:4(w), and finally,

[14] ao:9"So:9(z)- [Xl(Z),X2(Z),X3(Z)]()FfOO:4(Z)

Z5 (--1, --Z3, 0 )()FfOO:4( Z)

Z5 [(-- 1,--Z3,0)O0:4(Z) mod z5]
where

where

Therefore,

u, (z) -z/(2f)-z/(2) +zlV+ z4/llr,
uz(z)=41(5f)-4z/f + 16z/(5f)-28z31(5V)-28z4/(5]lr),
u3(z) 2/5 + z/5 + 2z2/5 + z3/5 -6z4/5.

Yo..9 (w) [y(w),y.(w),y3(w)](R)FoO..4(w)

W5[(0, 0, )@FbxtO:4(w)] W511)1(W), I)2(W), 1)3(W)],

T-1 L(ul )L

where ui and vi are the vectors whose jth component is the coefficient of z
of Ui(Z) and 1)i(W), respectively.

Remark 3. If we had chosen the displacement operator Ff Z5 Z3 Z2, Fb

Z3 (R) Z2 (R) Z5 for the matrix T in 17 we would have the same generator (19) for El,
but the obtained generator of T- would be the one with respect to Z3 (R) Z2, Z } rather
than with respect to {Zs, Z5 }. The displacement ranks of T- with respect to both
displacement operators are two, but the above procedure gives nonminimal generators
of length three.

Remark 4. The following extended matrix:

IT b] T=Sylvestermatrix(20)
-I 0’

also has a displacement rank ofthree. We could as well obtain the solution T-b directly
by applying the recursive generalized Schur algorithm to (20); the last column of X,
where { X, y is the computed generator of T-b with respect to {Z, }, can be shown
to be the solution T-lb.

4. Polynomial products with fast convolutions. The product oftwo polynomials of
degree d and d_ can be performed efficiently using d-- d + d2 + point fast cyclic
convolution algorithms [4 ]. A d-point fast cyclic convolution needs O(d log d) flops.
Among others, Fast Fourier Transforms (FFTs) can be used for convolutions, and Ammar
and Gragg [2] carefully examined the use of FFTs for a doubling algorithm for square
Toeplitz systems ofequations. We shall only consider the subtle complications that arise
in the recursive generalized Schur algorithm in this paper.
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The polynomial matrix-matrix product of (16) needs 0/3 of q p point cyclic con-
volutions. The polynomial vector-matrix product of (15b) has c 2 of scalar polynomial
products of the form, X(Z)(R)FSO(z), where x(z) is a polynomial with nonzero terms of
z’, zp + , zq. Let us assume that

0<1 < "lP<1+1 < <rs=<r<rs+ < <t<-q<t+l < <N.

Then

(21a)

(21b)

(22a)

(22b)

(22c)

X’(Z)=--X(Z)(R)FO(z)

[ZrtXl+ l(Z)-[- zrl+ lXl+ 2(Z)qt- -t- ZrSXs+ l(Z)

"- + zrtxt + 1(Z) ](FfO(Z)

[zrlxI+ I(Z)-[- --1-- Zbs-lXs(Z)I(FfO(z)

+ z[Xs+ (z)O(z) mod z"/ ]

+ z+ ’[Xs+ 2(z)O(z) mod Zns+ 2]

(22d) + zt[xt+ (z)O(z) mod

The terms in (22a) do not need to be computed because these terms will be summed to
zeros after adding all the partial sums in the vector-matrix multiplication of(15b). Recall
that xi(z) has degree r/i, and 0( z) has degree/3 (q-P+ 1). Therefore, the product xi( z)0( z)
from (22b) to (22d) can be performed by

2ni+ point cyclic convolutions ifdegree [0(ze)]>=degree [xi(z)],

ni +/3 q p + ) + point cyclic convolutions if degree 0(z) < degree xi(z) ].

Remark 5. Note that two d2 point convolutions take cd log (d/2) flops if one d
point convolution takes cd log d flops. Therefore, the polynomial product (21 is more
efficient for the displacement operator Ffwith more sections, because such displacement
operators break a long convolution into many smaller convolutions. Therefore, for a
given matrix we prefer to choose a displacement operator with as many sections as
possible, while keeping the displacement rank minimal. Also we remark that the first
and last terms (22b) and (22d) need smaller point convolutions.

If the dimensions of the matrix are powers of two, then we can always choose the
center division point r [(p + q)/2]. This balanced division (or doubling) gives the
least number of computations, in general. For this case, let rt -= p q, and T(r/) denote
the number of computations for one recursion. Then

T(rl)<=2T(rl/2)+ W(n), W(rt)=-O(a3rl log n),

and therefore, we can show that the k-step recursion takes

T( k) <-_ O( ot3k log2

However, in most cases the doubling is not possible, and for such circumstances,
the desirable choice of r is such that r p and q r + are highly composite numbers
(so that fast convolution algorithms can be applied efficiently), as well as r is close to
(q p) /2 (so as to achieve balancing).
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Matrix-vector products using displacement representation. The final step offinding
solutions for linear equations is the matrix-vector multiplication Sb, given a displacement
representation of S R .,
(23) S _, K(xi, Ff )KT(yi, ),

i=1

where the length a is a multiple of the block size B, a =//, say, and
M N M N

Ff= ( Z i, fb= ( Z ni m= , mi, n

_
tli.

i=1 i=1 i=1 i=1

The expression in (23) can be rewritten in the block displacementform

(24) S K#(Xi,FI)K(Yi,Fb), XiRm#, YR"e

i=1

where

(25a) K,( Xi, Ff Xi, FfXi, Ff 2Xi, Ff[(m/t)- 1] Xi] Rm n,

(25b) K( Yi,F’) [Yi,Fbyi,Fb2yi, ,Fbt(n/E)- 1]yi]Rnn.

Furthermore, because Ff and Fb have M and N sections, respectively, (25a) and (25b)
have the forms

where K,(X, Z e) is the block lower triangular Toeplitz matrix with the first column
block X. The matrix O denotes a null matrix of appropriate size such that K,(Xi, Ff)
and K,( Yi, Fb) are rn n and n n matrices, respectively.

To see how to use convolutions for the product

K( Xi,F)K(Y,Fa)b
it is enough to consider matrix-vector multiplications of the form Ke(X, Z e)b. Note
that K( X, Z)b can be expressed as sum of/ products ofscalar lower triangular Toeplitz
matrix and vectors. As an example,

(26)

ao Co
al Cl
a2 (?2

a3 C3
ao Co
al cl

b0
b
b2
b3

ao bo Co bl
al ao 0 cl Co 0
a2 a ao b2 +

c2 cl Co b3
a3 a2 al ao 0 c3 c2 c1 Co 0

The multiplications in the fight sides of (26) can be done by fast convolutions, and
therefore, so can the multiplication Sb.

5. Concluding remarks. We have presented O(a3n log2 n) algorithms for the de-
termination of exact and least squares solutions of linear systems with matrices having
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(generalized) displacement rank a. Such algorithms for exact solutions have been studied
by several authors, most recently by Ammar and Gragg 2 for Toeplitz systems. They
also made a very close study of the implementation of the convolution operation in an
attempt to obtain the smallest coefficient. Although we have not attempted so close an
operation count for the more general algorithm in our paper, the hidden constant in the
operation counts for solving Toeplitz least squares problems is quite high because a

4 for the matrices E2 or E3 (see (3)) with a full rectangular T. Also we conjecture that
our algorithm suffers numerical stability problem when EI, in has a leading principal
submatrix that is close to singular; nevertheless we might hope that numerical refinements
devised for the Schur algorithm (see, e.g., Koltracht and Lancaster 18 may be carried
over to the divide-and-conquer framework as well.

We also mention that the fast algorithms for Hankel and close-to-Hankel ma-
trices in [10] can be implemented with divide-and-conquer fashion using the spirit in
this paper.

Appendix. We shall summarize the explanation in 3 using a Pascal-like recursive
procedure. First, note that the polynomial 0p:q(Z) (and qp:q(Z)) has q p + 2 terms.
The first column of 0p:q(Z) has terms ranging from degree z to zq-p+ and the other
columns have terms from to zq-p. Hence, by shifting the first column by one position,
we can store Op:q(Z) and p:q(Z) in the array "Poly" from p to q slots inclusive:

Poly: array 1..a, 1..a, 0..MAX-1 of record
0: coefficients;
if: coefficients

end;

The computation of 0p:q(Z) is sequential, i.e., once we compute 0p:q(Z), we do not need
to keep Op:r-I(Z), and therefore, the array "Poly" can be kept as a single global variable.

The polynomial vector Xp:q(Z) has q p + terms, and therefore, can be stored in
an array type GENERATORS:

type
GENERATORS array [1..a, 0..MAX-1 of record

x" coefficient;
y: coefficient

end

However, Xp:q(Z) cannot be kept as a global variable, and local copies should be maintained
until we compute X.q(z).

Now we can describe the recursive generalized Schur algorithm as follows.

ALGORITHM (recursive k-step generalized Schur algorithm).
Input: Generator of E, { X0(z), Y0(w) } displacement operator { (R)F, (R)Fe }

Number of steps, k.
Output: Generator of S, { Xk(z), Yk(w) }
procedure RecursiveSchur

var
G, LowerG: GENERATORS;

begin
Find(0, k-l, G);
Apply(0, k, n, G, LowerG);
return(LowerG)

end
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The procedure Find (p, q, G) computes Op:q(Z), and p:q(W) given { Xp:q(Z), Yp:q(w) },
and the procedure Apply (p, r, q, G, LowerG) returns LowerG { Xr:q(Z), Yr:q(W)
given G { X,:q(Z), Yp:q(w) }
procedure Find(p, q: index; G: GENERATORS);

vat

r: index;
G, LowerG: GENERATORS;

begin
if p q then begin

Compute Op:q( Z) and qp:q( W);
return

end
r := appropriate integer close to [(p+q)/2];
Find(p. r- 1, G);
Apply(p, r, q, G, LowerG);
Find r, q, LowerG);
(* Use fast convolution for polynomial products *)
)p:q(Z) :-- Op:r_ l(Z)Or,q(Z);
%:q(W) :-- %:r-1 (W) r,q(W)

end

procedure Apply (p, r, q: index; G: GENERATORS; var LowerG: GENERATORS);
begin

(* Use fast convolution for polynomial products *)
Xr:q(Z :--- Xp:q(Z)()FfOp:r_ l(Z);
Yr:q(W) :-- Yp:q(W)()Fb%:r_ l(W)"
LowerG := { Xr:q( Z), Yr:q( W) }
Free the storage of { Xz,:q(Z), Yz,:q(w) }
return (LowerG);

end
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INERTIA, NUMERICAL RANGE, AND ZEROS OF QUADRATIC FORMS
FOR MATRIX PENCILS*

NAM-KIU TSINGf AND FRANK UHLIG

Abstract. Definite, semidefinite, and indefinite Hermitian and symmetric matrix pencils P(A, B) are
classified by their lc and lR numbers where ll dim span X Fn: x*Ax x* Bx 0 }. Using ideas from
numerical range theory, it is proved for F C that P(A, B) is a definite pencil if and only if lc O, P(A, B)
is an indefinite pencil if and only if lc n, while P(A, B) is a semidefinite pencil if and only if 0 < lc < n. In
contrast, for F R the ll number for indefinite pencils can be as low as n 2. In the cases for F R with
In n 2 or n 1, the Kronecker canonical form theory is used to describe sets of generators for indefinite
and semidefinite pencils P(A, B).

Key words, matrix pencil, inertia, numerical range, Kronecker form

AMS(MOS) subject classifications. 15A48, 15A42, 15A57, 15A63, 15A60

1. Introduction. Let Hn be the set of all n n Hermitian matrices, and let Sn be
the set of all n n real symmetric matrices. For any pair ofA, B in Hn or S, the pencil
generated by A and B is the set

P(A,B) { aA + bB:a,bR }.
P(A, B) is called a definite pencil (d.pencil) if it contains a definite matrix; it is a

semidefinite pencil (s.d.pencil) if it contains no definite matrix but contains a nonzero
semidefinite matrix; it is an indefinite pencil (i.pencil) if all its nonzero elements are
indefinite. In particular, ifA B 0, then P(A, B) { 0 } is an i.pencil.

Let X * denote the conjugate transpose ofX ifX is a complex vector or matrix, and
the transpose ofX, i.e., X t, ifX is a real vector or matrix. Let F stand for either C or R.
For any A, B 6 H,, or S we define

lv(A,B)=dim (span {xF":x*Ax=x*Bx=O }),
and the F-numerical range ofA and B by

W(A,B) {(x*Ax,x*Bx):xFn, x*x }.
The number lv(A, B) may be regarded as a measure of the "size" of the set of vectors
x F which are annihilated simultaneously by the Hermitian forms A and B. As the
unit sphere {x 6 F": x*x is compact, it follows that Wv(A, B) is a compact
subset in R2.

In this paper we want to explore the relationship between the inertia of a matrix
pencil P(A, B), the associated numbers lc(A, B) or IR(A, B), and properties ofthe field
of values Wv(A, B) c R2. Definite matrix pencils have been studied for over 50 years.
The first classification in 1936/1937 is due to Finsler [Fi]; we refer the reader to the
survey [Uhe for the history of this subject. The field of values or numerical range of a
matrix has been studied for 70 years since [To] and [Ha], while the/-numbers were
originally introduced in 1973 in Uhb]- Uhd].
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In 2 we shall first obtain some auxiliary results, and then deal with the case F
C completely to obtain a very clear result (Theorem 2.4) for the inertia of Hermitian
matrix pencils and their lc numbers: definite pencils can only have lc 0, semidefinite
pencils can have any lc number greater than zero and less than n, while indefinite pencils
have lc n.

Section 3 deals with the case F R and A, B S,. The results here become more
complicated due to the fact (Theorem 3.2) that when n >- 3, indefinite real symmetric
pencils can have ll numbers between n 2 and n, while the ll numbers of semidefinite
pencils are bounded by and n as in the Hermitian case. The "overlapping region,"
lR n 2, n 1, for s.d. or i.pencils, will be investigated in 4 where we will use the
Kronecker pair form to determine sets of generators for the four overlapping cases ifA,

2. Some auxiliary results and the complex case. We shall first develop some of the
properties ofnumerical ranges for mixed base fields in Lemma 2.1, and relate the position
of (0, 0) e R with regard to I/V to the inertia of the pencil as well.

LEMMA 2.1. Let A, B H,. Then
(a) Wc(A, B) is convex;
(b) WI(A, B) is convex ifn 4 2;
(c) WI(A, B) is a (possibly degenerate) ellipse in R ifn 2.
Proof. Part (a) of the lemma follows from the well-known Toeplitz-Hausdorff

theorem [Ha], [To], which asserts that the set (x*(A + iB)x: x C, x*x 1) is a
convex subset of C. For A, B e S, part (b) was proved by Brickman [Br]. In general,
ifA is Hermitian and x e R, then

xAx {xAx)=xAx=xAx,

where A is the complex conjugate ofA. Note that

is real symmetric and that

=(A+)/2

W(A,B) WI( A, :).
Hence (b) is true for Hermitian A and B also.

If n 2, by letting x cos 0el + sin 0e2, where 0 6 R and {el, e2 is the standard
basis for R2, we see that

WI(A,B) {cos 20(al,a2)+sin 20(bl,b)_)+(cl,c2):OR}, where

(al, a2) [(e]Ael,e]Bel)-(etzAez,eBe:)]/2,

bl b2 (e] Ae2 e] Be2 + (ezAel e2Bel ]/2,

cl c2) (etAe e] Be + (etzAe2, ezBe2 l2.

Hence WR(A, B) is an ellipse in R. Vq

Let A, B H, where n :/: 2 ifF R. By Lemma 2.1, WF(A, B) is either a convex
set with nonempty interior, or a line segment, or a point in R2. If WF(A, B) has nonempty
interior, we use OWF(A, B) to denote its topological boundary. If Wv(A, B) is a line
segment, its two endpoints will form the set OWF(A, B). If Wv(A, B) is a single point,
we define OWF(A, B) to be the empty set. In all cases, we define

int Wv(A,B)= Wv(A,B)\OWv(A,B).
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The following theorem relates the inertia of the pencil to the position of (0, 0) R2 with
respect to Wv.

THEOREM 2.2. Let A, B Hn ifF C, and A, B Sn with n 4:2 if F R. Then
(a) P(A, B) is a d.pencil ifand only if(O, O) Wv(A, B);
(b) P(A, B) is a s.d.pencil ifand only if(O, O) OWF(A, B);
(c) P(A, B) is an i.pencil ifand only if(O, 0) int Wv(A, B).
Proof. We can use a Hahn-Banach style argument which was first introduced to

this problem by Taussky [Ta]: By (a) and (b) of Lemma 2.1, WF(A, B) is convex.
Therefore, if (0, 0) WF(A, B), there is a straight line in R2 with equation ax +
bx2 where c > 0, which separates (0, 0) and Wv(A, B). Consequently, we have

x* (aA + bB)x ax*Ax + bx*Bx> c> 0

for all x F with x*x 1. This means (aA + bB) is positive definite, and hence
P(A, B) is a d.pencil. Conversely, ifP(A, B) is a d.pencil, we may reverse the argument
and get (0, 0) WF(A, B).

If (0, 0) OWF(A, B), then there exists a straight line in R2 with equation axl +
bx2 0, such that WF(A, B) is on one side of the line and WF(A, B) is not entirely
contained in the line (because we have assumed that WF(A, B)cannot be a single point
in R2 in this case). Hence we may assume that

(1) x*(aA+bB)x>=O forallxrFnwithx*x =1.

Since P(A, B) is not a d.pencil (because (0, 0) 6 Wv(A, B)), (aA + bB) is nonzero
positive semidefinite by ). Therefore P(A, B) is a s.d.pencil. By reversing the argument,
we get the converse.

Since (a) and (b) hold, by the principle of exhaustion, (c) must hold also.
If A, BH2, then WR(A,B) is a (possibly degenerate) ellipse in R2 by

Lemma 2.1 (c). For any subset S of R 2, denote the convex hull of S by conv S. Then
conv WR(A, B) is a (possibly degenerate) elliptical disc. We define 0 conv W(A, B)
and int conv WI(A, B) for the set conv W(A, B) in the same manner as for the set
Wv(A, B) above. Using Taussky’s idea again, we have Theorem 2.3.

THEOREM 2.3. Let A, B $2. Then
(a) P(A, B) is a d.pencil ifand only if(O, 0) conv W(A, B);
(b) P(A, B) is a s.d.pencil ifand only if(O, 0) 0 conv WI(A, B);
(c) P(A, B) is an i.pencil ifand only if(0, 0) 6 int conv WR(A, B).
Now we use the value lc(A, B) to characterize the pencil P(A, B).
THEOREM 2.4. Let A, B Hn. Then
(a) P(A, B) is a d.pencil ifand only iflc(A, B) 0;
(b) P(A, B) is a s.d.pencil ifand only if 0 < lc(A, B) < n;
(c) P(A, B) is an i.pencil ifand only iflc(A, B) n.

Proof. (a) This follows from the definition of lc(A, B) and Theorem 2.2.
(c) By Theorem 2.2, P(A, B) is an i.pencil if and only if (0, 0) int Wc(A, B).

Suppose Wc(A, B) is a single point. Then (0, 0) int Wc(A, B) Wc(A, B) if and
only if A B 0 and hence lc(A, B) n. If Wc(A, B) is a line segment, then
(0, 0) int Wc(A, B) if and only if (0, 0) is not an extreme point of Wc(A, B) and
Wc(A, B) c L where L is the supporting line of Wc(A, B) at (0, 0). If Wc(A, B) has
nonempty interior, then (0, 0) int Wc(A, B) if and only if (0, 0) is an interior point
of Wc(A, B). In the above two situations, we can apply a result of Embry [Em,
Thm. 1] to show that the conditions are equivalent to lc(A, B) n.
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Since (a) and (c) hold, by the principle of exhaustion, (b) must hold also.

3. The real case. As shown in Theorem 2.4, the number/c(A, B) can be used as
an indicator for the definiteness of the Hermitian pencil P(A, B). In this section, we
consider real symmetric pencils and the number IR(A, B) instead. Clearly,

O <=II(A,B) <=lc(A,B).

We shall deal with the two-dimensional case first.
THEOREM 3.1. Let A, B $2. Then
(a) ll(A, B) 0 ifP(A, B) is a d.pencil;
(b) li(A, B) ifand only ifP(A, B) is a s.d.pencil;
(c) li(A, B) 0 or 2 ifP(A, B) is an i.pencil.
Proof. (a) If P(A, B) is a d.pencil then lc(A, B) 0 by Theorem 2.4. Hence

la(A, B) O.
(c) Suppose P(A, B) is an i.pencil. Then by Theorem 2.3,

(0, 0)eint conv WI(A,B).

If WI(A, B) is a single point, then clearly the above will imply (0, 0) W(A, B) and
hence l(A, B) 2. If WR(A, B) is a line segment then, since (0, 0) e WR(A, B),
WR(A, B) is contained in some straight line in R2 with equation ax + by 0. Therefore
xT(aA + bB)x 0 for all x R" with xT"x 1. It then follows that aA + bB 0 and
hence A and B are linearly dependent. We may therefore assume B 0 and A 4: 0. As
A is indefinite, let -a, b (a, b > 0) be the eigenvalues of A, and let Ul, u2 e R2 be the
corresponding orthonormal eigenvectors. Then xtAx 0 where

x b-1/2ul +__a-1/2u2"
Hence la(A, B) 2. If WI(A, B) is a nondegenerate ellipse, then (0, 0) q WI(A, B).
Hence ll(A, B) O.

(b) Suppose P(A, B) is a s.d.pencil. Then (0, 0) 0 conv WI(A, B) c WI(A, B)
and hence IR(A, b) >_- 1. Note that WI(A, B) cannot be a single point in this case.
Therefore there is a supporting line L, with equations ax + by 0, to W(A, B) at
(0, 0), and WR(A, B) 5_ L. As a result, aA + bB is a semidefinite matrix with zero as
an eigenvalue of multiplicity one. Therefore

<=li(A,B)<=dim (span {xeR’:xt(aA + bB)x=O ))= 1.

Conversely, if li(A, B) 1, then by (a) and (c) and the exhaustion principle, P(A, B)
must be a s.d.pencil. D

THEOREM 3.2. Let A, B S,, where n 4: 2. Then
(a) l(A, B) 0 ifand only ifP(A, B) is a d.pencil;
(b) 0 < la(A, B) < n ifP(A, B) is a s.d.pencil;
(c) max { 1, n 2} _-< lR(A, B) <= n ifP(A, B) is an i.pencil.
Proof. It is obvious that the theorem is true if n 1. Hence in view of Theorem

3.1 we consider only the case n >_- 3.
Part (a) follows from Theorem 2.2 (a) and the definition of la.
(b) Suppose P(A, B) is a s.d.pencil. Then (0, 0) OWR(A, B) c WI(A, B) by

Theorem 2.2, and hence _-< ll(A, B). As WI(A, B) cannot be a single point in this
case, we may follow the argument in the proof of Theorem 3.1 (b) to conclude that, for
some a, b, R, (aA + bB) is a nonzero semidefinite matrix. Hence

<=li(A,B)<=dim (span {xeR":xt(aA +bB)x=O))<-n 1.
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(c) Now suppose P(A, B) is an i.pencil. By Theorem 2.2(c) and Lemma 2.1 (b),
we have

(0,0)int WR(A,B)c WR(A,B).

Therefore IR(A, B) >= 1. Hence (c) holds if n 3. Suppose n >= 4. If WR(A, B) is a
single point, then IR(A, B) n. Hence we may assume WR(A, B) is not a single point,
and we want to show that IR(A, B) - n 2. In fact, if (0, 0) int WR(A, B) and
IR(A, B) m =< n 3, let Ul, ,um be linearly independent vectors in R" such that

Buj=O forj=l mu}Au u
Let V {Ul, Um}+/-, where the orthogonal complement is taken in Rn. Then
dim V >= 3, and u e V+/- whenever u e Rn satisfies

utAu=utBu=O.

It follows that WRIv(A, B), i.e., the R-numerical range ofA and B when restricted on
the subspace V, which is defined by WR v( A, B) { (xtAx, xtBx): x e V, xtx },
does not contain (0, 0). Let v, vl, ve be three linearly independent unit vectors in V.
Denote the point (vtAv, vtBv) in WRI v(A, B) by n. Then r/4 (0, 0). Since (0, 0) e
int WR(A, B) and WR(A, B) is convex, there exists a chord [r/l, rte] (in R-) of
WR(A, B) which passes through (0, 0) and n, such that (0, 0) lies between n and hi,

and r/1 4 (0, 0). Let w be a unit vector in R such that (wAw, wTBw) r/1. Clearly,
w V (otherwise WRI v(A, B) contains both n and hi, and hence (0, 0) also, as
WRI v(A, B) is convex for dim V >_- 3). Let U span { v, w }. Then dim U 2, and by
Lemma 2.1 (c), WRIv(A, B) is a (possibly degenerate) ellipse in Re which contains
the two distinct points r/and r/1. We consider two cases.

Case 1. If WRIv(A, B) degenerates into a line segment, then it must contain
(0, 0) (which lies between n and rtl). Since dim U 2, and (0, 0) e int WRI v(A, B) c
WRIv(A, B) in this case, by Theorem 2.2(c) and Theorem 3.1(c), there exist two
linearly independent vectors Wl and we in U, such that

wAw wBwi 0 for 1,2.

Thus Wl, w2 e V+/-. Since v V, Wl and w2 are orthogonal to v. But this is impossible, as
wl, we, and v are in U and dim U 2.

Case 2. Suppose WRI e(A, B) is a nondegenerate ellipse. Then (0, 0) q
WRI v(A, B). Let or 2 and define Ui span { vi, v, w}. Note that dim Ui 3,
and hence Waive(A, B) is convex and contains (0, 0). It follows that there exists a non-
zero vector wi in U; such that

wAwi wBwi O.

The vectors Wl and w2 must be linearly independent (otherwise wl e U VI Ue
span { v, w } U, and hence (0, 0) WRIt(A, B), a contradiction). However, this is
impossible, since

and

span { 1) 1, I)2, 1), W }

W1, W2t r +/-
122 { 1)1,1)2, 1) } +/-.

Hence we must have ll(A, B) >- n 2 if P(A, B) is an i.pencil.
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From the above, we see that if A, B e Sn where n 2, and li(A, B) 0, then
P(A, B) can either be a d.pencil or an i.pencil. Also, when n >_-3 and n- 2 _-<
IR(A, B) =< n 1, then P(A, B) can either be a s.d.pencil or an i.pencil. In such cases,
we need further information to determine the inertia of P(A, B). If for any pair of A,
B e Sn, we are in one of the "overlapping cases" for which the number lR(A, B) alone
does not determine the inertia of the pencil P(A, B), we will find a set of sparse genera-
tors C, D for P(A, B) in {} 4. There we are interested in finding some canonical forms,
up to congruences, for the generators ofthose pencils whose l number alone cannot de-
termine their inertia.

4. The canonical pair form approach. Originally, classifying definite, semidefinite,
and indefinite real symmetric matrix pencils via their ll numbers was done for nonsingular
pairs A and B (A nonsingular) by use of the real canonical pair form (see, e.g., Uhlig
[Uha]) in [Uhb]-[Uhd]. Here we shall use the Kronecker canonical pair form as de-
scribed in Gantmacher Ga or Thompson Th ], Th ], for example, for not necessarily
nonsingular pairs A and B. Our proofs will rely on our original work in Uhb]-[Uhd].
The numerical computation of the Kronecker form has recently become important in
numerical methods for linear control theory (see, e.g., Van Dooren [VDo]).

Kronecker canonicalformfor a pair ofreal symmetric matrices A, B: A pair of real
symmetric matrices A and B is simultaneously congruent over R to a direct sum of three
(possibly void) parts:

The regular part:

diag (eiEi) and diag (c,iEiJi) where ei +1,

E

0...0 1

and Ji is a real or complex real Jordan block;
The E part:

diag

0

1 0 0

with ej and

The L part:

diag

0...0 1

0

diag L1,2k + and diag L)m’2km + ),
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where

L1,2k+l

0k+l,k+l

01 0

0 0

0 0

and

0k+l,k+l

Z.,2k+l
2, 0 0

0 z
while for k 0: L Lx (0).

.0
0

0

for eR,

Note that all L and Eblocks are square. Complete proofs can be found in Gantmacher
[Ga, Vol. II, p. 44] and Thompson [Th, pp. 4, 18, 24, 30] or [TH1, 2]. The aim of
this section is to provide a complete description ofthe "overlapping cases" for the critical
IR numbers n and n 2 in terms of generators and the finest simultaneous block
diagonal structure for A and B. Note that if the pairs A, B and C, D are congruent, then,
because of the invertibility of the congruence transformation, II(A, B) Ia(C, D).
What complicates matters for Sn is the fact that the analogue of Theorem 2.4 for Sn is
true only for linearly dependent pencils P(A, B).

THEOREM 4.1. Let A, B Sn be linearly dependent. Then
(a) P(A, B) is a d.pencil ifand only fIR(A, B) 0;
(b) P(A, B) is a s.d.pencil ifand only if 0 < II(A, B) < n;
(c) P(A, B) is an i.pencil ifand only ifla(A, B) n.
To simplify notation we define the quadratic hypersurface

Qa={x6R":xtAx=O} for A6S..

Proof. IfA and B S are linearly dependent, we can assume without loss of gen-
erality that P(A, B) { cA: c 6 R }, and hence II(A, B) dim span QA. To compute
this dimension we consider A diagonalized by a real congruence D XtAX and use
Lemma of [Uhc, p. 545] again so that (a) and (b) follow immediately. In (c) we
can, without loss of generality, assume that for D diag (di) we have d d2 < 0. Then
dl/2e +- dJ/e2 QA and if d 0 then e QA, while in case dk, > 0 we have

Idol /2e2 q- dzl’/Zek QA, and in case dd < 0 we have ]d,l/2e + dl/Ze QA
for k >- 2. Hence (c) holds. [3

We note in passing that linearly dependent pairs A and B will not have any E or L
part in their Kronecker normal form. Next we give some remarks on the la numbers of
E parts and L parts.

Remark 4.2. (a) II(L, L x) dim L dim Lx 2k + 1,
(b)

dim Eo) if dim Eo) >= 4,
la(E)’EI))=

dim Eo)- ifdim Eo)<4,
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where

0 0 0!...0 1!1
E(o) and E(x)

0 1 0 0..

Proof. (a) For all _<-j -< k + and k + 2 -_< k _-< 2k + 1, we have eLlej 0

eLXej, where ej is the jth unit vector.
(b) Let dimE(o) dimE(l) =j. If j 1, then E(o) (0), E(l) (1), and

so dim Q(o) fq Q()= 0. If j 2, then Q(o) fq Q()= span {el}, while for j 3,
Qeto) Qet) span {el, e3}. Forj > 4, we can use Theorem l(i) of [Uhc, p. 544] to
obtain IR(E(o), E(1)) dim E(0). V1

In view of Theorem 4.1 we will henceforth only consider matrix pencils in S, with
linearly independent generators A, B.

First we deal with n 2.
THEOREM 4.3. Suppose A, BS2 are linearly independent matrices with

li(A, B) O. Then
(a) P(A, B) is a d.pencil ifand only ifP(A, B) is congruent to P(C, D) where

C=
0 0

(b) P(A, B) is an i.pencil ifand only ifP(A, B) is congruent to P(C, D) where

and D=C=
0 0

Here we call two pencils P(A, B) and P( C, A congruent if there is a nonsingular matrix
S R"" with St(p(A, B))S P(C, D).

Proof. (a) Let P(A, B) be a d.pencil. Then P(A, B) contains a definite matrix. We
may let this definite matrix, after a suitable congruence transform if necessary, be the
identity matrix I. Let E P(A, B) be linearly independent ofI. After subtracting a scalar
multiple of I, we may assume E to be indefinite. Let X e R2 2 be orthogonal such that

a)XtEX
0

for some a > 0. Then P(A, B) is congruent to P(I, D) where D (0 6). The converse
can be verified directly.

(b) Let P(A, B) be an i.pencil. Choose any indefinite matrix D P(A, B). After a
suitable congruence we may assume D in the form

(0 1)
Then choose any E P(A, B) which is linearly independent of D. After subtracting a
scalar multiple of D, we may assume E in the form

(a 0)E=
0 b
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Since E is indefinite, we can assume a > 0 > b. With a suitable congruence transform,
we see that P(A, B) is congruent to P(C, D) where

C=
0

and D=
0

The converse clearly holds as well. 73

Next we deal with s.d.pencils, n >_- 3 and large lR numbers.
THEOREM 4.4. P(A, B) is an s.d.pencil with lR(A, B) n 1, n >- 3 where

A, B are linearly independent if and only ifA and B or B and A are simultaneously
congruent to:

(a) Cases (D) + 0 and (E) + O, where the (D) type block has size greater than
or equal to four and the (E) type block has size greater than or equal to three (here
(D) and (E) stand for the block structure described in the main theorem of [Uhb,
pp. 537, 538]); or

(c)

(b) diag (1, -1, +l, ,+1,0,0, ,0), and

diag (X,-X,_+X, ,+X,+I,0, ,0)

diag +_ ,0,...,0 and
0 g

for X 6 R; or

diag + 0, 0 for X
_
R.

X

Proof. The Kronecker canonical form of an s.d.pencil can contain E parts and L
parts only of block sizes less than or equal to two, for otherwise the pencil would be
indefinite.

Let lR lR(A, B) and assume that the overall dimension of the regular part is
rn _-< n. Much of our work has already been prepared in [Uhb] for nonsingular pencils
P(A, B), where the first matrix A is nonsingular. To be able to use this, we need to
"symmetrize" the statements about the generator A and B by allowing "A and B or B
and A" to be congruent to specific generators as indicated in this and the following
theorems. With this understanding here, the regular part can be indefinite with rn >=
2, or (2) definite, or (3) semidefinite, or (4) void.

Case )..There is only one possibility for an s.d.pencil to have an indefinite regular
part: diag 1, -1, + 1, ..., + and diag (, -X, +h, ..., +) so that the regular part
of hA B is congruent to Om,m. In this case the E part cannot have a two-dimensional
block since X( 0) ( ) is indefinite. If the E part contains more than one one-dimen-
sional block we would drop more than one number, contradicting li(A, B) n 1.
Since the L part must be empty or made up of one-dimensional blocks we clearly have
case (b).

Case (2). If the regular part is definite, then independently of its dimension m, we
have/reg 0. Since overall li(A, B) n 1, we must have rn 1, so the regular part
for A and B is congruent to (+ ), (+). The E part must be empty for we cannot drop
any more numbers. So A and B are simultaneously congruent to diag (+ 1, 0, 0)
and diag (_+X, 0, 0), contradicting the assumed linear independence ofA and B.

Case (3). (a) The regular part for A and B is semidefinite of size rn ->_ 3: Using
the main theorem of [Uhb], we get that =< lreg - rn 1. So lreg rn if we want
l(A, B) n 1. That makes cases (D) or (E) from the main theorem in [Uhb]
augmented by arbitrarily many one-dimensional L blocks or case (a).
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(b) The regular part for A and B is semidefinite of size rn 2: Using Theorem 3
of [Uhc p. 557] we can see that the regular parts in the Kronecker form for the pair A,
B must be +(o ) and _+(x ’) with lreg or case (c). Note that rn would not yield
a semidefinite regular part.

Case (4). If a semidefinite pencil has no regular part and IR(A, B) n 1, then
the L-part can have arbitrarily many one-dimensional L blocks and the E part can consist
of either (aa) one two-dimensional E block, or (bb) one one-dimensional E block.

In the case of (aa) we have case (c) in the theorem, for X 0 and for the pair A
and B, while in the case of (bb), A and B are linearly dependent matrices. The converse
is obvious. V1

THEOREM 4.5. P(A, B) is an s.d.pencil with IR(A, B) n 2, n >= 3 and A and
B linearly independent ifand only ifA and B or B and A are simultaneously congruent
to

(a) diag el
0

’e3’0’’"’0 and

diag el e33,0, 0
X

where gl/33(/.t3 )k) > 0, e +1, X, 3 6 R; or

(b) diag e ,e 0,... 0 and
0 0

,e 0,..- 0diag e
X

where e + 1, ), R; or

(c) diag /31 /31

dia,
X X X),/35X, ,/3mX, O, O)

(d)

(e)

where/3g + 1, X R, and egej -1 at least oncefor i, j >= 5 and m >-
6; or
diag 1, 1, -1, -1 ), where appears kfold and- ap-
pears s n kfold on the diagonal, and
(dl) diag(X,..-, X, , K, -X,..., -X) witheither#, < Xor#,

> X, where X appears k 2 foM, while -X appears sfoM on the
diagonal and k >= 3, s >= 1; or

(d2) diag(X,..., X, , -X, -X, )witheither < Xand <
X or t > X and > X. Here X appears k foM and X

appears s fold and k >= 2, s >- 2; or
(d3) diag X, X, X, -X, , K), where either t, > X or I,

< X with X appearing kfoM and X s 2 fold and k >= 1, s >-
3; or

diag (/31,/32, 0, 0), and
diag (/31X,/32/, 0, 0) for
/3; + 1, X, t R with 4: ; or

(f) diag /31 ,/33 ,/3n
0

and
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(g)

(h)

(i)

(J)

diag el
k

e3it’ e4’ en

whereei +1, , It R, ele3(k #) > 0; or

and

where e +_1, k >= 4, eie -1 at least oncefor i, j >- 3, k >= 4 and
e16 1; or
diag (el, em-1, era, O, 0), and
diag (elX, em-1,, emlt, em+ 1, O, 0),
where ei +_1, eiej -1 at least oncefor i, j <= m, rn >- 3, 4: It and
era(X- It)em+l <= 0; or

diag (el, 0, 0), and
diag (el, e2, 0, 0) where e "-!"1, )k R; or
diag(el,’",em,0," ,0), and
diag (el)\, em X, em + 1, em + 2 O, O)
with e "% l, eiej at least oncefor i, j <= m, m >= 2 and e + em + 2

1; or

(k) diag el
0

,0,...,0

diag el X
e2,0, 0

and

(1) diag el
0

where ei-" +l,ele2 1,X6R; or

and

diag el e2,0, 0 where ei +
0

Proof. As we remarked earlier, a semidefinite pencil cannot have any L blocks of
large dimension or it would be indefinite. Similarly, the E part must have only one- or
two-dimensional blocks.

If lreg rn 2, then the E part must be void and the L part must contain one-
dimensional blocks only. For lreg rn 2 we conclude from [Uhc, p. 545 for a s.d.pencil
that we must have cases (viia) or (viib) or (ix) only. For (viia), we must have k rn
2 where 2k =< m, so k or 2 are the only possibilities. If k 1, then rn 3 and case
(a). If k 2, then rn 4 and case (b). If (viib) holds with k 2, then r rn 4 makes
lreg k -]- r rn 2 or case (c). If (viib) holds with k 2 and r rn 2, then /reg
rn and we must drop one number in the E part or case (g). If (viib) holds with
k and r rn 3, then/reg rn 2 and we have case (f).

For (ix) we use Theorem of [Uhb, p. 538] for rn > 2: A and B must be simulta-
neously congruent to diag (ai), diag (b;) where

bi bi bi bi
max--= min-- or min--= max--.
ai 0 ai ai o a ai o a ai o ai
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(Note the obvious misprinting of formula (i) of [Uhb, p. 538].) So without
loss of generality we can assume that A and B are simultaneously congruent to
diag(1,..., 1,-1,... -1)anddiag(,..., g,l,...,#s) wherek, s>= and
kl k2 > Xk, 1 s" If maxa>0 bi/ai mina/<0 bi/ai, then k --11,

while -s in the alternate case. In the former case -IA + B diag (0, 2 ,
X , 0, 2 Zl, Zs z) is a nonpositive diagonal matrix, while in the lat-

ter case A B diag (X X, , 0, s -Zl, z2 t, 0) is nonposi-
tive as well. But la(A, B) n 2, so only two nonzero entries X.. X1, and/or ..

are possible, giving case (d) with its three possibilities. If m 2 and (ix), the regular
parts ofA and B are simultaneously congruent to diag (el, e2) and diag (e, e2u). Then
(XA B)reg diag (0, t:2(, /A)) is semidefinite if X 4 ,, in which case lreg(A, B) 0
or case (e).

Note that cases (a), (f) all deal with/rg rn 2. If/rg rn 1, then we can
use the cases from Theorem 4.4 for s.d.pencils with la rn if we add one more one-
dimensional E block to A and B. The previous case (a) involving (D) makes case (g)
now; while old (a) involving (E) makes case (h) here. Case (i) derives from the rejected
possibility (2) in the previous proof: We can add one one-dimensional E block to the
pencil, which then becomes linearly independent, hence case (i). The remaining cases
(j), (k), and (1) come from the cases (b), (c), and (d) of the previous theorem. Finally,
note that the old case (bb) does not yield a new case here either, since adding one more
one-dimensional E-block would keep A and B linearly dependent. The converse is again
obvious, fq

Finally, we will classify i-pencils with la numbers, smaller than n.
THEOREM 4.6. P(A, B) is an i-pencil with II(A, B) n 1, n >- 3, and A, B

linearly independent ifand only ifone ofthe following 14 cases holds for the regular, E
and L parts ofthe Kronecker canonical pairform ofA and B or B and A, where we set
dim (regular part) m <= n. (Note that the cases (A), (E) in part (d) Table
below refer to the cases mentioned in the main theorem in [Uhb, p. 538].)

Note that there are 14 possible cases here: (a), (a ), (b), (c), (c ), (d ), (d2),
(d20), (d3), (d30), (d4), (d40), (e), (el).

Proof. If m 1, then/reg 0 so that E and L parts of A, B cannot drop any l-
number. Hence the E blocks must have dimension greater than or equal to four by
Remark 4.2. To ensure an i-pencil, should no E block occur, then at least one L block
must be of size greater than or equal to three. If m >= 2 and/reg m, then exactly one E
block must be of size less than or equal to three to drop l to n 1. If/reg m, then the
regular part of the pencil is indefinite according to the main theorem of [Uhb, p. 537].
If rn 2 with lreg 1, then by Theorem 3 of [Uhc, p. 557], + (A, B)reg or +_ (B, A)reg
is congruent to ((1 ), (x ]’)) and the E and L parts cannot drop another number
and must be indefinite. If rn > 3 and lreg rn 1, then the E and L parts must have
full numbers and if the E part should be void and the regular part semidefinite
(in cases (D) and (E)), then at least one L block must have size greater than or equal
to three to ensure an i-pencil. Finally cases (e) and (el) are obvious if the regular part of
(A, B) is void. [3

Note that this theorem describes the finest simultaneous block structure of A and
B completely (as did the previous two theorems for s.d.pencils) except in case (b) when
/reg m. While Theorem and 2 of [Uhc, pp. 544, 545] described some i-pencils with
l n in (i), (viii), we did not attempt to describe all such pencils then nor are we
able to do so now.

THEOREM 4.7. P(A, B) is an i-pencil with IR(A, B) n 2, n >= 3 and A and B
linearly independent ifand only if
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TABLE

Regular part

(a) m
lrog 0

(b) m>=2

(c) m 2,
lreg 1, and _+(S, T)reg
or _(T, S)reg is
congruent to

(d) m >= 3,/reg m

E part L part

All blocks of size >= 4 or void Any size blocks or void
(1) But ifE part void, then one L block of size >- 3

Exactly one block of size =<
3, possibly more of size >- 4

All blocks of size > 4 or void

Any size blocks or void

Any size blocks or void

(1) But ifE part void, then one L block of size >= 3

Case (A),
or
(2) Case B),
or
(3) Case (D),
or
(4) Case (E),

(e) m 0, regular part
void

All blocks of size >= 4 or void

All blocks of size >= 4 or void

All blocks of size >= 4 or void

All blocks of size >= 4 or void

Any size blocks or void

Any size blocks or void

Any size blocks or void

Any size blocks or void
(0) But if E part void in case (2), (3), or (4), then at least one

L block of size >= 3.

Exactly one block of size =< Any size blocks or void
3, possibly more of sizes >= 4
(1) But if there is a one-dimensional E block, then there must

be an E-block of size >= 4 or an L block of size > 3.

a) Any of the cases ofan pencil with 1 n from Theorem 4.4 holds except
that the E part must now contain one extra block ofsize less than or equal to three; or

(b) Any ofthe cases ofan s.d.pencil and n 2 from Theorem 4.3 holds except
that there must be an additional E block of size greater than or equal to four or an
additional L block size greater than or equal to three; or

c Ifthe regular part is void, then there must be exactly two E blocks ofsizes less
than or equal to three. Ifboth are one-dimensional or one is one-dimensional, the second
two-dimensional, then there must be an E block ofsize greater than or equal to four or
an L block ofsize greater than or equal to three. Ifboth smallE blocks are two-dimensional,
then they must carry opposite signs or there must be an E block ofsize greater than or
equal tofour or an L block ofsize greater than or equal to three.

The proofis obvious since for regular i-pencils l_-< n 1. Note that the extra conditions
for small E blocks ensure an i-pencil of dimension two.
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Abstract. Let Kn denote the n-dimensional ice cream cone. This paper investigates the structure of those
matrices A such that etAKn c Kn for all >= 0. The characterizations extend to general ellipsoidal cones.
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1. Introduction. A set C c R is a cone provided that aC C for all a >_- 0. We
call a cone Cproper provided that it is closed, convex, possesses nonempty interior, and
is pointed (C f3 {-C ) (0)). Given a proper cone C Rn, we denote by p(C) the
set of matrices A e R’ which are exponentially nonnegative on C; that is, etaC c C for
all -> 0, where eta ff:0 (tA)J/j! is the familiar matrix exponential. Hence p(C) is
the set of matrices A such that for an arbitrary start point x(0) e C, the solution x(t)
eax(O) of the linear differential equation :(t) Ax(t) remains in C for all future time.

The purpose of this paper is to investigate the structure of the set of matrices
p(K,,), where

<x x.>0K,,: xeR"" X
i=1

is the n-dimensional ice cream cone. It will be seen that our results can be extended to
general ellipsoidal cones.

In the following section, we review some required technical material on ellipsoidal
cones. Then, in 3, the main results are presented. A key result which we employ is a
lemma on copositivity for the ice cream cone K due to Loewy and Schneider 3 ]. To
a certain extent our results complement some of those in [3], which provided charac-
terizations of those matrices which leave K, invariant.

2. Ellipsoidal cones. Let Q R’ be a symmetric nonsingular matrix, with a single
negative eigenvalue ,n. Therefore Q has inertia (n 1, 0, ), where by inertia we mean
the triple (P, Z, N), indicating the number of positive, zero, and negative eigenvalues,
respectively. Let u be a unit eigenvector of Q corresponding to kn. With Q we associate
two ellipsoidal cones; these are

(2.1) K=K(Q,u,,)= (xeR xtQx<=O, xtu,,->O)

and -K K(Q, -u). In the sequel we will employ the fact that at each 0 4: x OK
{ x K" xtQx 0 ), the vector Qx is an outward pointing normal at x (where 0 denotes
boundary).
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Clearly, Kn is an ellipsoidal cone with

Q Q. := -/-"---L’,--0-- and u, e,,

where In- denotes the (n (n identity matrix. Also, we denote the kth unit
vector by ek.

We shall require the following lemma from [5], which says that in formula (2.1)
we may replace the eigenvector un with vectors v satisfying certain requirements (which
are met by un itself).

LEMMA 2.2. Suppose that K is as above and assume that v R satisfies

(2.3) {v}+/-fq{K tO{-K}} {0}

and

(2.4) ’DtUn O.

Then

(2.5) K= {xRn xtQx<=O, xtl)>=O }.

Remark 2.6. In view of the fact that the orthogonal complement { u, } z is a hyper-
plane which supports the proper cones K and -K only at the origin, it follows from the
preceding lemma that if v is a vector whose distance from u is sufficiently small, then
(2.5) holds.

For Q as above, let the spectrum be {), k2, ),} where k >-_ )k2 -)n- > 0 > )n, and let the orthogonal diagonalization of Q be given by UtQU
diag (k, k2, k). The following lemma will also prove to be useful. Its proof, which
employs Sylvester’s theorem, may be found in [5].

LEMMA 2.7. K is an ellipsoidal cone as in (2.1) if and only ifK TK,, for some
nonsingular T R’

In particular, for a given ellipsoidal cone K K( Q, un), we have K TK for T
UD, where D is the diagonal matrix with entries dii I)il-/2, 1, 2, n, and
then Q (T-)tQT- Conversely, for a given nonsingular T R’n, the matrix
(T-)tQ,,T- has inertia (n 1, O, and TK,, K((T-)tQnT, (T-)e,,).

3. Main results. To begin, we require the following lemma, in which (., ) denotes
the standard inner product on R.

LEMMA 3.1. Let K be an ellipsoidal cone as in (2.1). Then

(3.2) p(K)= {A Rn’: (Ax, Qx) <= O for all xOK}

Proof. Since Qx is the unique outward pointing normal vector (up to scalar mul-
tiples) to K at any nonzero x OK, then the condition that (Ax, Qx) <-_ O, for all such
x, is, in the terminology of Schneider and Vidyasagar [4], cross-positivity of A on K,
which was shown in [4] to be equivalent to exponential nonnegativity. E3

We now turn our attention to the problem of characterizing p(K). We will make
use of the following copositivity result from Loewy and Schneider 3 ].

LEMMA 3.3 3, Lemma 2.2]. Let W R’ be symmetric. Then there exists # >= 0
such that W- #Q is negative semidefinite ifand only if

(3.4) x K,, xtWx <-_ O.
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Our main characterization ofp(Kn) is given next.
THEOREM 3.5. A necessary and sufficient conditionforA p(Kn) is that there exists
R such that

(3.6) QA+AtQ-Q<=O,

where "=<" means negative semidefinite.
Proof. Let us denote

W(Qn, A):=QnA+AtQn.

Upon symmetrizing the quadratic form {Ax, Qx), it follows that A p(Kn) if and
only if

(3.7) xOK=xtW( Qn,A )x <= O.

Since xtQnx 0 for all x OKn, we have that (3.7) is equivalent to

(3.8) xOK xW(Q,,A + 3"I)x<= 0

for any given 3" 6 R. Since

(3.9) W(Q,, A +3,1) W(Q,, A)+

we may choose 3" large enough to ensure that W(Qn, A + 3’1) has inertia (n 1, 0, ).
For such 3", consider the ellipsoidal cone

C(3"):= {x6R" xtW(Qn, A +3"I)x<=O, xtu(3")>O},

where u(3") is a unit eigenvector of W(Qn, A + 3"1) corresponding to its only negative
eigenvalue. Since 3" may be chosen so large that u(3") approximates e to any prescribed
tolerance, Remark 2.6 tells us that for sufficiently large 3" we have

(3.10) C(3")= {xeRn xtW(Q,A +3"I)x<=O, Xten>=O}.
Hence 3.8 implies that A p(K.) if and only if for all 3" sufficiently large we have

(3.11) OKnC(3").

Since C(3") is an ellipsoidal and therefore convex cone for large 3", it follows that for
such 3", (3.11 is equivalent to

(3.12) K, cC(3").

Therefore, Lemma 3.3 implies that A p(K) if and only if for each sufficiently large
there exists >= 0 such that

W( Qn,A + 3"Q #./Qn <= O.(3.13)

Since

(3.14) W( Qn, A + 3"I) #Qn W(Qn, A + 23" #.OQn,

the theorem is proven. F1
In what follows, we shall partition A as



EXPONENTIAL NONNEGATIVITY ON THE ICE CREAM CONE 163

where A denotes the leading (n (n principal submatrix ofA. Then

(3.15) W(Q., A) ( AI + A] g )
where

g:: c- d,

and therefore

(3.16) W(Q,, A)- Q. ( Ax + AI- I"-I g )gi t-2a,

We have the following corollary to Theorem 3.5. It provides sufficient conditions
for membership and nonmembership in p(Kn).

COROLLARY 3.17. Let A Rn’n. Then thefollowing hold:
n-1

}
n-1

(3.18) max 2a+ Ig[ + [ai:+a:il <-2an,- , Igil Ap(Kn),
<=i<=n i4=j i=

n-1

1
n-I

(3.19) max 2a;;-]g;]- ]ag+a;] >2a..+ Z [g;[ =*’Atp(Kn).
<i<=n i4:j= i=

Proof. Theorem 3.5 implies that A 6 p(K,) if and only if there exists R such
that the (symmetric) matrix W(Qn, A) Q, has no positive eigenvalues. A straight-
forward application of Gershgorin’s theorem then yields 3.18 and 3.19 ). if]

A different sufficient condition for A p(Kn) is provided in the following result. We
shall denote the euclidean norm by [1" II, and the largest eigenvalue ofa symmetric matrix
Mby )(M).

THEOREM 3.20. A sufficient condition for A p(Kn) is

(3.21) X(A +A)=< 2(a, I[gll).

Proof. Let us write

W(Qn, A)-Qn U()+ V,

where

U() ( Ax + A] In-x 0

1 2a,
and

Then, since U() and V are symmetric, we have

(3.22) ),(U() + V)_-< )(U()) + )1 (V).

(See, e.g., Wilkinson [6, p. 101].) Therefore, in view ofTheorem 3.5, a sufficient condition
for A p(K,) is the existence of R such that

(3.23) (U()) + (V)_-<0.

Since ,(V) []g[[, the existence of such a is readily seen to be guaranteed by
(3.21). [3
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It is not difficult to construct examples where the sufficient condition (3.21 holds,
but (3.18) fails. The reverse may occur as well, as is evidenced by the matrix

A= 0 -1 0
0 0 0

The next result provides a general necessary condition for A p(K).
THEOREM 3.24. Let A p(K). Then

(3.25) Xl(A1 +A])--< 2ann.

Proof. Theorem 3.5 tells us that if A e p(Kn), then there exists a real number
such that all the spectrum of W(Qn, A) Q, is nonpositive, which implies that each
principal submatrix has nonpositive spectrum as well. Applying this fact to the principal
submatrices A + A In- and 2an, readily yields (3.25). []

Theorems 3.20 and 3.24 immediately yield the following complete characterization
ofp(Kn) for matrices satisfying a certain "partial symmetry" condition.

COROLLARY 3.26. Let A R’ be such that ain anifor all <= <= n (i.e.,
g 0). Then (3.25) is necessary and sufficient for A p(Kn).

Another general necessary condition is given next.
THEOREM 3.27. Assume that A p(Kn). Let { u, u2, uk } be any set ofeigen-

values ofA (not necessarily distinct), and let { x, x2, xk } be a corresponding set of
eigenvectors. Consider the (possibly empty) index sets

I+={i’xO,,xi>0} and I_={i" xQ,xi<O}.

Then

(3.28) inf Re ui: iI_ } >= sup { Re #i: i/+ }
where sup () oo and inf oo, denoting the empty set).

Proof. Since A p(Kn), there exists R such that

(3.29) n() := Q,A +A’On- On<=O.
Then

(3.30) xH()xi=2xQxi(Re#i-)<=O foralli =1,2,-..,k.

Hence >= Re #i for all /+ and =< Re #i for all /_, yielding (3.28). ff]

Our final result provides a characterization of the set of matrices

p(OK):= {AR"’n: etA(OK,)cOK, for all t>=0 }.
Hence p(Ogn) is the set of matrices A such that solutions ofthe linear differential equation
.f(t) Ax(t) with x(O) OKn remain in Ogn for all >= 0.

THEOREM 3.31. A necessary and sufficient condition for A p(OKn) is that A
B + I, where R and

with Bi being an n n skew-symmetric matrix.

Proof. The matrix A p(OK) if and only if the vector field Ax is tangent to the
locally smooth surface OKn/{ 0 } that is,

(3.32) (Ax, Qx) 0 for all xeOKn.
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This is equivalent to A p(K,,) and -A p(K,,). Hence in view of Theorem 3.5, (3.32)
is equivalent to the existence of real numbers (1 and 2 such that

(3.33) W(Qn, A)-(1Qn=<0 and W(Q’,, -A)-(zQ,=<0.

But (3.33) implies that l 2 and W(Q’,, A) lQn. In view of(3.15 ), the conclusion
of the theorem follows. []

We conclude with some remarks.
Remark 3.34. (i) The proof of Theorem 3.31 shows that p(OK,,) is the max-

imal subspace of the closed convex cone p(Kn) R’’n. The theorem implies that
dim (p(OK’,)) (/72 n + 2)/2.

(ii) It is interesting to note that if A satisfies either of the sufficient conditions
(3.18) or (3.21 ), or if A is of the form specified in Theorem 3.31, then A must satisfy
the conditions of Elsner[ for the existence of a proper cone K such that A p(K);
namely, that the spectral abscissa

X(A):= max { Re X X is an eigenvalue of A

is an eigenvalue of A and no eigenvalue , of A with Re ,(A) can have degree
exceeding that of X(A). (By the degree of an eigenvalue, we mean its degree in the
minimal polynomial.)

(iii) Our results can be extended to general ellipsoidal cones by applying Lemma
2.7. In particular, let K K(Q, u,) be a given ellipsoidal cone, and let Tbe a nonsingular
matrix such that K TK,,. (One such T is provided by Lemma 2.7.) Then A p(K) if
and only if T-IAT p(K’,), and likewise, A p(OK) if and only if T-AT

(iv) In view of 3.7 ), A p(K’,) if and only ifxtW( Q’,, A )x <= 0 for all x R’, such
that xn and iny( x,2 1. Hence a necessary and sufficient condition for A
p(K,,) is

(3.35) max {yt(A +At)y+2yt(c-d) [lY[I 1} =<0.

A numerical method for obtaining the maximum in (3.35) may be found, e.g., in Fletcher
2 ]. Thus we can computationally check whetherA p(K’,) in cases where our necessary
conditions are met, but sufficiency is not.

Acknowledgments. We are indebted to the referees and A. Berman for detecting
errors in earlier versions of this work.
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NONNEGATIVE IDEMPOTENT MATRICES AND THEIR GRAPHS*

MORDECHAI LEWIN

Abstract. A graph-theoretic characterization of nonnegative matrices having idempotent pattern is given.
Given a directed graph, it is either decided that its adjacency matrix has no idempotent pattern, or else a
nonnegative, idempotent matrix whose graph is the given graph is supplied.

Key words, nonnegative matrix, idempotent, pattern, directed graph, clique, source, sink
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1. Introduction. A square matrix A is called idempotent if A 2 A. In 2 Flor
establishes the structure of nonnegative idempotent matrices. In particular, he shows the
following proposition.

PROPOSITION 2, Thm. 2 ]. Let A be a nonnegative idempotent matrix. Then there
exists a permutation matrix P such that

J JT 0 0
0 0 0 0P- AP SJ SJT 0 0
0 0 0 0

where J is the direct sum ofnonnegative idempotent matrices ofrank one. Conversely,
while S and T are arbitrary matrices of appropriate sizes, every matrix of the above-
mentionedform is idempotent.

Let A (ao) be a given square matrix. Let G(A) be the directed graph associated
with A such that the order of the graph is the order of the matrix with aij =/= 0 if (i, j)
E(G) where E(G) E is the set of edges of G. A nonnegative matrix A is positive if all
its elements are positive.

A nonnegative matrix A is of idempotent pattern if there exists a nonnegative idem-
potent matrix having the same zero-pattern as A. Let , be the set of nonnegative idem-
potent matrices and let 92 be the set of all matrices of idempotent pattern.

The purpose of this paper is to characterize this idempotent pattern family graph
theoretically. This characterization enables us to decide whether an arbitrarily given
matrix A is in 92 or not, simply by observing the graph of the matrix. In case of an
affirmative answer, we suggest a construction ofa nonnegative idempotent matrix having
the same zero pattern as A.

2. Definitions. Let A (aij) be a square matrix and let G be its directed graph. Let
V { 1, 2, n } be the set of vertices of G, n being the order of the matrix. An (i, j)-
walk in G is a sequence of directed edges from to j of the form (i, v ), (v, v2),
(vk, j). We shall also use the form (i, Vl, v2, vk, j). An (i, j)-path is a walk in which
no edge appears more than once. A k-(i, j)-walk(path) in G is a walk(path) of length
k (number ofedges from vertex to vertexj). A clique in a (directed) graph is a maximal
complete (directed) subgraph. A proper clique is a clique whose set of edges is nonvoid.
A clique of order one is a loop. A null-clique is a nonisolated vertex not belonging to any
proper clique. A subgraph of G is clique-free if none of its edges belongs to a proper
clique. A source (sink) is a vertex with positive outgoing (incoming) degree and zero
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incoming (outgoing) degree. Let So (Si) stand for the set of sources (sinks) of a given
graph. A graph is transitive if any two of its edges (i, j), (j, k) imply that (i, k) is in
the graph.

A directed graph is strongly connected if there is a walk from every vertex to every
other vertex in the graph.

A matrix A is reducible if there is a permutation matrix P such that

with X and Z both square blocks. Otherwise, the matrix is called irreducible. It is now
common knowledge that A is irreducible if and only if G(A) is strongly connected (see,
for example, 4 ).

3. A necessary condition. Let A be a matrix in 92. Then there exists a matrix A in, having the same pattern as A. Considering G(A), it follows that (i, j) E(G(A)) if
and only if for some k, <- k =< n and (i, k) and (k, j) are both in E. An immediate
consequence ofthe idempotence ofA is that G(A) is transitive. Now let A be irreducible.
Then G(A) is strongly connected. Since it is also transitive, it is necessarily a complete
directed graph, so that A is positive. We should also bear in mind that in a transitive
directed graph, distinct proper cliques are disjoint. We thus have obtained the follow-
ing lemma.

LEMMA 1. A nonnegative idempotent matrix is either positive or reducible.
Let A ,. Without loss of generality, we may assume G(A to be connected, since

each connected component of G(A) is the graph of an idempotent matrix of a smaller
order. We have the following lemma.

LEMMA 2. Let A . Letfurther (Xo, x, X2, X3) be a 3-walk in G(A). Then xl and
x2 belong to the same proper clique in G.

Proof. Let U1 be the subgraph of G(A) spanned on x and all its incoming vertices
and let U_ be spanned on the rest of the vertices. Then G(A) consists of the disjoint
union of U and U2 (the latter may be empty) and possibly some edges from U1 to U2.
Let k be the order of U2. Number its vertices from to k and those of U from k + to
n. Then A already assumes the form

X 0

Y Z)"
If x2 is in U, then, by the transitivity condition, x2 and x belong to the same proper
clique. We may therefore assume x2 in U2. Then x3 is also in U2. The edges of U2 and
U represent the nonzero entries of X and Z, respectively; the edges from U to U2
represent the nonzero entries of Y. We now have

YX+ ZY Z 2 YX+ ZY Z

It follows that both blocksXand Z are idempotent. We also get YX+ ZY Y. Multiplying
both sides from the left by Z we get ZYX + ZY ZY and hence

ZYX=O.

The graph theoretic interpretation of (1) is that there is no 3-walk starting in U1 and
ending in U2. This contradiction implies Lemma 2.

COROLLARY 1. Let A 92. Then every null-clique of G(A) is either a source or
a sink.
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Proof. Let x be a null-clique in G(A). Suppose x is neither a source nor a sink.
Since x is nonisolated by definition, it has an incoming edge (y, x) and an outgoing edge
(x, z) with x, y, z all distinct. Since A is of idempotent pattern, there is a 2-walk from
y to x in G(A). Let it be (y, u, x) for some u. Then (y, u, x, z) is a 3-walk in G(A) and
so, by Lemma 2, u and x belong to the same proper clique in G, an obvious contradiction.

Let A e 92, and let x be a vertex and C a proper clique of G(A). Then, because of
the transitivity of G, x is adjacent to all the vertices of C or to none. A contraction of G
is a graph derived from G, whose vertices are the cliques of G. The edges in G whose
vertices belong to distinct cliques are edges from a source to a proper clique, from a
proper clique to a sink, or from a source to a sink. The sets So and Si may be void (one
or both), but the set C ofproper cliques may not be empty, unless A 0. We then obtain
the following corollary.

COROLLARY 2. Let A 92. Then the longest path in the contraction ofG is oflength
at most two.

A transitive graph consisting of a disjoint union of proper cliques, with sources or
sinks attached to some of the proper cliques, and possibly some isolated vertices, will
henceforth be termed an admissible graph.

Let G be an admissible graph. Order the cliques in ascending order: first the sinks,
then the proper cliques, and finally the sources. Now order the vertices of the proper
cliques lexicographically. This induces a numbering of the vertices of G which we shall
refer to as admissible numbering.

COROLLARY 3. Distinct proper cliques are completely disjoint.

4. Sufficiency. We now state Lemma 3.
LEMMA 3. Let G be an admissible graph. Then there exists a nonnegative, idem-

potent matrix A such that G(A is its graph.
Proof. Let C, C2, Ck be the proper cliques of G and let x, x2, Xn be an

admissible numbering of G. For each Ci there exists a positive idempotent matrix A;.
Let A0 be the direct sum of the Ai. Consider A0 as a principal submatrix ofA. Let x be
a sink in G adjacent to some of the cliques C, C2, By Perron’s theorem [3] there
exists a positive eigenvector for each Ai in A0. Let Vix be an eigenvector ofAi and let its
entries correspond to the edges from Ci to x. Consider the entry ajx of A. We have the
following cases.

Case 1. (j, x) G. Then put ajx O.
Case 2. (j, x) G. We distinguish two subcases.
Subcase 2.1. j Ci for some i. Then let ajx be an entry of the corresponding eigen-

vector vi ofAi.

Subcase 2.2. The vertex j is a source. Then leave the value for ajx open for the
time being.

After having dealt with all the sinks, let us turn to the sources. Let y denote such a
and consider the casessource. Repeat the same argument for the eigenvectors uyk of A

(y, k) G and (y, k) e G, with k belonging to some proper clique, leaving open the case
where k is a sink.

Case and subcase 2.1 supply us with q-dimensional eigenvectors ofA0, where q is
the order ofA0. To each sink (source) there corresponds a vertical (horizontal) concate-
nation of eigenvectors of the Ai (A i), and maybe zeros.

We may now conclude subcase 2.2. Let (y, x) e G, y a source, x a sink. Let further
Vx and uyt correspond to the appropriate eigenvectors ofA0 (A). Put ayx (u Vx) the
standard inner product.

Finally, put axj aky 0 for all x in Si, y in So, and all j and k. This yields a zero
block of order r n above and a zero block of order n s on the fight-hand side ofA
where r Sil, s Sol (ISI meaning the number of elements of S). We thus obtain
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a matrix of the form

[o o o]A= V: Ao 0
vv v o

where V is a q r block, whose columns are all eienvectors ofA0 and where Vr is an
s q block whose rows are all transposes of eienvectors of A ). The block-scheme ofA
is thus

qr qq qs
sr sq ss

It is quite clear that a matrix so described is idempotent.
This completes the proof of Lemma 3.
As an example we present a graph of order 10 by means of its contraction (Fig.

and then a matrix which is nonnegative and idempotent. Note that all the parameters
are arbitrary and independent of each other.

LI

W

2

FIG.
0 0 0 0 0 0 0 0 0 0-
0 0 0 0 0 0 0 0 0 0

0 0 0 0 0a b
0 0 0 0 0

a - - - o o o o o
: o o o o o o o

o o o o o o o
d e 0 0 0 0 0 0 0
a9 ag x x x y y z 0 0

_ao, ao, 0 0 0 u u w 0 O_

with a9t 3ax + 2cy+ dz
a92 3bx + ez
ao, 2cu + dw
a10,2 ew

9 10

A
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Now put Ao J, Vx JT, Vy SJ with arbitrary T and S. Considering that Vx
Ao Vx JT, Vy VyAo SJwe have VyVx SJT. By interchanging the first and second
rows and columns of blocks we arrive at Flor’s matrix [2, Thm. 2]. (A fourth row and
column of blocks will appear if there are isolated vertices in G(A).) Vx is necessarily
composed of eigenvectors of J, so is Vy (from the left). We thus obtain Flor’s result.

Since J is a direct sum of irreducible, idempotent blocks, the latter are all positive
and hence, once again by Perron’s theorem, each has a simple eigenvalue 1, so that the
rank of each positive block is 1.

Note that nonnegative in Flor’s result may be replaced by positive.

5. Conclusion. We are now in a position to state our Main Theorem.
THEOREM 1. A nonnegative square matrix is ofidempotent pattern ifand only fits

graph is admissible.
A matrix A (a0) is of symmetric pattern if ao 0 implies aji 0 for arbitrary i,

j. We have the following corollary.
COROLLARY 3. A nonnegative matrix ofsymmetric pattern is ofidempotent pattern

ifand only ifit is permutationally equivalent to a direct sum ofpositive (andpossibly one
zero) blocks. (Compare with [1, (3.4)].)

Proof. A necessary condition for idempotency of a matrix A is that its graph be
admissible. But because of symmetricity, G has neither sources nor sinks, so that G is a
disjoint union ofcliques and possibly isolated vertices. The converse is clear. This proves
the corollary.

Here is a characterization of positive, symmetric, idempotent matrices. Let a
and let a2, a3, , an be arbitrary positive numbers. We then have the following theorem.

THEOREM 2. A positive, symmetric matrix A ao) is idempotent ifand only if it
has theform A aB, B bo), bo aiaj, and

a ol
2

Proof. Let A be as described. Put A (co), with

n

C.ij aikakj aikajk a 2 olioljol a20ziaj oz aoiaj abij aij,
k=l k=l k=l k=l

so that A is idempotent.
Now let A be positive and idempotent. Since A is positive, its rank equals 1. This

means that each row is a positive multiple of the first row. Let the ith row, ri Xirl,
with Xl 1. Then aij X,.Xjat. Put al u. We may normalize A by extracting a from
the matrix and writing A aB. Then bij XiXj. Since a Cll a 2 -- )ki2, we get a

hi This proves the theorem (see also 1, Cor. 3.5 ]).
Let A be nonnegative, stochastic, and idempotent. Then clearly G(A) has no sinks.

A matrix A is of stochastic pattern if there exists a stochastic matrix having the same
zero-pattern as A. We have Corollary 4.

COROLLARY 4. A matrix is ofstochastic and idempotent pattern ifand only if its
graph is admissible and has no sinks.

Proof. Let A be of stochastic, idempotent pattern. Let Ao be the stochastic, idem-
potent representative. By what we just showed, G(Ao) is admissible and has no sinks.
Now let G be an admissible graph without sinks. For every clique of G we may introduce
stochasticity conditions. Every source contributes a row vector which is the transpose of
an eigenvector of Ao where A0 is constructed from the disjoint union of the cliques.
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Therefore every such row vector may be normalized by multiplying each element ofthat
row vector by its row sum. We thus get a stochastic matrix which is still idempotent.
This proves the corollary.

COROLLARY 5. A matrix A is of doubly stochastic and idempotent pattern if and
only if its graph is a disjoint union ofproper cliques.

Proof. Clearly G(A) may have neither sinks nor sources.
COROLLARY 5’. A doubly stochastic matrix is of idempotent pattern ifand only if

it is permutationally equivalent to a direct sum ofpositive square blocks.
Remark. It has already been mentioned in that the only positive doubly stochastic

idempotent n-square matrix is the one whose entries are all n -1.
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THE RESTRICTED SINGULAR VALUE DECOMPOSITION OF
MATRIX TRIPLETS*

HONGYUAN ZHAt

Abstract. In this paper the concept of restricted singular values of matrix triplets is intro-
duced. A decomposition theorem concerning the general matrix triplet (A, B, C), where A E Cmn,
B Crep, and C Can, which is called the restricted singular value decomposition (RSVD), is
proposed. This result generalizes the well-known singular value decomposition, the generalized sin-
gular value decomposition, and the recently proposed product-induced singular value decomposition.
Connection of restricted singular values with the problem of determination of matrix rank under
restricted perturbation is also discussed.

Key words, matrix rank, singular values, generalized singular values, product-induced singular
values, restricted singular values, matrix decompositions
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1. Introduction. Rank determination of matrices is an important problem in
numerical linear algebra [7]. In applications, the matrix A0, the rank of which is to be
determined, is always contaminated with errors, i.e., instead of knowing A0 exactly
we only have A A0 / E, an approximation of A0, where E represents the error or
perturbation matrix. The rank determination problem is how to estimate the rank of
A0, if A and some information of E are available. Usually only an upper bound on
certain norms of E, e.g., 2-norm, is assumed to be known. In this case the singular
value decomposition (SVD) is a useful tool for solving the problem [4], [7].

In many situations, however, more information about the error matrix E than
the simple upper bound of its 2-norm is available, e.g., E has some special structure
or, in other words, is restricted to a special class of matrices. SVD-based methods in
these situations are likely to lead to conservative rank estimations.

In order to illustrate the situation, we give the following simple example. Consider
the matrix

a2 al

If we assume that Ao results from the second-order ordinary differential equation

d2x dx
dt2 a2-- alx f,

then only al and a2 are subject to errors, and the "0" and "1" entries in Ao are exact.
Hence the error matrix E can only be of the following three forms:

(i) Only a2 is changeable:

e21 0 e21
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(ii) Only al is changeable:

(0E 0 e22
e22(0, 1).

(iii) Both a and a: are changeable"

Observe that any E of the form in (ii) cannot change the rank of the original
matrix A0, while SVD-based methods cannot lead to such a conclusion.

In this paper we consider the error matrix E which is restricted to a special
class of matrices, i.e., E BDC, where B and C are known matrices, and D is an
arbitrary matrix with an upper bound on its 2-norm. In 2 we introduce the concept
of restricted singular values (RSVs) for the restricted error matrix E BDC and
discuss the problem of rank determination of matrices under the perturbation of this
special class of error matrices. In 3 we consider two special cases of RSVs, i.e.,
singular values (SVs) and generalized singular values (GSVs). In 4 we derive the
main result of this paper, which we call the restricted singular value decomposition
(RSVD) of matrix triplets concerning the simultaneous reduction of three matrices
into quasi-diagonal form. Section 5 summarizes the paper and gives some comments
concerning the further research on the subject of RSVD. Although only 2-norm is
used in this paper, we note that the results of this paper can be extended to the case
of unitarily invariant norms [5].

Notation. In this paper, only the complex matrices are considered, while the case
of real matrices can be similarly considered. Throughout the paper Cmn denotes the
set of all m n complex matrices. The matrix AH is the complex conjugate transpose
of A, I]" I] and ll" ]IF are the 2-norm and Frobenius norm, respectively. / represents
the identity matrix of order s; O with different subscripts and superscripts (e.g.,
O()) denotes zero matrices of different dimensions. Sometimes we just use I and
O to denote an identity matrix or a zero matrix of different dimensions when their
dimensions are clear from the context.

Note. Originally we used the name "Structured Singular Values" for the concept
introduced in this paper. Some people, especially B. De Moor, G. Golub, and S. Van
Huffel, brought to our attention that the name had been used in control theory under
a different setting. Therefore we adopt here the name "Restricted Singular Values,"
which was suggested by B. De Moor and G. Golub.

2. Restricted singular values and rank determination of matrices. Let
A E Cmxn and the error matrix be of the form E BDC, where B Crep, D Cpxq,
and C Cqxn.

DEFINITION 2.1. The restricted singular values (RSVs) of the matrix triplet (A,
B, C) are defined as follows:

(2.1) at:(A,B,C) min {110112 rank (A + BDC) <_ k- 1}, k 1,...,n.
DECpxq

Before we proceed, some remarks are in order concerning the above definition.
Remark 2.1. If for some k (1 <_ k <_ n) there is no D Cvq such that rank (A +

BDC) _< k- 1, then crk(A, B, C) is defined to be oo.

Private communications, March 1989.
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Remark 2.2. For notational convenience, we define ak(A,B, C) 0, for k
n min(m, n),..., n.

Remark 2.3. It can be readily verified that the RSVs are arranged in nondecreasing
order, i.e.,

(2.2) ak(A,B,C) > ak+I(A,B,C), k- 1,...,n- 1.

Considering the example in the above section, we distinguish three cases corre-
spondingly. In the notation of the above definition we have

(0(i) A=
a2 al

a(A,B,C) =, a2(A, B, C) la2l.

0(ii) A
a2 o_(01)al

a(A,B,C) =,
al (A, B, C) , ag.(A, B, C) if a2 #- 0,

a2(A,B,C)=0 if a2=0.

(o 1), o:(Ol), Ol)(iii) A
a2 al

a (A, B, C) , a2(A, B, C) la2l.
This is an example of matrices of low orders, and we can find the RSVs by direct

computation. For matrices of higher orders, we need a decomposition theorem, which
will be the subject of 4. We now briefly discuss the connection of RSVs and rank
determination of matrices. The problem is to estimate the rank of

Ao A + BDC

where (A, B, C) is known, and in addition D 112 < e.
Assume further that the following inequalities for e hold:

a(A,B,C) >_ > ak(A,B,C) > > ak+(A,B,C) >_ >_ an(A,B,C);

then the best possible estimation of the rank of Ao is k, in the sense that there exists
a matrix Do, satisfying Do 112 <- such that

rank (A + BDoC) k

but there exists no D satisfying D [12 <- such that

rank (A + BDC) < k.

Such strategy of estimation is also used in the determination of numerical rank [4],
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3. Singular values and generalized singular values. In this section we dis-
cuss two special cases of RSVs, i.e.,

(1) B=Im and C=In,
(2) B=r. or C=I.

We will show that the RSVs of the matrix triplet (A, B, C) corresponding to these two
special cases are just the well-known singular values (SVs) and generalized singular
values (GSVs), respectively [4], [6].

3.1. Singular values of a complex matrix. We first cite the following result.
THEOREM 3.1 ([4], [5]). Let the SVs of A be

(3.1) al _>." _> rn _> 0;

then

(3.2) ak= min {11EII2 rank (A + E) _< k -1}
EE(

k 1,...,n,

and there exists a matrix Ek satisfying ]]Ek]]2 ak such that

rank (A + Ek k- 1, 1,...,n.

We note that Remark 2.2 is also applicable here, i.e., we simply define 6k 0
for k n- min(m,n),..., n. Using the notation of Definition 2.1 we can rewrite
Theorem 3.1 as Corollary 3.1.

COROLLARY 3.1.

(3.3) ak(A, Im,In) ak, k 1,. ,n.

It is also easy to establish the following inequalities.
COROLLARY 3.2. Assume that B 0 and C 7 O; then

(3.4) ak <_ II B I]l] C II2ak(A, B, C), k 1,...,n.

Proof. Let Dk e Cpxq satisfy IlDkll2 ak(A,B, C, (see Theorem 4.2) and

rank (A + BDkC) k- 1;

then from the above theorem, it follows that

which proves the corollary. []

3.2. Generalized singular values. We only consider the case B =Im and C
is a general complex matrix. The error matrix is now E DC. The dual case that
B is a general matrix and C In can be discussed similarly.

The concept of GSVs of matrix pencils was introduced by Van Loan [8] (where he
used the term B-singular values). Paige and Saunders provided a slight generalization
of Van Loan’s result in order to treat all the possible cases [6]. Since GSVs have
many applications in numerical linear algebra problems and thus are of their own



176 HONGYUAN ZHA

interests, here we give an alternative derivation of the so-called generalized singular
value decomposition (GSVD) of matrix pairs, in which the two matrices have the
same number of columns. Our approach here is different from those in [6] and [8].

THEOREM 3.2 ([6], [8]). Let A E cmn and C Cqn; then there exist unitary
matrices U and V and nonsingular matrix Q such that

k n-k k n-k
(.) UQ r, o ), VCQ ( r, o ),

(3.6) A’- SA
OA

C-- SC
Ik-r-s

where

SA diag (at+l,"’, at+8), Sc diag (3r+1,..., 3r+8)

and

(3.7) 1 > ar+ _>’" _> ar+s > O, 0 </r+ _<""

_
r+s < 1,

2 2
ai +/i =1, i=r+l,...,r+s.

The integer indices can be expressed as follows:

k= rank (cA), r= rank ( rank (C),

and

s= rank(A)+ rank(C)-rank

Proof. The proof is constructive and consists of four steps. The transformations
of each step are of the following form:

A(+) U()A()Q(), C(+) V()C()Q()

where U(k) and V(k) are unitary matrices and Q(k) nonsingular. In each step we only
specify the U(k), V(k), and Q(k) and the resulting matrices A(k+) and C(+). Set
A() A and C(1) C.

Step 1. Let the SVD of the matrix C be UCV diag (O, E()), where E()-
diag (s, st) and s >_,..., >_ st > 0. Set

U(1) I, V() U,
Q() V diag (I, E1);

then

n-t t
() ( ?), 4) 1,

(oo)C() 0 It
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Step 2. Let the SVD of the matrix A2) be U2A2)V2 diag (E(), O), where

E() diag (tl,...,tr) and tl _>,..., >_ tr > 0. Set

V(2) I,U() U,
Q(2) diag (V2,I) diag ((E())-,I);

then

r n-r-t t

m-r 0 0 A23
Step 3. Let the SVD of the matrix A be rr A(3)

t323 V3 diag (E() O), where

( /E diag (w,...,ws) and w >_,...,_> w8 > 0. Let ai wi(l+w)- and
(l+w)2-/2, r+l,...,r+s, and SA diag (ar+,"’,ar+s),Sc

diag (r+,"" ", fir+s). It is easy to check that a, fl (i r + 1,..., r + s) satisfy (3.7).
Set

then

U(3) diag (I, U3), V(3) diag (I, v3H),
Q(3) ( Io -A3)I ) diag (I, V3) diag (I, Sc, I);

A(4)

r n-r-t s t-s

8 0 0 SA 0
m--r--s 0 0 0 0

n-t s t-s

C(4) s 0 Sc 0
k r s 0 0 Ik-r-s

Step 4. After suitable permutations P and P2 and set k t + r we obtain

/

A(5) A(4) P1 SA

6(5) P2C(4)P Sc

thus we have obtained the required quasi-diagonal form. It is easy to verify that

rank(C)=k-r, rankrank (A) r + s,

which complete the proof.
According to [6], corresponding to each column in (3.5) is ascribed a generalized

singular pair (a,/). Following (3.6) we take for the first k of those as

(3.8) ai=l, i=0, i=l,...,r,
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(3.9) ci, i as in SA and SB r / 1,..., r / s,

ai 0, i 1, r + s + 1,..., k,

and call them the nontrivial generalized singular pairs of (A, C); ai/i, 1,..., k,
are called the nontrivial generalized singular values of (A, C). The other n- k pairs
corresponding to the zero columns in (3.5) are called trivial generalized singular pairs
of (A, C), and no particular numbers are assigned to them.

The following result gives a new characterization of the GSVs of a general matrix
pencil and states that GSV’s are a special case of RSVs.

THEOREM 3.3. Using the notation of Definition 2.1 and Theorem 3.4 we have
the following results:

(1)

(3.11) ai(A, Ira, C) (--, i- 1,...,k,

and

(3.12) ai(A, Ira, C) O, k + 1,..., n.

(2) Letl= rank ()-rank(C)andu=min(m, rank ())rm;then
for all D E Cmx q

(3.13) _< rank (A + DC) <_ u

and for all integers k satisfying <_ k <_ n, there exists matrix Dk Cmxq such that

rank (A + DkC) k.

Proof. (1) Let the GSVD of (A, C) be as in Theorem 3.2. For arbitrary D Creq,
let UDVH (Dij)i,j=13 be partitioned conformally with the partitionings of EA and
Ec; then

rank (A + DC)
rank (UAQ + UDVHVCQ)

rank 0 SA -t- D22SC D23 O
0 D32Sc D33 O

The result follows from Theorem 3.1.
(2) As is proved in Theorem 3.4, we have

k- rank (), r-- rank ()- rank(C).

The proof of this part can be easily derived from the above expressions and Theorem
3.1. ]
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In the following we discuss the problem of uniqueness of GSVD. From the GSVD
in Theorem 3.2, let

UiAQi (EA, O), VCQ (rc, o),

be two GSVDs of A and C; then

(3.14) (UuH)(EA, O) (EA, O)(QQ),

(3.15)

Let

and

(V.vH)(Ec, O) (Ec, O)(Q{Q).

vu (v)i,j=l

QQ (Q 4)i,j--1

(i 1, 2)

U21 U22SA 0 0 SAQ21 SAQ2. SAQ2a SAQ24
U31 U32SA 0 0 0 0 0 0

which yields

U31 O, U32 O, Q3 O, Q4 O, Q23 O, Q24 O,
U Q, U2SA Q2, U2 SAQ2, U22SA SAQ22.

From the fact that U2U is unitary, it follows that U3 O, U23 O. Similarly,
equation (3.15) results in the following identity:

0 V22Sc V23 O ScQ21 SCQ22 SCQ23 SCQ24
0 vSc v 0 Q Q Qa Qa4

which yields

V=O, Va=O, Q=O, Qa=o, Qa4=o,

V..Sc ScQ, Va ScQa, VaSc Qa, Qaa Vaa.
From the fact that V2V is unitary, it follows that V21 O, V31 O. Furthermore,
since’U2 SAQ2 O, hence U2 O and Q2 O. Since V32 Q32S O,
hence V23 O and Q23 O. From P22 S]U22SA and P22 SV22Sc, we obtain

(sass)v u.(sasS).
Let ai ai+r/i+r,i 1,...,s and E "= SAS diag (ailI81,...,ai, Is,) where

ril > > cry, and t= st s Since 2
ai+ ++ 1, 1, s, hence SA and

Sc have the same partitioning as that of E, i.e.,

SA diag (aIs

be block matrices partitioned conformally with the partitions ofA and Ec. Equation
(3.14) gives the following identity:
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From ZV22 U22Z, we can verify

Z2F 2U22 U222,

therefore

U22 V22 diag (U1,...,U),

where i, (i 1,... ,1) is unitary matrix of order si.
Summarizing the above, we obtain

V33
0 / UH U2H diag (Ull, U22, U33)

and

(3.16) VH V2H diag (Vll, U22, V33)

where Ull, V22, V33, Vii, V33 are unitary; the matrix Q44 is nonsingular, and U22
diag (1," , t).

As pointed out in [6], the GSVs of (A, C) are just the SVs of AC-1, if C is
nonsingular. In the following we further discuss the case in which C is a general
matrix.

COROLLARY 3.3. We use the notation of Theorem 3.2 and let

c Q s v.
I

If rank (AH, cH)H n, then C is uniquely defined and the SVs of AC contain
the finite GSVs of (A, C).

Proof. Since rank (AH, cH)H ?3, any two sets of transformations in Theorem
3.2 satisfy the following relations"

Q Q2 diag (U11, U22, V33), UH U2H diag (U11, U22, U33),

and V1H V2H diag (V11, U22, V33), hence

Q v
I

Q V.
I

Therefore we have proved that C is well defined. Furthermore, observe that

UACVH diag (O, SAS1, O)
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and only the infinite GSVs of (A, C) are changed to zero SVs of AC; the other GSVs
are preserved in AC. []

In the following we discuss some properties of C. It is easy to check that C
satisfies the following equations:

(.1) cc]c c,

(3.19) (CC)H CC
Therefore in the notations of [1], C, is a {1, 2, 3}-inverse of C. It will

be interesting to know how we can uniquely characterize CA+ in the class of a
{1, 2, 3}-inverse of C. The following theorem answers this question under the as-
sumption that rank (AH, cg)H n.

THEOREM 3.4. If (AH,CH)H is of full column rank, then C is the unique
solution of the following constrained minimization problem:

(3.20) min ]]AXI]F
XECnxq

subject to

(3.21) CXC C,

(3.22) XCX X,

(3.23) (CX)H CX.

The minimum value is /’] ,+s (ci/i)2
i--r+

Proof. Let C have the decomposition as in (3.5)"
k n-k

VCQ ro, o ).
Since rank (AH, cH)g T, SO k n and C VHcQ-1. Partition Q-1xvH
(x)i,j=l conformally with the partitionings of A and c. We can verify that X
should be of the following form:

X =Q - 0 V

in order to satisfy (3.21)-(3.23).
Since

Z12

IIEX2,Xx3)ll-4-11All
-> I1 11

2 (/
i=r+l i
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The equality is satisfied if and only if X12 O and X13 O, i.e., X C.
Remark 3.1. Along the lines of the proof of Theorem 3.4 we can also verify that

C is the unique solution of the following constrained minimization problem:

subject to

min IIAXIIF,
Xtq

(1) CXC C,
(CX) CX.

Remark 3.2. Exchanging the rolls of A and C in (3.20) and (3.14), we can also
show that

(’A := Q S. U
0

is the unique solution of the corresponding minimization problem. Another way of
uniquely characterizing C. is to generalize the Moore-Penrose conditions.

THEOREM 3.5. If (A, cH)g has full column rank, then C is the unique solu-
tion of the following four equations:

(3.24) CXC C,

(3.25) XCX X,

(3.26) (CX)H CX,

(3.27) (AHAXC)H AHAXC.

Proof. As in the proof of Theorem 3.4, X should be of the following form:

0 X12 X13 )0 S 0
0 0 0

V

in order to satisfy (3.24)-(3.26). Since

AHAXC Q-H SA VVH SA
0

0 S 0 VVT
0 0 I

--Q-HOoA)cOQ-,0

0 ) Q-Q
S

I ) Q-’

therefore (AHAXC)H AHAXC if and only if X2 O and X3 O, i.e.,
X=C. ]
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4. The restricted singular value decomposition. In this section, B and C
are assumed to be general matrices. The key observation is the following.

LEMMA 4.1. Let P E mxm and Q Cnn be nonsingular matrices, and let
U pxp and V qxq be unitary matrices; then

(4.1) ak(PAQ, PBU, VCQ) ak(A, B, C), k 1,..., n.

This lemma specifies a class of transformations which preserves the RSVs of a matrix
triplet.

THEOREM 4.1. Let A Cren, B cmp, and C can; then there exist
nonsingular matrices P cmm and Q Cnn, unitary matrices U CPP, and
V cqq such that

n-t1 tl

PAQ=m-tl(t2 A 0()),
PBU

(4.4)
n--t1 tl

VCQ ),

j k r sl

j

EA= Ii
r SA

0(82

(4.6) S

j p-j-r-s2 r s2

k +
j Ij

0(
r SB
82 Is

(4.7) Pc

j+k r sl

q- l- r sl 0(
r Sc

where SA diag (ai), SB diag (i), Sc diag (3’i), and

2 2 i=s+l, ,s+r(4.8) a + fli + ")’ 1,
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where we denote s j + k + l; furthermore

(4.9) l>aikai+l>O, O<i_<i+l<l, l>’i_>q’i+ >0

and

(4.10) ai

Z
>
+1+

s + 1,...,s +r- 1.

Proof. The proof is constructive and consists of four steps. The transformations
of each step, according to Lemma 4.1, are of the following form:

(4.11) A(k+l) p(k)A(k)Q(k)

(4.12) B(k+l) p(k)B(k)U(k)

(4.13) c(k+l) v(k)c(k)Q(k)

where p(k) and Q(k) are nonsingular matrices, U(k) and V() are unitary matrices.
In each step we only specify the p(k), Q(k) U(k), and V(k) and the resulted A(k+),
B(k+), and C(k+). Set

A(1) A, B() B, C() C.

Step 1. Using Theorem 3.4, let the GSVD of (A(1), C(1)) be

UA()Q

j + k + r s t

l+r 0 0 0
m-j-k-l-r 0 0 0 0

Set

then

j+k l+r s t

VC()Q + r 0 0 0
81 0 0 Is1 0

P() U,
U() I,

Q() Q1 diag (Z, (S())-’, 1),
V() V,

A(2)

j+k
j + k ( I+k
l+r 0

m-j-k-l-r 0

+ r s t
0 0 O)o o,
0 0 0

B(2) j + k B 2)
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j/k l+r Sl tl

C(2)
j+k ( 0 0 0 O)l+r 0 I+, 0 0
s 0 0 I 0

Step 2. Using Theorem 3.4 let the GSVD of the matrix pair

be of the following form:

S() -
r

r 0
82 + t2 0 0

p r 82 r 82

0 sQ_) 0

p.B2)U2 r 0 0
s2 0 0 182
t 0 0 0

where S diag (s, ,st), S_) diag(tl, ,tr) andsi2+ti2 1, 1 > s
(9

.._>sr>0and0<t_<..._<tr <l. Set

then

p(2) diag (I, P2),
U()

Q(2) diag (I, V2, I),
V() diag (I,VH,I),

A(3)

j + k r s t
j+k Ij+k 0 0 0 0

0 I sQ_)yt o o
r o o o o

m-j-k-l-r 0 0 0 0 0

and

B(a)

p r 82 r 82

+ B?) B?)
0 sQ 0

r 0 0
s 0 0 I8
t2 0 0 0

C(s) C(.).

Step 3. Set

p(3)

I
O
O
O
O

O I O
O O I
O O O

O
O
I
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Q(a)
I
0
0
0 ooO .? s si Oo I

and

U(3) I, V(a) I,

then

A(4)

B(4)

C(4)

Step 4. Let the SVD of B3) be

A(a),
B3)

O
O
O
O

C(a).

0
0

0
0

0
0
0

o)
where E),o is nonsingular. Let s j + k + and

28

2as+i (1 + si)l/2
s+i ti,

8i

+

(i 1,...,r).

It is easy to verify that {as+i}, {3s+i}, and {%+i} satisfy (4.8)-(4.11). Let Sc
diag (%+i), SA S(A2)SC, and SB S(), in addition, set

diag ((E())-I, I)diag (U3, I),
diag (I, Sc,I) diag ((E())-I, I) diag (u3H, I),
diag (V3, I),
I.

p(4)

Q(4)
U(4)

V(4)

After some manipulation, we obtain the results as stated in (4.2)-(4.4). The proof is
completed. El

Remark 4.1. We can also use D1 and D2 positive-definite diagonal matrices to
scale (SA, SB, Sc) to (D1SAD2,DsSB, ScD2). For example, we can choose D1 and
D2 such that D1SB and ScD2 are identity matrices.

Similar to (3.8) we define

ai 1, /3i 1, ")’i 0,
ai 1, 3i 0, "i 0,
ai 1, /i 0, ")’i 1,
ai, i, "i as in SA, SB, andSc,
ai O, 3i 1, ’i 1,

1,...,j,
i=j+l,...,j+k,

j + k + 1,...,s,
s + 1,...,s +r
s + r + 1,...,s + r + min(sl,s2)
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to be the nontrivial RSV triplets of (A, B, C).
The following theorem relates Theorem 4.1 with the concept of RSVs and justifies

the above definition and calling Theorem 4.1 the RSVD theorem.
THEOREM 4.2. With the notation as in Theorem 4.1 and the above definition the

following statements are true:

(4.14) ai(A, B, C) ai

’ 1,...,s / r / min(sl,s2),

(4.15)

(2) Let

ai(A,B,C)=O, i=n-(s+r+min(sl,s2))+l,...,n.

l= rank (A,B)+ rank rank C o)

then for all D E Cpq

u=min(rank(A,B), rank

(4.16) <_ rank (A + BDC) <_ u

and for all integers k satisfying g k

_
n, there exists matrix Dk cPq such that

rank (A + BDkC) k

Proof. (1) Let UHDVH (Dij)i4,j=l be a block matrix partitioned conformally
with the partitionings of EB and Ec.

rank (A + BDC)
rank (PAQ + PBUUHDVHVCQ)

rank

0 D2 D3Sc D14 O h
Ik 0 0 0 0

0 0 It 0 0 0
0 0 SBD32 SA + SBD33Sc SBD34 0
0 0 D42 D44Sc D44 O
0 0 0 0 0 O

D34 ’D44 y(( )j+k+l+ rank SSOaS" O0 + D4a

using Theorem a.1, the proof of this part is completed.
(2) or the upper bound, note that

hence

rank (A + BDC) <_ rank (A, B)
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and

rank(A+BDC)<_ rank ().
For the lower bound, we can verify that

hence

rank(A,B) s+r+s2,

C O s+2r+sl+

s rank (A,B)+ rank rank C

The proof of the theorem is completed.
Remark 4.2. From the following linear system

1 1 1 1 0 0 j
1 0 0 1 0 1
0 0 1 1 1 0
1 1 1 1 0 1 r
1 1 1 1 1 0 sl
1 1 1 2 1 1 s2

B

rank (A)
rank (B)
rank (C)
rank (A, B)

rank A )C O

we obtain the following expressions for the integer indices in Theorem 4.1:

j rank + rank(B)- rank C O

k rank 6’ 0 rank (B)- rank (6’),

rank (A,B) + rank (6’)- rank

r rank C O + rank (A) J rank (A, B) rank

Sl rank ()- rank(A),

in addition, it is easy to see that

tl n- rank (),
t2 m rank (A, B).

If we use Rr(A)(Rc(A)) and Nr(A)(Nc(A)) to denote the subspace spanned by
the rows (or columns) of A and the row (column) null space of A, respectively, and
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furthermore, S\T denotes the complement subspace of T in S, such that S\T T S
and dim(S) is the dimension of the subspace S, then we can express the above integer
index using the following geometric terms:

k=

dim(Nr(B)\Nr(A, B)) dim(Rr(A, B) Rr(C, 0)),
dim(Rr(A, B) R(C, 0)),

r dim(Rr(A) Rr(C)) dim(Rr(A, B) Rr(C, 0))

dim(Rc(A)Rc(B))-dim (Re ( )Rc ( )),
sl dim(Nc(A)\Nc ( )),
s2 dim(N(g)\N(g,B)),

tl diI(Nc(cA )),
t2 dim(Nr(A, B)).

The above expressions can serve as the basis of a geometrical derivation of RSVD.
Before we discuss another two special cases of RSVD, we consider the uniqueness

problem of the RSVD in Theorem 4.1.
THEOREM 4.3. Let the following:

n-tl tl

PAQ=m-tl(t2 A 0()),

n--t1 tl
)

be two RSVDs of (A, B, C) in the form of Theorem 4.1. Furthermore, let

S1SAS diag (a11rl ,...,aIr ),

(ri >, > i,o rj r;
j-’l

then

(4.17) PP2

j k r 82 t2
j 3 O O
k 0 3 0 O

O O 1/22 O O
r O O O 3 O 6
s2 O O O O 4
t2 O O O O O 6
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(4.18)

J

QQ
r
81
t

j k r s t
U P2 P3 O O O
O P22 P23 O O O
O O V O O O
0 0 0 U33 0 0
O O O O V44 O
Q61 Q62 Q63 Q64 Q65 Q66

(4.19) U2/-/U diag (U, U22, U33, U44),

(4.20) V2VT diag (V, V22, U33, V44)

where Uii (i 1, 2, 3, 4) and Vi (i 1, 2, 4) are unitary; U33 diag (,..., ),
and Crr, (i 1,..., w); P22, P6, and Q66 are nonsingular.

Proof. We have

(-) o o

P2P- ( NOB )
(vv)(rc, O)

0 0 (QQ)’

(Ec, O)(QQ).
Let

P := P2P- (Pij)fl,j=l,
Q .= Q;1Q1 (Qij)61,j=,
u :=Upl (u 4)l,j=l
v := vvy (v),=

be block matrices partitioned as in (4.17)-(4.20). The equation

Qll

SAQ41
0
0

yields

Nil P12 P13 P14SA 0 0
P21 P22 P23 P24SA 0 0
P31 P32 P33 P34SA 0 0
P41 P42 P43 P44SA 0 0
P5 P2 Pa P54SA 0 0
P P2 Pa P14SA 0 0
Q12 Q13 Q14 Q15
Q22 Q23 Q2 Q2
Q32 Q33 Q34 Q3

SAQ42 SAQa3 SAQ4a SAQ4
0 0 0 0
0 0 0 0

P
P O,
Qi o,

Pi4SA Qi4,
P SaQ,

P44SA SAQ44.

(i 1,2,3),
(i 5,6),
(i 1,2,3,4),
(i 1,2,3),
(j 1, 2,3),

Q16
Q26
Q36

SAQ46
0
0

(j 1,2,3),
(j 1, 2,3,4),
(j 5,6),
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Similarly, the equation

P 0
Pu 0
Ps 0
P 0
P 0
Po 0

P14SB P15 Vii V12 U13 V14
PSB P 0 0 0 0
P34SB P35 O O O O
P44SB P45 SBU31 SBU32 SBU33 SBU34
P54SB P55 U41 U42 U43 U44
P64SB P65 O O O O

yields

P o, ( , 3, 6), (j , 4, ),
PI U P14SB U3, P15 U14,

P41 SBU31, P44SB SBU33, P45 SBU34,
P U, PSs U, P U,

and U2 O, U32 O, U42 O. Because U is unitary, we must have U2 O, U23
O, and U24 O. Likewise the equation

yields

O 0 Vu VSc V4 0 I0 0 Vuu VuSc Vu4 0
0 0 Vm VSc V4 0
0 0 V4u V4Sc V44 0

ScQ41 SCQ42 SCQ43 SCQ44 SCQ45 SCQ46

Qij O, (i 3, 4, 5), (j 1, 2, 6),
V Q ySc Q Y4 Q
y Q, YSc Q4, Y4 Q,

V32 ScQ43, Y33Sc ScQ44, V34 ScQ45,

and V2 O, V13 O, V4 O. Because V is unitary, it follows that V2 O, V3
O, and V4 O.

Furthermore, because U41 Ps O, U42 O, and U43 P54SB O, we
conclude U4 O and U34 O; hence P5 O and P45 O. Similarly, because
V4 O, V24 Q35 O, and V4 SCQ45 O, we obtain V42 O and V43 O;
hence Qs O and Q54 O.

Moreover, P41 SAQ4 O, P42 SAQ42 O, hence U3 P4S O;
and U13 O. Therefore P4 S[U3 O. Similarly, Q4 PI4SA O, Q.4
P24SA O and Q34 P34SA O. Because V2a Q34S O, we must have V32
O; hence Q43 SV32 O, and P4 SAQ43 O. Additionally, P32 Q32 O.

Finally, we have P44 SBU33S, Q44 SlV33SC and P44 SAQ44S; hence

u33<sss&
which implies

U33 V33 diag (U,

As in the proof of Theorem 4.2, we can choose {si} and {t} such that

1 > sl _>,...,_> sr > 0,
0 < Sl <_,’",<_tr < I,

2 2 (i 1, r),s + t I,
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and

Os+i

+

It is then easy to check that

Ss
Sc

(i 1,...,r)

diag (Ol,8+il Irl ,’’’, OgS+iw Irw ),
diag (S+il Irl ,’’’, swiw Irw),
diag (%+ilIri,’", %+iIr),

hence P44 Q44 U33. The whole proof is completed.
COROLLARY 4.1. Let A be nonsingular and the nonzero SVs of CA-iB be

a >_... >_ a > O,

then (A,B,C) has (n- r) infinite RSVs and the r finite RSVs are

1 >...> 1
O"r O"

Proof. Using the decomposition of Theorem 4.2, we can show that

O

V(CA_IB)U 0
0

ScS1SB I"
The diagonal elements of Scs]isB are nonzero SVs of CA-iB. 0

COROLLARY 4.2 (PSVD [3]). Let B 6 Cmp and C 6 CPn; then there exist
unitary matrices U and V and nonsingular matrix T such that

(4.21) UBT I IJ
OB I’

(oc )(4.22) T-icv Is
c

where

EB diag (sl,...,sr)

2s + t:, 2 1,

Ec diag (tl,...,tr),
l>t>_..._>tr >O,
i-1,...,r.

Proof. Using Theorem 4.1, let the RSVD of (Ip, BH, CH) be

PIpQ diag (Ij Ik, Is, SA ),

pBHff

CHQ

( ),
i,
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Set Q diag (I, S]1); then

PQ Ip,

pBH(]
"(Ij 0(
\

I

The proof is finished if we set U fH, V IH, T pH, OB (O())H, Oc
(0())H, EB SB, and Ec ScS]. [3

Remark 4.3. Corollary 4.2 is a simplified version of the product-induced SVD
(PSVD) in [3]. We can also use the techniques established in proving Theorem 3.2
and Theorem 4.1 to give a direct proof of it.

In the following we give the relation between the RSVD of (A,B,C) and the
eigenstructure problem of

( 0 A BH

From Theorem 4.1, after suitable permutation H we obtain

O
Q ) 1-IT

therefore the eigenstructure of the symmetric matrix pencil is the following:
(i) 2(j + l) infinite eigenvalues corresponding to Jordan block of order

2 ((j + l) 2 2 Jordan blocks).
(ii) 2k infinite eigenvalues corresponding to Jordan block of order 1.
(iii) 2r nonzero finite eigenvalues =i=a/’y, s + 1,..., s + r.
(iv) s + s2 zero eigenvalues.
(v) (m + n) 2(j + + k + s) s s2 Kronecker blocks of order zero.

5. Concluding remarks. In this paper we introduce the concept of restricted
singular values of matrix triplets. A main theorem called restricted singular value
decomposition (RSVD) is proved for general matrix triplets. Three special cases of
restricted singular values, i.e., the well-known singular values, the generalized singular
values and the recently proposed product induced singular values are also discussed.
Numerical algorithms for computing the RSVD of a general matrix triplet and appli-
cations of RSVD to the total least squares problem and the regularization problem
of general Gauss-Markov linear model will appear in separate papers. Perturbation
analysis and further applications of RSVD will be the topics of future research. We
hope that RSVD will be important not only as a useful theoretical tool for analysing
problems in numerical linear algebra, statistics, and control and system theory, but
that its algorithmic aspects will also find applications in computer-based methods to
solve realworld problems.
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Abstract. Using a uniform approach, characterizations are obtained of linear operators on
matrix spaces that preserve certain equivalence relations such as consimilarity, ,-congruence, nonsin-
gular equivalence, and unitary equivalence.
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1. Introduction. Let be an equivalence relation on a matrix space d. We
are interested in studying the structure of a linear operator T AA --, that preserves, that is,

T(A) T(B) whenever A B.

Such an operator T is often called a linear preserver. Hiai in [9] studied this problem
and obtained complete characterizations of T in two important cases:

(i) AJ is the set of all n n complex matrices and is similarity;
(ii) AA is the set of all n n Hermitian matrices and is unitary similarity.

In this paper we extend Hiai’s techniques to treat three additional cases:
(iii) Ad is the set of all n n complex matrices and is consimilarity;
(iv) AA is either the set of all n n complex matrices or n n Hermitian matrices

and is ,-congruence; and
(v) AA is the set of all m n complex or real matrices and is equivalence or

unitary equivalence.
For each case, our general strategy is:
(a) Characterize the kernel of T;
(b) Modify T to obtain a new operator T that is nonsingular and preserves a

certain subset
(c) Characterize the linear operators T’ on AA that satisfy T’(S) $

(d) Use (b) and (c) to characterize T.
Our approach to (a) and (b) is to analyse the orbits under the equivalence re-

lation ,
O(A;,,) {X e M: X A},

and the corresponding tangent space TA at A. When there is no ambiguity about
we shall write O(A) instead of O(A; ,,). It is known (e.g., see [2]) that O(A) is
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homogeneous differentiable manifold if is any of the equivalence relations described
in the preceding cases (i)-(v).

In 2, 3, and 4 we discuss the cases in which the equivalence relation is,
respectively, consimilarity, ,-congruence, and equivalence. In the final section we
describe some related results and problems.

We shall use the following notation throughout the paper:

]Fmxn the linear space of all m x n matrices over IF, where IF is the complex field
or the real field JR.

7-/n the real linear space of all n x n Hermitian matrices.
Un (IF) the group of all n x n unitary or real orthogonal matrices according as ]F

or IF JR.
{E,’",Emn}" the standard basis of ]Fmn, i.e., Eij has a one in the (i,j) position

and zeros elsewhere.
X the transpose of X ]Fmn.
X the complex conjugate of X mn.
tr X the trace of X E ]Fnn.
Im(L) the range (image) of the linear transformation L.

The following simple principle will be used to show that most of the linear pre-
servers we study are nonsingular.

LEMMA 1.1. Suppose the equivalence relation on the matrix space .M has the
property that A 0 if and only if A O, and suppose a given linear operator T

.hA preserves . Then
(a) span O(A) C ker(T) for every A e ker(T);
(b) /f there is some A e ker(T) such that span O(A) .M, then T 0;
(c) /f is such that span O(A) .M for every nonzero A 3/1 and if T is

nonzero, then T is nonsingular.
The hypothesis that A 0 if and only if A 0 is clearly met for similarity,

consimilarity, ,-congruence, and equivalence, which are the equivalence relations we
consider in this paper.

2. Consimilarity. In this section the matrix space A/[ is @,n and is con-
similarity, i.e., A B if there exists a nonsingular S @nn such that A SBS-1.
The main result is the following theorem.

THEOREM 2.1. A linear operator T (nn (nn satisfies
T(A) is consimilar to T(B) whenever A is consimilar to B

if and only if there exist a nonsingular S nxn and a real number c > 0 such that
either

T(X) cSXS-1 for all X
or

T(X) cSXtS- for all X e (nxn.

We divide the proof of Theorem 2.1 into several lemmata.
LEMMA 2.2. (a) O(E)={xyt’x,y(n, y*x=l}.
(b) O(E2)= {xyt x, y e ’, y*x 0}.
Proof. (a) Observe that if ei is the ith column of the n x n identity matrix, then

O(EI) {-EIS- S is invertible}
{xyt" S is invertible, x =-e, and yt eS-}
{xyt.x,y n, y*x 1}.
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(b) The proof of (b) is similar to that of (a).
LEMMA 2.3. Span (.9(A) Cnxn ]or every nonzero A
Proof. Let A E Cnxn be a given nonzero matrix. Since A is consimilar to a real

matrix [10, Thm. 4.9], to prove the lemma, we may assume that A is real. As A is
nonzero, there exists a nonsingular R E IRnxn such that the (1, 1) entry of RAR
(.9(A) is nonzero. Let PI,..., Pk with k 2n be all the distinct diagonal matrices

kwith diagonal entries equal to 1 or -1. Then B ’= PAP( span O(A) is a
diagonal matrix with nonzero (1, 1) entry. It follows that for S diag(1, i,..., i), B+
SBS- AEI span O(A) for some nonzero A. Thus, EI span O(A) and hence
O(EI) C span O(A) By Lemma 2.2(a), E,E + Ej E span (.9(A) for all i, j. As
a result, span O(A) Cnxa.

The following result now follows from Lemma 1.1(c).
LEMMA 2.4. Let T {nxn (nxn be a nonzero linear operator that preserves

consimilarity. Then T is nonsingular.
LEMMA 2.5. Let A ]Rnxn be a nonzero matrix. Then the tangent space to

O(A) at A is

TA {XA-AX X

Moreover, the real dimension of TA equals:
(a) n2 /f A AI,
(b) 4n 3 /f A AE,
(c) 4n 4 /f A AE12,
(d) p >_ n2 if rank(A-aI) 1 for some nonzero a e (, and equality holds if and

only irA is consimilar to aI or A is a 2x2 matrix that is consimilar to la[(E2-E2),
(e) q >_ 4n/f rank(A- aI) > 1 for all a e .
Proof. The asserted form of TA follows immediately from the power series expan-

sion of SAS- with S ex p=O X (na.
Note that every rank one matrix is consimilar either to AEI or to AE2 by

Lemma 2.2, so the five cases listed in the lemma are exhaustive. Let X X + iX2
with X, X2 IRaa. Then

XA- AX (XA- AXI) i(AX2 + X2A)

and hence the real dimension of 7"A equals rank(L1)+ rank(L2), where L and L2 are
the linear operators on IRaa defined by

L(Y)--YA-AY and L2(Y)=AY+YA.

Since A is real, the rank of L1 over ]R is the same as its rank over
If A AI, then it is clear that rank(L) 0 and rank(L2) n2, so rank(L) +

rank(L2) n2.
Now suppose A is not a multiple of the identity matrix. By [9, Lem. 1.3], we have

rank(L) 2n 2 if rank(A aI) 1 for some a e , and rank(L1) >_ 2n otherwise.
Next consider rank(L2). If A AE, then Im(L2) span{Eij 1 or j 1}, and
hence rank(Z2) 2n- 1. If A ABe2, then Im(L2) span({E + E22} {Ei2" _>
3}{E j >_ 2}), and hence rank(L2) 2n-2. If rank(A-aI) i for some nonzero
a (, then A S(EI + #E2 + a ’i=2 Eii)S- for some nonsingular S
Notice that if A has eigenvalues A,..., An, then L2 has eigenvalues Ai + Aj (1 _< i, j _<
n). It follows that if -a and - 0, then L2 has n2 nonzero eigenvalues, and
hence the rank of L2 is n2. If p 0, then L2 has n2 1 nonzero eigenvalues, so the
rank of L2 is at least n2 1. In both cases, we have rank(L1) + rank(L2) > n2.
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Now suppose -a. Since the complex eigenvalues of A occur in conjugate pairs,
we have either (i) -a E lR; or (ii) n 2 and are pure imaginary. If (i)
holds, then A is similar to a(I- 2Ell) (via a real matrix), which in turn is consimilar
to aI (via S (i- 1)EI -I), and hence A is consimilar to hi. If (ii) holds, then
A is similar to lal(E2 -E2) via a real matrix. In both cases, one can check that
rank(L) + rank(L2) n2. Finally, if rank(A- hi) > 1 for all a e , the same
arguments used in the proof of [9, Lem. 1.3] show that rank(L2) _> 2n over , and
hence rank(L2) >_ 2n over ]R as well. Thus, rank(L1) + rank(L2)

LEMMA 2.6. Suppose the linear operator T" (nn -’ (nn is nonsingular and
satisfies T(O(E)) C O(E). Then there exists a nonsingular S e Cnn such that
either

T(X) SXS- for all X

or
T(X) SXtS- for all X n,.

Proof. Let ei be the ith column of the identity matrix. Set x e, xi e /

ei for 2,..., n. We may assume T(xlx) xx; otherwise consider T’ defined by
T’(X) -T(X)S- for some suitable invertible S. For any a (a2,... ,a,) (’-
let Ya (1, a2,... ,an) t. Then x(#xl +(1-#)ya) O(E) by Lemma 2.2. It follows
that #xx + (1 #)T(xya) O(EI), and hence either

T(xya) E / biEi bi ( or T(xya) E / biEi bi (
i--2 i--2

Choose any fixed nonzero c @n-1. We may assume T(xyc) E + in__2 diEi
for some di ; otherwise consider T’ defined by T’(X) T(X) Since T is
invertible and c is nonzero, some of the di’s must be nonzero. Now take any a
@n-1 and consider e (a / c)/2. Since xy O(E), it follows that T(xya)/2 /
T(xlYc)/2 T(xlye) is also in O(E) and hence has rank one. It then follows that
T(xya) (E / ’in=2biEi bi }, also. Since T is invertible, the mapping
T0 @n-1 @n- defined by

n

To(a) b if T(Xlya) EI + Z biEi
i--2

is linear and invertible. Let R (n-1)x(n-) be such that To(a) Rta for
all a cn-. Consider T defined by T(X) -T(X)S- with S (1)@ R. Then
T(xx) xlx for 1,..., n. For notational convenience, we write T instead of
T; we shall prove that T(X) =_ X. Now for any #, _> 0 and any i,j 1,

XlXtl "- P(XlXj) -- #T(xix) + #T(xix) T((x + #xi)(x + xj)) e kO(El),

where k (1 + #)(1 + ) + #hij. Taking 0, we see that T(xix) zix e O(Ell)
for some zi cn with xlzi 1 by Lemma 2.5. (Since T is one-to-one, it follows that
T(xix) cannot be in {El + in__2 biEi "bi C}.) Thus

T((x + #xi)(x + xj)) (x + #zi)(xl + xj) + #(T(xix) z’xj)

always has rank one. It follows that T(xix) zxj. for all i, j _> 2. As a result, if
j > 2, j, then * 1 * * *xjx xjzi; and ifi j > 2, then xjxi 2 Xj Z.
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Consequently, we must have zi xi and hence T(xix) xxj. for all i,j _> 1.
Therefore, T(X) X for all X E enxn, as required. E]

Proof of Theorem 2.1. (=) The sufficiency part of the theorem can be verified
readily.

(=) If T 0, then the conclusion holds with a 0. If T : 0, T is nonsingular
by Lemma 2.4. If n > 3, let A T-l(E12). Since T(TA) C TEll. and T is nonsingular,
dim TA

_
dim TEI.. By Lemma 2.5 and the fact that O(AE12) O(E2) if A # 0,

we have A 6 (9(E2), and hence T(O(A)) T(O(E2)) C O(E2). Next consider
B =_ T-I(EI). Since T(TB) C TE, it follows that dim TB <_ dim TE. By Lemma
2.5, B 60(E2) or B 60(#E) for some # > 0. Since T(O(EI2)) C O(E2), we
must have B 60(#E) for some # > 0. Thus #T(O(EI)) C O(E), and the result
now follows from Lemma 2.6.

Suppose n 3. Using arguments similar to those preceding, we have T(O(E2)) C
O(E2). Now set B T-I(E). Since dim TB <_ dim T11 by Lemma 2.5 we have
B 60(#E) or B 6 0(#I), for some # > 0. If B 60(#EI), then the result follows
as before. If S 6 0(#I), then U,>oT(O(#I)) C Ut,>oO(#E ). Thus, T-(I) must be
of the form #E, and hence Ut,>oT(O(#EI)) C U,>oO(#I). But then the matrices
C1 T(I) and C2 T(E -E22- E33) are both in U,>oO(#E) and have rank
one. Thus, 2T(EI) C1 + C2 must be singular, which contradicts the fact that
2T(EI) 6 Ut,>oO(#I).

Suppose n 2, and let F2 E2 E2. By comparing the dimensions of the
tangent spaces and using the fact that T is nonsingular, we can conclude that there
exist #, u > 0 such that T- (E2), T- (I), T- (F2) are lying in the different orbits
0(#I), O(vF2), O(E2). It follows that

T(U,>oO(#I) U [U,.,>oO(z,’F.2)] U(9(E-2)) C U,>oO(#I)U [U,,,>oO(uF-,2)] UO(E.2).

Consequently, T-I(E) IO(E) for some r/> 0, and the result follows. E]

In IR,x,, consimilarity is the same as ordinary similarity. Although Hiai char-
acterized only the linear operators that preserve similarity on nxn, the proof in [9]
can be modified to yield the same result in the real case as in the complex case. We
summarize the results in the following theorem.

THEOREM 2.7. Let IF ]R or . A linear operator T IFnxn -’* ]Fn xn satisfies

T(A) is similar to T(B) whenever A is similar to B

if and only if one of the following happens
(a) there exists Ao IF,xn such that

T(X) (tr X)Ao for all X E IFnxn;

(b) there exist a nonsingular S E IFnxn and a, E IF such that either

T(X) aSXS- + (tr X)I for all X . ]Fnxn,

or
T(X) aSXtS- + fl(tr X)I for all X E ]Fn xn

3. Congruence. In this section we take J4 nxn or/-/n and let be ,-con-

gruence, i.e., A B if there exists a nonsingular S in ,xn such that A SBS*.
Our main result is the following theorem.
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THEOREM 3.1. Let uA be (nxn or ?in. A linear operator T" A/[ --+ JA satisfies

T(A) is -congruent to T(B) whenever A is -congruent to B

if and only if there exist a nonsingular S E nn and a IF (where IF or IR
according as .hA nn or t’ln), with a 0 or lal 1 such that either

T(X) aSXS* for all X

or

T(X) SXtS* for all X .M.

Again, we divide the proof into several lemmata.
LEMMA 3.2. Let dd be nxn or Tln. IfA .hA is nonzero, then span O(A)
Proof. Let A d4 be a nonzero matrix. If A : AI and tr A 0, then (e.g., see

[25] and the proof of Theorem 2.1 in [9]) span(UAU*: U e Un()) AA. If A--
or tr A 0, there is a nonsingular S such that SAS* AI and tr(SAS*) O.
Then span O(A) span O(SAS*) .M.

One may also prove Lemma 3.2 by arguments similar to those in the proof of
Lemma 2.3.

The desired nonsingularity of T now follows from Lemma 1.1 (c).
LEMMA 3.3. Let M be (nxn or Tln. Suppose T J/[ -+ M is a nonzero linear

operator that preserves ,-congruence. Then T is nonsingular.
LEMMA 3.4. Let be nxn or ?-ln. Suppose A is nonzero. Then the

tangent space to O(A) at A is

TA {XA + AX* X

Moreover, the real dimension of TA is at least 2n- 1, and it equals 2n- 1 if and only
if A SEllS* for some IF and some nonsingular

Proof. The asserted form for TA follows immediately from the power series ex-
pansion of SAS* with S ex Yp=0 X E ([Jnxn.

To prove the second part of the lemma, we first consider the case of M 7-/n. If
A has r positive eigenvalues, s negative eigenvalues, and t zero eigenvalues, then there
exists a nonsingular S such that SAS* It -Is Or. Since O(A) is a homogeneous
manifold, we may assume A Ir @-Is @ 0, in order to compute the dimension of TA.
In this case, TA is just the collection of Hermitian matrices whose (i, j) entries equal
0 if _> r + s and j _> r + s. The real dimension of TA is evidently n2 t2, and the
minimum occurs when t n- 1. The result follows.

Now suppose M nxn. Let A AI + iA2 with A, A2 ( T/n. We may assume
A 0; otherwise consider #A for some nonzero # ([J. Then

TA {(XA + AX*) + i(XA. + A2X*) X e

and hence
dim TA >_ dim TA1 >_ 2n- 1.

Moreover, if A is not a scalar multiple of a matrix of the form SEIS* with S nxn,
we can find a nonsingular R E J,xn and a nonzero ([J such that the matrix
B RAR* + PRA*R* has rank at least 2. It follows that

dim TA >_ dim
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The following result is in [12].
LEMMA 3.5. Suppose the linear operator T 7"ln - Tln is nonsingular and sat-

isfies T(O(E)) C O(E). Then there exists a nousingular S nn such that
either

T(X) SXS* for all X 7in,

or

T(X) SXtS* for all X n.
Proof of Theorem 3.1. (=) The sufficiency part of the theorem can be verified

readily.
(=) If T 0, then the conclusion holds with c 0. If T 0, then T is nonsingular

by Lemma 3.3.
Suppose ,hA , and A T-l(Ell). Since T(TA) C T11 and T is nonsingular,

dim YA
_

dim YEI. By Lemma 3.4, A 60(Ell), so T(O(cE11)) C O(Ell). Notice
that O(CEll) O(EI.) if c > 0, and O(Ell) O(-Ell) if c < 0. The result now
follows from Lemma 3.5.

Now suppose A (nxn and A T-1(E11). By the same arguments we have
already made, A 60(aEll) for some nonzero a 6 . Thus, T’(O(E11)) C O(Ell),
where T’ aT. Since ?’/n is the real span of O(Ell), it follows that T’ maps 7-/n into
?’/n. Regarding T’ as a real linear operator on Hn, T’ satisfies the conclusion of the
theorem. Since nxn is the complex span of T/n, the complex linear operator T’, and
hence T, is of the required form.

If S is unitary, ,-congruence via S is unitary similarity. Hiai [9] characterized
the real linear operators T 7-/ 7-/ that preserve unitary similarity. Using our
method in the proof of Theorem 3.1, one can extend the result of Hiai to enxn. We
summarize the result in the following theorem.

THEOREM 3.6. Let A/[ be (nxn or ?-ln. A linear operator T A/[ satisfies

T(A) is unitarily similar to T(B) whenever A is unitarily similar to B

if and only if one of the following happens:
(a) there exists Ao E /[ such that

T(X) (tr X)Ao for all X E M;

(b) there exist U Un(() and a, fl IF, where IF ( or IR according as
A/[ (nn or 7"ln, such that either

T(X) aUXU* + (tr X)I for all X M,

or

T(X) aUXtU* + (tr X)I for all X

4. Equivalence. In this section we take A/[ lFmxn with IF ]R or , and let
be (nonsingular) equivalence, i.e., A B if there exist nonsingular M ]Fmm and

N ]F,n such that A MBN. Our principal result is the following theorem.
THEOREM 4.1. A nonzero linear operator T lFmxn - lFmxn satisfies

T(A) is equivalent to T(B) whenever A is equivalent to B
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if and only if there exist nonsingular M E ]Fmxm and N ]Fnxn such that either

T(X) MXN for all X e ]Fmxn,

or m n and
T(X) MXN for all X ]Fmn.

If M and N are unitary, then equivalence via M and N is unitary equivalence.
We have the following theorem in this important special case.

THEOREM 4.2. A nonzero linear operator T ]Fmn --+ ]Fmn satisfies

T(A) is unitarily equivalent to T(B) whenever A is unitarily equivalent to B

if and only if there exist c > O, U Um(lF), and V Un (IF) such that either

T(X) aUXV for all X e ]Fmn,

or m n and
T(X) cUXtV for all X IFmn.

Since the proof of Theorem 4.1 is similar to those of Theorems 2.1 and 3.1, we
just list the lemmata required and omit their proofs.

LEMMA 4.3. Span O(A) ]Fmn .for every nonzero A ]Fmn.
LEMMA 4.4. Let T IFmn --* ]Fmxn be a nonzero linear operator that preserves

equivalence. Then T is nonsingular.
LEMMA 4.5. Let A ]Fmxn be a nonzero matrix. Then the tangent space to

O(A) at A is
TA {XA + AY X ]Fmm and Y ]Fnn}.

Moreover, the dimension of TA (over IF) is at least m + n- 1, and it equals m + n- 1
if and only if A is a rank one matrix.

In the present case in which is equivalence, O(Ell) is simply the set of all rank
one matrices. The following result is in [1] and [4].

LEMMA 4.6. If a linear operator T ]Fmxn "-+ ]Fmxn i8 nonsingular and preserves
rank one matrices, then T is of the form described in Theorem 4.1.

Using these lemmata, we can prove Theorem 4.1. In the special case of unitary
equivalence, there are results similar to Lemmata 4.3 and 4.4. The analog of Lemma
4.5 is the following.

LEMMA 4.7. Let A ]Fmn be a nonzero matrix, and let be unitary equiva-
lence.

(a) /f ]F (D, then the tangent space to O(A) at A is

7"A {i(XA + AY) X e 7"lm and Y e 7"ln}.

Moreover, the real dimension of TA is at least 2(m + n)- 3, and it equals 2(m + n)- 3
if and only if A is a rank one matrix.

(b) /f]F JR, then the tangent space to O(A) is

7"A {XA + AY X -X e lRmxm and Y -Y e ]Rnxn}.

Moreover, the real dimension of TA is at least m + n 2, and it equals m + n 2 if
and only if A is a rank one matrix.
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Now we are ready to prove Theorem 4.2.
Proof of Theorem 4.2. (=) The sufficiency part of the theorem can be verified

readily.
(=) Suppose T is nonzero. Then T is nonsingular and T-l(Ell) must have rank

one by Lemma 4.7. Thus U>0T(O(Ell)) C U>00(#Ell), and hence T preserves
rank one matrices. By Lemma 4.6, T has the form described in Theorem 4.1. Let
the matrices M and N have singular value decompositions XDX2 and YD2Y2, re-
spectively, where X,X2 Urn(IF), YI,Y2 Un(IF), and D,D2 are positive diagonal
matrices with diagonal entries arranged in nonincreasing order. If T(X) MXN,
let A XEIY and A2 XEmnY. Since A and A2 are unitarily equivalent,
so are T(A) and T(A2). It follows that all of the singular values of M (respectively,
N) are the same, so M and N are both multiples of unitary matrices and hence
T(X) oUXV, as asserted by Theorem 4.2. If T(X) MXN, the same argument
shows that T(X) UXtV, as asserted by Theorem 4.2.

5. Related results and questions. In this paper we have characterized those
linear operators T satisfying

T(O(A)) C O(T(A)) for every A

for several choices of and Ad. In [11], characterizations are given for the linear
operators on various matrix spaces that preserve t-congruence, i.e., A B if A SBS
for some nonsingular matrix S. One may also consider the problem of characterizing
linear operators T such that

T((9(A)) O(A) or T(O(A)) c (9(A),

where A is a given fixed matrix. Even more generally, one might try to determine the
conditions on a pair of matrices A and B so that there is a linear operator with

T(O(A)) O(B) or T(O(A)) C O(B),

and then characterize T. In fact, many authors have studied these linear preserver
problems under different settings, and many results have been obtained. We list only
a few references below indicating the source of some results on each of the indicated
problems (see also [6] and [20]).

For linear operators preserving an orbit of the consimilarity relation on (nn, see
our Lemma 2.6.

For linear operators preserving an orbit of the similarity relation on lFnn, see

For linear operators preserving an orbit of the ,-congruence relation on 7-/n (the
orbit is then an inertia class), see [8], [12], [18].

For linear operators preserving an orbit of the unitary similarity relation on
or Cnxn, see [13].

For linear operators preserving an orbit of the (nonsingular) equivalence relation
on mx (the orbit is then a set of matrices with a fixed rank), see [1], [3], [4], [5],
[16], [171, [21], [24].

For linear operators preserving an orbit of the unitary equivalence relation on
Nx (the orbit is then a set of matrices with prescribed singular values), see [7],
[14], [19], [23].

For linear operators preserving an orbit of the t-congruence relation on various
matrix spaces, see [15].
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TWO SIMPLE RESIDUAL BOUNDS FOR
THE EIGENVALUES OF A HERMITIAN MATRIX*

G. W. STEWART?

Abstract. Let A be Hermitian and let the orthonormal columns of X span an approximate
invariant subspace of X. Then the residual R AX XM (M XHAX) will be small. The
theorems of this paper bound the distance of the spectrum of M from the spectrum of A in terms of
appropriate norms of R.

Key words, eigenvalue, invariant subspace, perturbation theory, residual bounds

AMS(MOS) subject classifications. 15A18, 15A42

Let A be a Hermitian matrix with eigenvalues A1 >_ >_ An. If X is a matrix
with orthonormal columns that spans an invariant subspace of A and

(1) M XHAX,

then AX XM O.
Now suppose that the columns of X span an approximate invariant subspace of

A. Then the matrix

R- AX-XM

will be small, say in the spectral norm [1" defined by Ilnll- rnaxllll= Ilnxll, where
Ilx][ is the Euclidean norm of x. If the eigenvalues of M are #1 >_ >_ #k, then we
should expect the #i to be near k of the Ai. The problem treated in this note is to
derive a bound in terms of the matrix R.

An important result, due to Kahan [3] (see also [6, p. 219]), states that there are
eigenvalues Ajl,..., Ajk of A such that

< IIRII, k.

If nothing further is known about the spectrum of A, this bound is generally satis-
factory, although it can be improved somewhat [5]. However, it frequently happens
(e.g., in the Lanczos algorithm or simultaneous iteration [6, Chaps. 13,14]) that we
know that n- k of the eigenvalues of A are well separated from the eigenvalues of M:
specifically, if we know that

there is a number i > 0 such that exactly n- k of
(3) the eigenvalues of A lie outside the interval [#k

6, +6],

then the bound in (2) can be replaced by a bound of order IIR][ 2. Bounds of this kind
have been given by Temple, gato, and Lehman (see [6, Chap. 10] and [1, 6.5]). Early
bounds of this kind dealt only with a single eigenvalue and eigenvector. Lehman’s
bounds are in some sense optimal, but they are quite complicated.

Received by the editors January 25, 1990; accepted for publication (in revised form) June 13,
1990.

Department of Computer Science and Institute for Advanced Computer Studies, University of
Maryland, College Park, Maryland 20742. This work was supported in part by Air Force Office of
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In fact, the choice (1) of M minimizes IIRII, although we will not make use of this fact here.

2O5
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The purpose of this note is to give two other bounds derived from bounds on
the accuracy of the column space of X as an invariant subspace of A. They are very
simple to state and yet are asymptotically sharp. In addition, they can be established
by appealing to results readily available in the literature.

THEOREM 1. With the above definitions, assume that A and M satis]y (3). I]

then there is an index j such that j,..., ,j+k-1 E (#k- 5, #1 + 5) and

1 p2 5
1,’",k.

Proof. Let (X Y) be unitary. Then

yH A(X Y) MS
where IISll- IIRll. By the "sin e" theorem of Davis and Kahan [2], there is a matrix
P satisfying

(4) IIP(I + PHP)/2II g p

such that the columns of

f( (X + YP)(I + pHp)-l/2

(which are orthonormal) span an invariant subspace of A. From (4) it follows that

< p,
V/1 + IlYll 2

and since p < 1

() IIPII < V/1 p2

Let (Y xpH)(I + ppH)-l/2. Then (, ) is unitary. Since the columns
of , span an invariant subspace of A, we have HAX O. Hence

H )A(. 1?)= ( 2t?/0
In [7] it is shown that

il (I + PHP)I/2(M + sHp)(I + pHp)-U2.

The eigenvalues of are eigenvalues of A. Since p < 1, it follows from (2) that
they lie in the interval (#k --5, #1 + 5), and hence are Aj,..., Aj+k-1 for some index
j. By a result of Kahan [4] on non-Hermitian perturbations of Hermitian matrices,

i= 1,...,k.
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The theorem now follows on noting that II(I+pHp)-I/211 _< 1 and inserting the bound
IIPII.

There are two remarks to be made about this theorem. First, it extends to opera-
tors in Hilbert space, provided X (now itself an operator) has a finite-dimensional
domain. Second, the bound is asymptotically sharp, as may be seen by letting
X (1 0)w and

(the eigenvalues of A are asymptotic to e and 1 e).
The requirement (a) unfortunately does no allow the eigenvalues of M to be

scattered through the spectrum of A. If we pass o he obenius norm defined by
Ilxll  ra e(x x), then we can obtain a Hoffman-Wieland type residual bound.
Specifically, if

(6) min{l-"1: e (A), e (M)} > 0,

then a variant of the sin O theorem shows that there is a matrix P satisfying

]P(I + pnp)l/2] < I[P(I + PHP)/2IF < I]RIIF

such that the columns of

(X + YP)(I + pnp)-/2

span an invariant subspace of A. By a variant of Kahan’s theorem due to Sun [9], [8],
the eigenvalues Aj,..., Aj of may be ordered so that

i=1

Hence we have the following theorem.
TOaM 2. Wih he bove definitions, ssume h A nd M sisf (6). If

hen here re eigenwlues ,..., of A such h

1 I1 11
i=

1-p 5
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INERTIA-PRESERVING MATRICES*

ABRAHAM BERMAN" AND DAFNA SHASHA

Abstract. A real matrix A is inertia preserving if in AD in D, for every invertible diagonal matrix D.
This class of matrices is a subset of the D-stable matrices and contains the diagonally stable matrices.

In order to study inertia-preserving matrices, matrices that have no imaginary eigenvalues are characterized.
This is used to characterize D-stability of stable matrices. It is also shown that irreducible, acyclic D-stable
matrices are inertia preserving.

Key words, inertia-preserving matrices, diagonally stable and semistable matrices, D-stable matrices, ir-
reducible acyclic matrices

AMS(MOS) subject classifications. 15A18, 15A99, 93D05

1. Introduction. The inertia, in A, of a square matrix A is a triple (i+ (A), io(A),
i_(A)), where i+(A) is the number of eigenvalues ofA in the fight open halfplane, io(A)
is the number ofpure imaginary eigenvalues ofA, and i_ (A) is the number ofeigenvalues
in the left open halfplane.

A matrix A e R is (positive) stable if i+ (A) n. A is D-stable ifAD is stable for
every positive diagonal matrix (a diagonal matrix whose diagonal entries are positive)
D. A is (Lyapunov) diagonally (semi)stable if there exists a positive diagonal matrix D
such that AD + DA T is positive (semi)definite. It is known, e.g., [2 ], that diagonally
stable matrices are D-stable. Stable, D-stable, and diagonally stable matrices arise in
problems in ecology, chemistry, and economics, e.g., [2 ], [8 ], [7]. A real matrix A is
inertia preserving if for every invertible diagonal matrix D, in AD in D. In this paper
we study these matrices. This is of interest because, clearly, inertia-preserving matrices
are D-stable. In 3, which follows a section of notation and preliminaries, we compare
inertia-preserving matrices with special D-stable matrices and, in particular, show that
diagonally stable matrices are inertia preserving.

If A is inertia preserving then necessarily io(A) O. In 4 we characterize this
important condition. In 5 we restrict our discussion to diagonally semistable matrices
and finally, in 6, we prove that acyclic irreducible D-stable matrices are inertia preserving.

2. Notation and preliminaries. In this section we collect definitions and results
needed in the paper. Some notation and results are given only when needed, particularly,
in6.

The definitions and preliminaries are divided into four groups: general notation,
stability and inertia, cones and consistency, and graph theoretical notation.

2.1. General notation. For positive integers n, m, we denote by:
R[ C] the set of all real [complex] numbers,
R n[ C the set of all real [complex] n-dimensional (column) vectors,
Rn m[C the set of all real complex n m matrices,
(,) an inner product.
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In general, almost all the matrices in this paper are real, with the exception of
complex eigenvectors x of real matrices and the corresponding square matrices xx*,
where

A T is the transpose of a matrix A, and,
A* is A v, the complex conjugate ofA v.
Let A be an n n matrix, and let a be a nonempty subset of 1, n }. We de-

note by:
A[ a] the principal submatfix of A whose rows and columns are indexed by a in

their natural order,
A is the ith column ofA,
Ai is the ith row ofA,
tr A is the trace ofA.

The notation A > 0 >_-0 means that A is positive definite [positive semidefinite ].
Denote by D diag d, d } the diagonal matrix D whose diagonal entries

are D )ii di.
A real diagonal matrix E diag {e, e, } is called a signature matrix if eil

1, i= 1,.--,n.

2.2. Stability and inertia. A scalingfactor of a diagonally semistable matrix A is a
positive diagonal matrix D, such that the matrix AD + DA T is positive semidefinite.

A property of a matrix A is an inherited property if every principal submatrix ofA
shares it. Diagonal stability and semistability, for example, are inherited properties but
D-stability is not.

We denote by P P0 the class of n n real matrices all of whose principal minors
are positive [nonnegative], and by P the subclass of P0 ofthe matrices with at least one
positive principal minor of every order.

It is well known that a diagonally stable diagonally semistable matrix must be in
P [Po], and that a D-stable matrix must be in P.

A key tool in our study is the main inertia theorem due to Tausky [16 and (in-
dependently) Ostrowski and Schneider [15].

MAIN INERTIA THEOREM 2.1 [15 ], [16 ]. For a given matrix A, there exists a
Hermitian matrix H such that

AH+HA*>0

ifand only if io(A O. IfAH + HA* > O, then inA in H.
We shall also need the following lemma from [6].
LEMMA 2.2 [6]. Suppose A C , io(A) 0 and H is a nonsingular Hermitian

matrix such that AH + HA* >= O. Then, in A in H.

2.3. Positive-semilefinite matrices. We shall denote by PSD the cone of real pos-
itive-semidefinit matrices. The interior of PSD consists ofpositive-definite real matrices
and will be denoted by PD.

Two subcones of PSD, which are of interest, are

B_0(A) {BPSDI(BA)ii<=O,i 1, ,n}, and

B0(A) {B6PSDI(BA)ii=O,i 1, ,n}.
Obviously, Bo(A)

_
B-o(A).

2.4. Graph-theoretical notation. With an n n matrix A we associate a directed
graph D(A) and a nondirected graph G(A):

V(G(A)) V(D(A))= {1, ,n}.
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The edges of D(A are

E(D(A))= {(i,j);i4:j;aij4:O},

and the edges of G(A) are

E(G(A)) { (i,j);i4:j;aij4:Oora9i4:O}.
A matrix is acyclic if its nondirected graph G(A) contains no cycles.

It is well known that a matrix is irreducible if and only if D(A is connected. Let a
be a maximal connected subset of V(D(A )). Then A[ c] is called an irreducible component
ofA.

3. Classes of D-stable matrices. As was pointed out in the introduction, inertia-
preserving matrices are D-stable. The converse is not true, as shown by the following
example.

Example 3.1.

0 -50]0
is D-stable [11]. Using Routh’s scheme [9, II, p. 180], we see that for D
diag { 1, 3, } the matrix

[-1AD= -1
-1

is stable. Thus A is not inertia preserving.
A subclass of D-stable matrices is the class of Arrow-McManus D-stable matrices

]: matrices A such that AD is stable, where D is a diagonal matrix, if and only if D is
positive. Again, it is clear that inertia-preserving matrices are Arrow-McManus D-stable.

Examlle 3.1 is also an example of a D-stable matrix which is not Arrow-McManus
D-stable. Observe that it is not diagonally semistable [14]. In fact, we shall see in 5
that for diagonally semistable matrices, D-stability and Arrow-McManus D-stability co-
incide.

We shall wait until 5 to prove the following.
Example 3.2.

A= 3 2 0
6 4 2

is Arrow-McManus D-stable but not inertia preserving.
A real matrix A is strongly inertia preserving if for every real diagonal (not necessarily

invertible) matrix D, in AD in D.
Observe that A is strongly inertia preserving if and only if all its principal submatrices

are inertia preserving.
Example 3.3. The matrix

-1

is inertia preserving but not strongly inertia preserving.
An important class of inertia preserving (and even strongly inertia preserving) ma-

trices is the class of diagonally stable matrices.
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THEOREM 3.4. A diagonally stable matrix is strongly inertia preserving.
Proof. Diagonal stability is an inherited property. Thus it is enough to prove that

A is inertia preserving. Let F be a nonsingular diagonal matrix. Since A is diagonally
stable, it has a scaling factor D such that AD + DA r (AF)F-D + DF-(FA r) is
positive semidefinite. Since F-D is invertible and Hermitian, it follows by the main
inertia theorem (Theorem 2.1 ), that in AF in F-1D in F.

QUESTION 3.5. Is the converse true? Is every strongly inertia-preserving matrix di-
agonally stable?

A final remark. Diagonal semistability and being a P matrix are also inherited
properties. In 5 we shall strengthen Example 3.3 by giving an example (Example 5.5)
of an inertia-preserving matrix, which is a P-matrix and is diagonally semistable but not
strongly inertia preserving.

4. Matrices that have no imaginary eigenvalues. In the beginning of this section
we prove some useful properties of eigenvectors of a pure imaginary eigenvalue of a
matrix A R x n.

THEOREM 4.1. (a) Let A R x and suppose that x c + id is an eigenvector
ofAr:

A TX= aix ai( c + id), aR, c, d6Rn.
Denote B ccr + ddr. Then

BA +ArB=0.

b Ifin addition, a O, then c and d are linearly independent.
Proof. (a)

A Tx ceix, aR, X=/= O.

Multiplying by x* we get

(4.2)

(4.3)

Adding (4.2) and (4.3) yields

(4.4)

Observe that

Denoting

we observe that

(4.5)

and that

xx*A +A TXX, O.

xx* c + id)( cr- idT) cc T+ ddr+ i( cdr- dcT).

B=ccT+ddT,

-< rank B _-< 2 (since x 4 0)

BA +ArB=O

(since BA + A TB is the real part of the expression in (4.4)).
(b) Suppose d kc for some scalar k. Then

x + ki)c
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is nonzero and c + ki)-x is a real eigenvector of A T corresponding to the same
eigenvalue ci. So,

A TC ic,

which is impossible since Arc is a real vector. [3

Clearly, ifA is inertia preserving, then io(A) 0. The following theorem characterizes
the real square matrices A such that io(A) 0. The theorem is followed by corollaries
which are of interest on their own.

THEOREM 4.6. Thefollowing properties ofA R are equivalent:
(a) io(A) O.
(b) BePSD, BA+ATB=0,=B=0.
(c) BePSD, BA+ATB=0, rankB=<2,=B=0.
(d) B e Bo(A), BA + ATB O c= B O.
e B e Bo(A ), BA + A TB O, rank B _-< 2 ,= B O.

Proof. a b. Let U be a unitary matrix such that A’ UAU* is upper triangular,
and let B PSD be such that BA + A TB 0. Let B’ be the positive-semidefinite matrix
UBU*. Then B’A’ + A’*B 0, and thus c (B’A’)I has to be imaginary. Since A’ is
upper triangular, it follows that c BA’, and since B’ e PSD and io(A) 0 it follows
that BI 0. Therefore the first row and column of B’ are zero. Applying the same
argument now to the second, third, and so on, rows and columns of B’, we obtain B’
0, and thus, B 0.

(c) (a) follows directly from Theorem 4.1.
The implications (b) = (d), (b) (c), and (c) - (e) are obvious. [3

For matrices which have no pure imaginary eigenvalues we have Theorem 4.7.
THEOREM 4.7. Suppose io(A O. Then
(a) in A in ADfor every positive diagonal matrix D ifand only if
(b) io(AD) O for every positive diagonal matrix D.
Proof. The proof of (a) (b) is trivial.
(b) (a) Suppose there exists a positive diagonal matrix D such that in A 4:

in AD. Let

Dt t)I+ tD, At ADt, 0 <= <- 1.

Then, Do I; D D, A0 A, and A AD. By continuity considerations io(At) 4:0
for some t, which contradicts (b). [3

In Theorem 5.3 of 14 it was proved that a real square matrix A is D-stable if and
only if for every B B_o(A), and every positive diagonal matrix D,

-(BAD+ DA 7B)e PSD,B=0.

Given that a matrix A is stable, we obtain here a simpler characterization of D-stability
as a corollary of Theorems 4.6 and 4.7.

COROLLARY 4.8. Let A be a real stable matrix. Then A is D-stable ifand only if
for every B Bo(A ), of rank less than or equal to two andfor every positive diagonal
matrix D,

BAD + DA ’B 0 B O.

Example 4.9. The matrix

0 -1
A 0 0

0 -1 4
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is stable. To show that it is D-stable we observe that B Bo(A) if and only if it is of
the form

[a 0 -4c]B- 0 b 0 a,b,c>=O, a>=16c.
-4c 0 c

In this case

0 (4c-a) (a-16c)]BA b 0 0
0 3c 0

and if BAD is skew symmetric for an invertible matrix D, then necessarily, c, a, and b
are equal to zero, and so BA 0, which implies that B 0.

A possible extension of Corollary 4.8 could have been: IfA is stable and io(AD)
0 for every invertible diagonal matrix D, then, A is inertia preserving. This is unfortunately
not true. Let D diag { -1, -1, } and let A be the matrix of Example 4.9. Then AD is
stable so A is not Arrow-McManus D-stable and therefore not inertia preserving.

5. Diagonally semistable matrices. Since inertia-preserving matrices are D-stable
and include the diagonally stable matrices, it is natural to ask whether D-stable diagonally
semistable matrices are inertia preserving.

Example 5.1 answers this question in the negative. However, we shall prove in the
next section that the two classes coincide for irreducible acyclic matrices.

Example 5.1. The matrix

A= 3 2
6 4

of Example 3.2 is stable and diagonally semistable since A + A T is positive semidefinite.
The cone Bo(A consists of the matrices B of the form

[ 13 -4
B=a -4 6 -2

-2

SO,

BA a -2 0
2

a>=O.

By Corollary 4.8 A is D-stable since for B 4:0 and for every positive diagonal matrix D,
BAD + DA TB 4: O. A is not inertia preserving since, for F diag { -2, 4, -1 }, BAF +
FA TB 0, so by Theorem 4.6 io(AF) v O.

The following property of diagonally semistable matrices is of great importance.
THEOREM 5.2. Let A R be a diagonally semistable matrix and let F be an

invertible diagonal matrix. Thefollowing are equivalent:
(a) InAF=inF.
(b) io(AF) O.
(c) BAF + FA TB 4:0 for every nonzero B Bo(A subject to rank B _-< 2.
(d) BAF + FA 7"B 4:0 for every nonzero B Bo(A).
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Proof. Conditions (b)-(d) are equivalent by Theorem 4.6.
(a) (b) since F is invertible.
(b) (a). Let D be a scaling factor ofA. Then,

AD + DA T AF)F- D + DF- FA ) PSD.

By Lemma 2.2, in AF in F-D, and since D is a positive-definite diagonal matrix, (a)
follows. U]

Observe that the implication (b), (c), (d) (a), in Theorem 5.2 does not hold in
general as shown by Example 3.1:

The matrix A ofExample 3.1 is a D-stable matrix which is not Lyapunov diagonally
semistable (see the remark following Corollary 5.11 of [14]). In that example,
io(AD) 0 since AD is stable, but in AD 4: in D, as D diag { 1, 3, } is not stable.

Example 5.3. For the matrix A of Example 5.1, in AS in S for every signature
matrix S. This follows from the fact that for every nonzero B B0(A), BAS is not skew
symmetric.

COROLLARY 5.4. Let A be a diagonally semistable matrix. The following are
equivalent:

a A is inertia preserving.
(b) io(AF) O for every real invertible diagonal matrix F.
(c) BAF + FATB 4: O for every nonzero B Bo(A) such that rankB =< 2, andfor

every real diagonal invertible matrix F.
(d) BAF + FA 7B 4:0 for every nonzero B Bo(A), and for every real diagonal

invertible matrix F.
Example 5.5. Let

2 0 2

Ad
0 2 0

d>
2 0 2
0 2 0 d

The cone Bo(A) consists of matrices B of the form

2 -1 -1 0
-1 2 -1 0

B=c
-1 -1 2 0

a>=0"

00 0 0

A simple computation shows that A is inertia preserving. A is not strongly inertia pre-
serving, since its principal submatrix

0
2 0

is not stable.
Another corollary ofTheorem 5.2 is that in the case ofdiagonally semistable matrices

there is no difference between D-stability and Arrow-McManus D-stability.
COROLLARY 5.6. Let A be a diagonally semistable matrix. Then A is Arrow-

McManus D-stable ifand only ira is D-stable.
Proof. Obviously, ifA is Arrow-McManus D-stable, it is D-stable. Suppose that AF

is stable, where F is a real invertible diagonal matrix. We want to show that F is positive.
Since AF is stable, io(AF) 0, so by Theorem 5.2 in AF in F and F is positive. K]
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Observe that Corollary 5.6 justifies the claim we made in Example 3.2 (Exam-
ple 5.1 ).

The following question is analogous to Question 3.5.
QUESTION 5.7. Is every irreducible inertia-preserving matrix diagonally semistable?
We conclude the section by remarking that a matrix is D-stable if and only if its

irreducible components are D-stable and is inertia preserving if and only if its irreducible
components are inertia preserving. Thus, the results which were proved for diagonally
semistable matrices hold for matrices whose irreducible components are diagonally semi-
stable.

6. Acyclic matrices. Example 5.1 is a diagonally semistable matrix which is D-
stable but not inertia preserving. In this section it will be proved that irreducible, acyclic
D-stable matrices are inertia preserving. This is done by using results and methods
of[4].

Let A be an n n matrix. Then A is combinatorially symmetric if

ai 4 O c=a4 O.

Observe that if A is combinatorially symmetric and F is an invertible diagonal matrix,
then AF is also combinatorially symmetric. A is symmetric in modulus if a0l ajil
for every and j. A is symmetric in signs if aijaji > 0 for every and j.

The following proposition is well known.
PROPOSITION 6.1 3 ], 12 ], 14 ]. Let A be an acyclic irreducible matrix. Then A

is diagonally semistable ifand only ira Po. In this case, there exists a positive diagonal
matrix D such that AD is symmetric in modulus.

The characterization of irreducible diagonally semistable acyclic matrices can be
found in Theorem 3 of[12]. The existence of the matrix D is asserted in [3] and stated
explicitly as Lemma 3.1 in [14].

For the sake of convenience, we now state some of the definitions and notation
of[4].

For a nondirected graph G, ft(G) denotes the collection of the following sets:

2(G)= w V(G);ViV(G)I{i}UN(i)\wl 4 1}.

The above sets w are called 2-sets ofG.
For a matrix A, the set of edges E(G(A)) can be partitioned into two sets:

H(A)= {(i,j)rE(G(A)):aai>=O }.

S(A) (i,j)rE(G(A)):aiai<O }.

Vertices k and are H-connected S-connected ifthere is a path ofedges in H(A) S(A)
leading from k to l. Denote by (i)I-i[(i)s] the set of vertices which includes and all
vertices which are H-connected IS-connected] to i. Also, let GI-I(A) Gs(A)] be the graph
obtained from G(A) by deleting the edges in S(A) [H(A)].

An f-set ofA is an f-set w 2( Gs(A )) such that

irw, (i,j)rH(A)jrw.

The class of all 2-sets ofA is denoted by f(A).
Observe that if belongs to an ft-set of A, then (i)/4 is contained in that set. Let a

be a set of vertices of G(A). The closure ofc, cl , is defined as the smallest ft-set ofA
which contains c.
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In the proof of the main theorem of this section, we use the following results from
[4 ], which we state here.

PROPOSITION 6.2 [4 ]. Let H Po be an n n irreducible, acyclic, symmetric-in-
signs matrix. Then all its principal minors oforder less than n are positive.

THEOREM 6.3 [4]. Let A P be an n n irreducible acyclic matrix. Denote

P(A)= { i: det AI(i)] > 0 }.
Then A is D-stable ifand only if el P(A { 1, n }.

We also need the following definition and propositions.
For an n n matrix C denote W(C) i; C/= 0 and C 0}.
PROPOSITION 6.4. Let S and B be n n combinatorially symmetric matrices such

that sii 0 for every i, and such that

(6.5) BS is combinatorially symmetric, and W( B)= W(BS).

Then

Proof. Suppose that

W( B)eI2(G(S)).

{ i} UN(i)\W(B) {j}

for some i, j 6 G(S). Then,

(6.6) (BS)ki bkrSri bkjSji, k 1,2, n.
r=l

If 4: j, then 6 W(B) so

(6.7) (BS)ki=O, k= 1,2, ,n.

But, as j W(B), j N(i), and since B and S are combinatorially symmetric, there
exists k, such that bkjSji 4: O, which contradicts (6.6) and (6.7).

Suppose j, then l/V(B), and by 6.5 ), W(BS). Since BS is combinatorially
symmetric, there exists k such that, (BS)ki 4 O, but, observing that (BS)ki bkisii and
that Sii O, we again have a contradiction.

Weprovedthat forevery i, I{i} t_JN(i)\W(B)l 4 1, so W(B)ft(G(S)). ff]

PROPOSITION 6.8. Let A, F R"n, and suppose that F is an invertible diagonal
matrix such that io(AF) is nonzero. Let x c + id be an eigenvector ofFA T:
(6.9) FA TX aix,

where R, c, d R. Denote

B=ccT+ddT.

Then,
a BA is combinatorially symmetric.

If is nonzero, then,
(b) r W(B) ifand only if

Xr=(C+ id)r=O.

(c) W( B) W( BA).
Proof. (a) By Theorem 4. l, BAF + FA TB 0, SO, BAF is skew symmetric and

therefore BA is combinatorially symmetric.
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(b) Observe that B is a nonzero positive-semidefinite matrix, so, r W(B) if and
only if brr 0.

br (cr) 2 + (d) 2

(6.10) b=Oc=xr=(c+ id)=Oc=c=d=O.

(c) W(B)CW(BA), since BA is combinatorially symmetric. Suppose there exists
r W BA \W(B) ]. In that case

(BA)=0 and (BA)=0.
(BA) 0

or in other words

Denote

Then

(BA)kr (ccT-[" ddT)A ]kr O; k 1, n,

Ck(A Tc)r + dk(A T"d)= O, k=l,...,n.

q/= (A 7"c), 6 (A T"d)r.

3,c+ 6d= 0.

By Theorem 4.1, 3’ i 0, since c and d are linearly independent.
Observe that by (6.9),

"y + i6 (A 7"c+ iA Td)r= (F-aiX)r,

which, by (6.10), is not zero since r t W(B). So, 3’ and 6 are not simultaneously equal
to zero. D

THEOREM 6.11. Let A be an acyclic irreducible matrix. Then A is D-stable ifand
only ifA is inertia preserving.

Proof. We have to show that ifA is D-stable, then A is inertia preserving. Let A be
a D-stable irreducible acyclic matrix. By Proposition 6.1, A is Lyapunov diagonally semi-
stable, and there exists a positive diagonal matrix D, such that AD is symmetric in
modulus, and

Denote

H=(1/2)(AD+DAT")>=0.

S=(1/2)(AD-DAT").
Observe that, since AD is symmetric in modulus, and D is a positive diagonal matrix,

det A[(i)u]>Odet AD[(i)H]>O=det H[(i)H]>O,

and so,

(6.12) P(A) P(AD)= P(H).

Moreover, G(S) Gs(A).
We have to show that io(AF) 0 for every invertible diagonal matrix F. Assume

that there exists a real number k such that ki is an eigenvalue ofAF. Let x c + id be
an eigenvector of FA 7-

FA 7"x kix

where c, d R’. Denote

B= ccT"+ ddT.
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Clearly, B 4: 0. Since A is D-stable A is nonsingular, and hence k 4: 0. By Proposition
6.8, W(B) W( BA); BA is combinatorially symmetric. By Theorem 4.1, B Bo(A),
and by Theorem 3.9 of 17 ],

(6.13) BH=O.

Observe that by (6.13), BA B H + S)D-1 BSD -1. So, W B W BA
W(BSD-1), or W(B) W(BS), where B, S, BS are combinatorially symmetric, and
sii 0. By Proposition 6.4 W( B) f(G(S)) ft(Gs(A)).

By (6.12) and (6.13),

(6.14) P(A)_W(B).

Let W(B), and let (i, j) H(A). The submatrix H[ i)/] is a principal submatrix of
AD and as such belongs to P0. By Proposition 6.2, det H[ (i)n-{ } > 0, and since
W(B), it follows from (6.13) that (i)/_ W(B). Thus, W(B) ft(A). Since A is D-
stable it follows that cl P(A) {1, ..., n}, and it follows from (6.14) that W(B)
{ 1, n }, so B 0, which is a contradiction. Therefore, io(AF) O. E]

COROLLARY 6.15. Ifthe irreducible components ofA are acyclic, then A is inertia
preserving ifand only if it is D-stable.

Acknowledgment. We thank Professor Daniel Hershkowitz for many suggestions
which improved the paper, and in particular for Example 4.9 and the proof of Theorem
4.6, which is simpler than our original proof.

REFERENCES

K. J. ARROW AND M. MCMANUS, A note on dynamic stability, Econometrica, 26 (1958), pp. 448-454.
2 G. P. BARKER, A. BERMAN, AND R. J. PLEMMONS, Positive diagonal solutions to the Lyapunov equations,

Linear Multilinear Algebra, 5 (1978), pp. 249-256.
3] A. BERMAN AND D. HERSHKOWITZ, Matrix diagonal stability and its implications, SIAM J. Algebraic

Discrete Methods, 4 (1983), pp. 377-382.
[4] , Characterization ofacyclic D-stable matrices, Linear Algebra Appl., 58 (1984), pp. 17-31.
5 D. CARLSON, B. N. DATTA, AND C. R. JOHNSON, A semi-definite Lyapunov theorem and the characterization

oftridiagonal D-stable matrices, SIAM J. Algebraic Discrete Methods, 3 (1982), pp. 293-304.
[6 D. CARLSON AND H. SCHNEIDER, Inertia theorems for matrices: The semidefinite case, J. Math Anal.

Appl., 6 (1963), pp. 430-446.
[7] B. L. CLARKE, D-stability and chemical reaction networks, a talk at the Combinatorial Matrix Analysis

Conference, Victoria, British Columbia, Canada, 1987.
[8] G. W. CROSS, Three types ofmatrix stability, Linear Algebra Appl., 20 (1978), pp. 253-263.
[9] F. R. GANTMACHER, The Theory ofMatrices I, II, Chelsea, New York, 1959.
10] M. HALL, Combinatorial Theory, Blaisdell, Waltham, MA, 1967.
11 D. J. HARTFIEL, Concerning the interior of the D-stable matrices, Linear Algebra Appl., 30 (1980), pp.

201-207.
12] D. HERSHKOWITZ, Stability ofacyclic matrices, Linear Algebra Appl., 73 (1986), pp. 157-169.
13] ., Lyapunov diagonal semistability ofacyclic matrices, Linear Multilinear Algebra, 22 (1988), pp.

267-283.
14] D. HERSHKOWITZ AND D. SHASHA, Cones of real positive semidefinite matrices associated with matrix

stability, Linear Multilinear Algebra, 23 (1988), pp. 165-181.
15] A. OSTROWSKI AND H. SCHNEIDER, Some theorems on the inertia ofgeneral matrices, J. Math. Anal.

Appl., 4 1962 ), pp. 72-84.
[16] O. TAUSKY, A generalization of a theorem by Lyapunov, J. Soc. Indust. Appl. Math., 9 (1961), pp.

640-643.
17] D. SHASHA AND A. BERMAN, On the uniqueness ofthe Lyapunov scalingfactors, Linear Algebra Appl.,

91 (1987), pp. 53-63.



SIAM J. MATRIX ANAL. APPL.
Vol. 12, No. 2, pp. 220-238, April 1991

(C) 1991 Society for Industrial and Applied Mathematics
OO4

TRIDIAGONAL APPROACH TO THE ALGEBRAIC ENVIRONMENT
OF TOEPLITZ MATRICES, PART I: BASIC RESULTS*
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Abstract. This paper contains a thorough investigation of a family of symmetric "predictor polynomials"
associated with a nonnegative-definite Toeplitz matrix. These polynomials are constructed from the classical
predictors and from the values assumed by some dual predictors in a fixed point ofunit modulus; the appropriate
duality is induced by changing the sequence of reflection coefficients into its conjugate mirror image, within a
unit modulus factor. The central theme of the paper is a well-defined three-term recurrence relation satisfied
by these symmetric polynomials; it motivates the "tridiagonal" terminology. The properties of the recurrence
are studied in detail; special attention is paid to the important issue of computing the recurrence coefficients
from the reflection coefficients. It is shown how this three-term recurrence formula produces an efficient solution
method, called the split Levinson algorithm, for the linear prediction problem.

Key words, nonnegative-definite Toeplitz matrices, three-term recurrence, symmetric predictor polynomials,
split Levinson algorithm

AMS(MOS) subject classifications. 65F05, 42C05, 60G10

1. Introduction. Nonnegative-definite Toeplitz matrices play a prominent role in
various areas of applied mathematics. From a theoretical viewpoint, they can be defined
as covariance matrices ofstationary stochastic processes 17 ]. In digital signal processing
applications and the like, they are generally obtained, within a constant diagonal shift,
as autocorrelation matrices of sampled signal records.

The simplest and most central problem relative to a positive-definite Toeplitz matrix
is the linear prediction problem 20 ]; it amounts to computing the first column of the
inverse ofthat matrix. (There is a natural generalization to the nonnegative definite case.)
This problem is classically solved by means of the Levinson algorithm [16 ], which is
based on a recurrence relation first discovered in the framework of Szegr’s theory of
polynomials orthogonal on the unit circle 17 ], 23 ]. The same recurrence relation, used
in reverse order, underlies the Schur-Cohn polynomial stability test [21 ]. It is worth
mentioning that the algebraic results alluded to above have far-reaching applications in
the field of positive (Carathrodory) and ofbounded (Schur) functions [1], which them-
selves are relevant to some important modelling problems in digital signal processing
(among other areas). In particular, the Schur algorithm, which is a possible substitute
for the Levinson algorithm to compute reflection coefficients 19 ], can be viewed as an
implementation of Schur’s recursion for bounded functions [1].

Within the last few years, a novel approach to the whole mathematical environment
of nonnegative-definite Toeplitz matrices has been introduced and examined in some
detail; it is called either the split approach 8 ], 10 ], 11 or, equivalently, the tridiagonal
approach 7 ]. Roughly speaking, the first terminology refers to a "splitting" ofthe classical
predictor into symmetric and antisymmetric parts, while the second one refers to the
tridiagonal matrix representation of the recursive structure of the new theory. In fact,
the basic idea ofsuch an approach is to replace the one-step recurrence relation underlying
the Levinson algorithm, which involves predictor polynomials and their reciprocals, by
an appropriate two-step recurrence relation, of the Frobenius type 15 ], which involves
"symmetric predictor polynomials." This approach provides new efficient numerical
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methods to solve the standard linear prediction problem and various related problems.
In addition, it is of noticeable interest from a theoretical viewpoint due to its connections
with the theory oforthogonal polynomials on the real line and with the theory ofpositive
and bounded functions. Among the contributions in the field, papers by Bube and Burridge
[4], Bistritz [2], and Delsarte and Genin [5] deserve a special mention. A comprehensive
survey of recent results, with an extensive bibliography, is given in 8 ].

The present paper and its companions 7 ], 12 aim at providing a thorough in-
vestigation of a natural and general setting of the tridiagonal approach to the Toeplitz
environment. While 7 is mainly devoted to function theoretic aspects, this paper and
12 are almost exclusively concerned with the algebraic components ofthe subject. More

precisely, they deal with nonnegative-definite Hermitian Toeplitz matrices of nullity one
or, equivalently, with sequences of reflection coefficients having modulus smaller than
unity, except the last of them, which has modulus equal to unity. As for the distinction
between both "algebraic parts," it can be explained roughly as follows. This paper is
concerned with rational problems only, while its companion (and successor) [12] is
concerned with algebraic problems involving zeros (ofsymmetric predictor polynomials)
and eigenvalues (of unitary Hessenberg matrices).

Most results given in this paper are stated in the form of polynomial identities.
However, it should be emphasized that our study is essentially concerned with matrix
theory problems. In that respect, let us recall that the classical inversion methods for
Toeplitz matrices, such as the celebrated Trench formula, can be derived and interpreted
in a transparent manner in a polynomial framework (see especially [18 ]). A similar
observation can be made regarding the results of the present contribution, in the sense
that they provide new efficient algorithms to compute the ingredients involved in the
classical Toeplitz inversion formulas (for example). It is worth mentioning here that the
symmetric predictor polynomials provide a reduction of a Toeplitz matrix to a tridiagonal
form, in contrast to the usual predictors, which yield a diagonal form reduction. Fur-
thermore, it should be stressed that the material of this paper serves, for a good deal, as
a preparation for the companion paper 12 ], which pertains to matrix theory in a more
obvious manner.

In 2 we introduce the tan-symmetric predictor polynomials bk(z), for 0 =< k _-< n,
relative to a sequence (0j)j’= of complex reflection coefficients oj, with Ion[ and

o1 < for j 1, n 1, and relative to a given complex number ’0, referred to
as the circle parameter, with I01 1. In particular, bn(z) is equal to the last predictor
polynomial generated by the reflection coefficients oj (in the classical sense).

In 3 we derive a simple one-parameter three-term recurrence formula for nor-
malized versions, pk(z) gkbk(Z), of the 0n-symmetric polynomials bg(z). These poly-
nomials p(z) are symmetric; they are the main objects considered in the sequel. We
explain how the coefficients ofthe recurrence can be computed either from the reflection
coefficients, or from the entries of the associated Toeplitz matrix; the latter method is a
general version of the split Levinson algorithm.

In 4 we investigate the singular case of the theory, characterized by the fact that
the circle parameter ’0 is a zero of Pn(Z). In this case, Pk(’0) vanishes for all k, and we
show that suitably normalized versions ofthe polynomials p(z)/(o- z) belong exactly
to our theory of"symmetric predictors" (with respect to a certain Toeplitz matrix which
can be constructed explicitly from the original one).

In 5 we examine the duality induced by changing the reflection coefficient oj into

On n-, forj 1, n. This preserves the last classical predictor polynomial (ofdegree
n). In this context we explain how the regular case (i.e., Pn(’0) 4: 0) can be extended to
the singular case, in some sense, and we show how the split Levinson algorithm can be
extended so as to produce the On-symmetric predictor bn(z).
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2. Symmetrization of predictor polynomials. For a positive integer n, let there be
given a sequence of n complex numbers ol, 0n subject to the constraints

(2.1) Ipl < for k 1,... ,n- 1, IPnl 1.

From this sequence we construct the family of polynomials ak(z)of formal degree k, for
k 0, n, via the SzegO-Levinson recurrenceformula
(2.2) ak( z) ak- z) + pkzdk- z),

with the initialization ao(z) 1. Here and in the sequel, the notation k(z) stands for
the reciprocal (conjugate mirror image) of a complex polynomial vk(z) of formal degree
k; it is defined by k(z) zkk( 1/). Note that the polynomial ak(z) is comonic, in the
sense that it satisfies ak(0) 1. Equivalently, its reciprocal dk(z) is monic (the leading
coefficient equals unity).

In view of the property pnl 1, it follows from (2.2) that an(z) is on-symmetric,
in the sense that it satisfies

(2.3) dn(z) nan(z).

The polynomials ak(z) with 0 < k < n are quite different from an(z) in that respect.
Note that the coefficient of zk in ak(z) is equal to ok. The monic polynomials dk(z) are
often called Szeg6 polynomials; this refers to the fact that they are pairwise orthogonal
on the unit circle with respect to a certain positive measure (details are given in 12 ]).

Given any positive real number Co, let us denote by Ck the Hermitian Toeplitz
matrix of order k + (with 0 =< k _-< n) having Co as its diagonal element and admitting
(01, 0k) as the sequence of its Schur-Szeg6 parameters (or reflection coefficients).
As explained below, this well-known relationship between Toeplitz matrices and reflection
coefficient sequences can be made explicit by use of some "second-kind predictors." By
definition, Ck has the form

(2.4) C=
Co c-1 C-k
C 0 "’’l-k

Ck Ck- Co

i.e., Ck [ci-j:O i, j <= k], with the Hermitian property c-i for all i. As a
consequence of the assumption (2.1), the Toeplitz matrix Ck is positive definite for 0 =<
k =< n 1, whereas Cn is nonnegative definite and singular (of nullity one). Let us stress
that Ck- is obtained from Ck by deleting its first (or last) row and column.

In the context oflinear prediction for stationary stochastic processes, ak(z) is usually
referred to as the (first-kind) predictor polynomial relative to Ck. This means that the
coefficient vector ak [ak,0 ak,k] T of ak(z) , i= o ak,iz satisfies the system of lin-
ear equations

(2.5) Ckak ak, O, 0

where ak is a nonnegative real number, called prediction error squared norm, which is
uniquely determined from the data Co, Ol, ok. In fact, we have

(2.6) a0 Co and

for k 1, n. Thus, ak is positive for 0 -< k -< n while an equals zero. Note the
property ak det Ck/det Ck-. In particular, it follows from (2.5) that an(z) is the
unique comonic polynomial satisfying the singular homogeneous system

(2.7) Cnan 0.
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Let us now explain how the entries c1, Cn of Cn can actually be computed from
Co and pl, on. To that end, we introduce the second-kind predictor polynomials
rk(z), for 0 _-< k -_< n, by means of the recurrence formula

(2.8) rk( z) rk- 2) PkZk 1(2),

which is the same as (2.2) except that the reflection coefficient Ok is replaced by
The initial value is r0(z) Co; this implies rk(O) Co for all k. Define the rational function

(2.9) f(z)= r(z)/a,(z).

It is a Carathrodory function ], which means that it is analytic and that its real part is
nonnegative in the unit disc Izl < 1. More precisely, f(z) is a lossless function, i.e., a
Carathrodory function having imaginary values almost everywhere on the unit circle
(see details in [12]). Note thatf(z) has degree n exactly.

Now consider the Maclaurin expansion

(2.10) f(z) Co + 2 ckzk.
k=l

It turns out that the numbers Co, Cl, "’", c thus defined are precisely the entries of the
Toeplitz matrix Cn mentioned above. (Furthermore, the coefficients ck with n + =<
k _-< rn in (2.10) yield the unique nonnegative-definite Toeplitz extension Cm of C, for
every rn > n.) Recall the property

(2.11) rk(z)=f(z)ak(z)+ O(zk +

for 0 <- k =< n. This can be used as an explicit definition of the second-kind predictor
rk(z) in terms of the first-kind predictor ak(z) and the Toeplitz matrix

After this standard material, let us introduce some ingredients that are somewhat
less classical (see 10 ], 13 ). The basic idea is to consider the dual Schur-Szeg6 sequence
(p)--l; it is defined from the original sequence (pk)= by

(2.12) o =on-k fork=l,...,n,

with the natural convention o0 yielding p # on. Then we define the corresponding
family of comonic polynomials Sk(Z) a(z), dual of the predictors ak(z), by means
of the recurrence formula

(2.13) Sk(Z)=Sk_(Z)+OZk_I(Z).
Combining the Szegr-Levinson recurrences (2.2) and (2.13 we obtain a result that

plays an important role in the theory.
PROPOSiTiON 1. The comonic polynomials ai( z) and s( ), in the independent vari-

ables z and , satisfy the duality relation

(2.14) Sn_k()ak_ l(Z)-k-OnL_k()Zdk_ l(Z)= Sn_k_ l()ak(z)nt-pnL_k_ l()dk(Z).
If f z, then both sides of (2.14) are necessarily independent of k. Hence, setting

k n in the fight-hand side and using (2.2), we obtain the identity

(2.15) S,-k(Z)ak- (Z)+ o,zL-(z)d- (z)= a,(z),

for k 1, n. In the case k 1, this yields sn(z) an(z). It is also interesting to
mention the two-variable expansion

k-1

(2.16) Sn-k(f)ak-l(Z)+OnL-k()Zdk-l(z)=an()+On(Z--) ,
j=0

This follows from (2.14) by summation.
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It is easily checked that formulas (2.14 )-( 2.16 remain valid when the second-kind
predictors rk(z) are substituted for the first-kind predictors ak(z), provided on is replaced
by -0n. Thus it is seen from (2.15 that the lossless function (2.9) can be represented
in the form

(2.17) f(z)=[r_(z)--zp,(z),_l(z)]/[a,-l(Z)+Zp,(z)d,_l(Z)],

for k 1, n, where ff(z) is a rational Schurfunction, of the inner type, of degree
n k, given by

(2.18) (z) Onn-,(Z)/Sn-,(Z).

Without going into detail, let us point out that representations such as (2.17) occur
classically in the framework ofthe Carath6odory-Fej6r interpolation problem 14 ], 24 ].
From (2.13 we deduce the Schur-type recurrence relation [1]

(2.19) p(z)=[o+z,+l(Z)]/[1 +zk+ l(Z)].

We now introduce the concept of "symmetric Szeg6 polynomials," which is the
main theme of this paper. Let ’0 be any complex number of unit modulus; it will be
referred to in the sequel as the circle parameter. For k 1, , n, define the polynomial

(2.20) b(z) f(Ol-n)/Z[Sn_(o)al_ I(Z)+ On--k(O)Zdk-

in terms of the predictors and their duals. Throughout this paper, -/2 denotes either of
the square roots of ’0, and -U/2 stands for the mth power of -/2. (Note that replacing
./2 by --/2 amounts to multiplying bk(z) by (-1 )"-.) It is clear that b(z) has degree
k exactly. (Indeed, we have sn- (’0) 4: 0, for k >_- 1, in view ofthe Schur-Cohn criterion.)
Using (2.14) we obtain an alternative expression for b(z), involving ak(z) instead of
a_ l(Z). This leads us to define the constant b0(z) to be

(2.21 b0(z) -n/2 Sn( 0) -n/2an(o).
It is seen from (2.20) and (2.21 that the polynomials b(z) are On-symmetric: they

enjoy the same property b(z) nb(z), for every degree k, as the classical predictor
an(z) ofdegree n. By lack of a better terminology we shall say that the polynomials bk(z)
constitute a family of (nonnormalized) on-symmetric predictor polynomials, for k 0,
1, n. Recall that this family is defined from the Schur-Szeg6 parameters ol,

on and the (square root of) the circle parameter ’0. It can be viewed as an embedding of
the predictor an(z); indeed, as a direct consequence of (2.20) and (2.2), we have

(2.22) bn(z) an(Z) sn( z).

Let us write down the value of b(z) for the two distinguished points, z 0 and
z ’o; in view of (2.20) and (2.15 we have

(2.23) b(O) (0k-n)/2 s.-(0),
(2.24) b( o (o- n)/2 a,(’o).

In certain parts of the theory it is interesting (or necessary) to separate the singular case
a,(’o) 0 from the regular case an(o) 4 0 (see 10 ). It follows from 2.15 that bk(’o)
equals zero for all k (including k 0) in the singular case, and differs from zero for all
k in the regular case. A detailed discussion of the singular case is given in 4.

The classical predictor a(z) can be recovered from the on-symmetric predictors
b(z) and b,+l(z) in an easy manner (for 0 =< k _-< n ). In fact, simple algebraic
manipulations using (2.14 ), (2.20), and (2.23) yield the formula

(2.25) b+ 1(0)( .-1 z)ak(z)= b+ 1(z)- 8l/2zb(z).
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As a consequence, the Schur-Szeg6 parameters Ok ak,k with _-< k _-< n can be
computed from the numbers bk(0), bk+ (0), and 0n (=bn,n). Indeed, equating the leading
coefficients in both sides of (2.25) and using on-symmetry, we obtain

(2.26) bk+ (0)Ok-- /2On[bk(O)-- /2bk+ I(0)].

Ofcourse it is tacitly assumed here (as everywhere in the paper) that the circle parameter

’o is given.
Note that both families of polynomials ak(z) and bk(z) are determined uniquely

from the n complex numbers s (’o), sn(’o). In view of the results above, to prove
this property, we have only to check that 0n can be computed from these data. Appropriate
expressions, resulting from (2.13 ), are 0n sn(’o) /L(’o) in the regular case (s,(’o) 4:
0) and on -s, (’o) / ’oYn ’o in the singular case.

For future use let us introduce the pseudoreflection coefficient ook involved in formula
(2.20); it is defined by

(2.27) 60k k(’0) Ongn_k(O)/Sn_k(O),

for k 1, n, where ffk(Z) is the rational inner function (2.18). Note that Wk has
unit modulus. In particular, we have wn on. From (2.23) it follows that 09k equals
p,bk(O)/bk(O). As a consequence of this identity, together with relations (2.19), (2.20),
and (2.27), we obtain the following result.

PROPOSITION 2. The O-symmetric predictor bk(z) can be written in theform
(2.28) bk(z)=bk(O)[ak_(z)+wkZdk_(z)].

The sequence ofpseudoreflection coefficients (wn, "", o) can be computed from the
sequence (on, by means oftheformula
2.29 Wk Ok + ’0Wk + / + ’00k + k),

for k n 1, 1, with the initial value oon on.
The name "pseudoreflection coefficient" is suggested by a comparison between the

roles of Wk and Ok in the relations (2.28) and (2.2), respectively.
It is interesting to associate a family of second-kind polynomials, denoted here by

tk(Z), with the "first-kind polynomials" bk(z). The definition is formally the same as
above (within a factor Co) except that the Schur-Szeg6 parameters Pk are replaced by
-Ok. More precisely, tk(Z) can be defined by

(2.30) tk(z)=bk(O)[rk_(Z)--OkZ?k_(Z)],

for k 1, n, where rk(z) is the second-kind predictor associated with ak(z). For
k 0, the natural definition is t0(z) n/2rn(’o). The second-kind predictor tk(z) can
be determined from its first-kind associate bk(z), for =< k =< n, by means of the relation

(2.31 tk(Z) =f(z)bk(z) + O(zk),

supplemented with the identity lk,k Pnlk,O obk,k. Note that (2.31 is slightly weaker
than its classical counterpart (2.11 ).

It is clear that tk(Z) enjoys the on-antisymmetry property "tk(Z) --bntk(Z), for 0 =<
k =< n. Next we observe that .n/2 tk(o) is independent of k, as in (2.24). Furthermore,
since wn equals on, we deduce from (2.30) and (2.8) the embedding property tn(Z)
rn(z). Therefore, the ratio tn(z)/bn(z) equals the lossless function f(z) in (2.9). More
generally, it is easily seen that tk(Z)/bk(Z) is a lossless rational function of degree k, for
0 -< k =< n. Note that this function equals the fight-hand side of (2.17), where Pk(Z) is
replaced by the constant kk(’0).
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Remark. It is interesting to note that the circle parameter ’o can be normalized to
the value f at the cost of the simple data transformation 0k --* 0 ’0k0k for k
1, n. It is easily seen that this transformation produces the polynomials a;(z)
ak(’oZ) and s(z) sk(’0z) instead of ak(z) and sk(z), whence the on-symmetric predictor
b’k(Z) f(on-k)/Zbk(OZ) instead of bk(z). Similar observations could be made at many
places in the paper.

3. Recurrence relations anti Toelflitz systems. One ofthe most significant properties
of the on-symmetric polynomials bk(z) lies in the fact that they are linked by a three-
term recurrence relation (of the Frobenius type 15 ). This result can be derived either
from the Szeg6-Levinson formula (2.2) or from the Toeplitz linear system (2.5). Let us
now explain the first method. For k 0, 1, n 1, define the complex number

(3.1) flk--bk+l(O)/bk(O)--/2Sn_k_l(O)/Sn_k(O),
with the convention flo in the singular case sn(’o) O. Let us rewrite (2.2) in terms
of the bk(z) polynomials, with the help of (2.25); owing to the on-symmetry property,
we obtain the identity

bk+ (z)= {C/k+ b-(O)[6/Zbk(O) 6h,Okb+ (O)]z}bk(z)
(3.2)

Ik12+ (O)[nPkbk(O)-- bk(O)]zbk-(Z).

Using (2.26) to simplify the expressions between square brackets in (3.2), we deduce
the three-term recurrence relation

(3.3) bk+ (Z)--({3k/ -Z)bk(Z)--( IOkl2)lkl2Zbk (Z).

Note that (3.3) remains valid for k 0, in the regular case an(’o) 4: 0, with the convention
p0 1.

This allows us to compute the whole family ofpolynomials bk(z) from the sequence
of recurrence coefficients/31, ,/3n-1 and the initial conditions bo(z) and bl (z). Indeed,
the cofactor of Zbk- (z) in 3.3 can be expressed in terms of/3k as follows:

(3.4) (1- 1012)112= ’/=//2_ .
This follows readily from (3.1) and (2.13 ). Alternatively, (3.4) can be viewed as a con-
sequence of (2.26), written in the interesting form

(3.5) 0k ’00)k + 1( -1/2/-1 ).

Next, let us introduce a natural normalization in the theory; the idea is to get rid
ofthe factor (3.4) in the recurrence (3.3). The normalized symmetric predictorpolynomial
of degree k, denoted by Pk(z), is defined by

(3.6) pk( z) gkbk( z),

for k 0, n, where the normalizingfactor gk is a nonzero complex number chosen
in such a way that the three-term recurrence relation assumes the simple form

(3.7) Pk+l(Z)=(OZk+kZ)Pk(Z)--ZPk_l(Z).

To deal with the normalization problem it is useful to introduce the so-called Jacobi
parameters Xl, Xn (see [7], [10]); they are given by

(3.8) )kk= gk/gk- l.
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Comparing (3.3) and (3.7) shows that is real; this implies that /g is independent
of k. The normalized recurrence coefficient ag in (3.7) is related to the coefficient fig in
(3.3) by

(3.9) a= kkk+ with 1o12)l12XXk+ 1.

This implies that all Jacobi parameters ,k have the same sign. As a conclusion, it is seen
that the normalization process involves two nonzero constants go and gl subject only to
the condition that their ratio be real.

It is easy to show that the Jacobi parameters can be expressed in the form

(3.10) Xk dak- Pk(O)12,

with the real constant d lc11pl(0)1-2. Indeed, since Pk+ l(O) akPk(O) by (3.7),
the identity (3.10) is equivalent to {1 k+ Pkl 2) Ok] 2, which itself is a direct
consequence of (3.9). Alternatively, the Jacobi parameters can be expressed in terms
ofthe coefficients ak by means of a simple continuedfraction, i.e., by means ofthe recur-
rence relation

which results readily from (3.4) and (3.9). Furthermore, in the regular case, Xk can be
written explicitly as the ratio

(3.12) Xk l/2pk(o)/Pk_l(O).

Equivalently, gk is proportional to k/Zpk(0). This follows from (2.24) and 3.6 ). Note
that, in the regular case, we can deduce (3.11 from (3.12 by setting z ’0 in (3.7).

Next, let us explain how the coefficients ak occurring in the normalized three-term
recurrence relation 3.7 can be determined from the reflection coefficients ok occurring
in the classical Szeg6-Levinson formula (2.2). By use of (3.1) and (3.9) we obtain

s-(0)L-(0)(3.13) [pk[Z)otk lak--
Sn--k+ l(O)L--k-- l( O)

Both denominator factors in the fight-hand side of (3.13 can be expressed in terms of
the numerator factors with the help of the ascending and descending versions of (2.13 ).
This produces the remarkable identity

(3.14) Ok-lOk-- ’0( + ’OOkk_ 1)-I k/gk) -1

where wk is the pseudoreflection coefficient (2.27). A way ofusing this result is explained
in Proposition 3 below.

Let us now consider the question of the choice of the normalizing factors go and
gl. Interesting simplifications occur in the theory if we set the constraints

(3.15) X1 1, Pl(O)=w-{ 1/2,

with w ]/2 either of the square roots of o1 Ongn (’0) / sn (’o). However, it should be
stressed that all acceptable choices for go and gl are essentially equivalent. (Indeed, the
structure of 3.7 is invariant under the transformation Pk(Z) - oPk(Z) for even k and
Pk(Z) -- tPk(Z) for odd k, provided #l//x0 is real.) In view of 2.21 ), 2.28 ), and 3.6 ),
the choice (3.15 amounts to

(3.16) go g (-0-1/2 (0 1)/2[Sn-1( ’0)] -1

(3.17) p z) o-/ +
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This implies that fro ongo, whence ffk Ongk for all k. Therefore, since bk(z) is on-
symmetric, it follows from (3.6) that p(z) enjoys the simple symmetry property

(3.18) (z)=p(z).

In view of(3.15 ), the coefficient d in (3.10) equals c Therefore, the Jacobi parameters
are positive. More precisely, the sequence (Cl, , an- l) that generates the symmetric
polynomials p(z), via (3.7), corresponds to a sequence (ol, "", 0n-l) satisfying
okl < for k 1, n ifand only ifthe Jacobi parameters X2, Xn determined
from the recurrence relation (3.11 ), with X 1, are all positive.

It is clear that the singular case an(’o) 0 is characterized by wl’o -1. In the
regular case, the recurrences (3.7) and (3.11 can be initialized at k 0, with the con-
ventions P-1 (z) 0, Xo oo, and

(3.19) c0 -I/2
__

Wl -/2)-1
This allows us to use (3.14) with k by setting o0 as before. Indeed, it produces
the correct value c1 -/2( 1ol)-, as computed with the help of (2.13), (3.1),
and (3.9). In the singular case, we have to initialize (3.14) at k 2, with the value of
c1 just mentioned. Summarizing the results above, we obtain the following proposition,
which plays a major role, especially in the companion paper [12 ].

PROPOSITION 3. The numbers involved in (3.7) can be determined from the
reflection coefficients & by means ofthe recurrence relations (2.29) and (3.14). The initial
condition for (3.14) is given by (3.19) in the regular case and by c1 ./2( 1pl) -1

in the singular case.
Let us say a few words concerning the normalized versions, denoted by q(z), of

the second-kind polynomials &(z) in (2.30). The definition is

(3.20) q(z) gk&(z),

with the same normalizing factors g as above. It is easily seen that q(z) enjoys the
antisymmetry property (z) -qk(z), instead of 3.18 ). In view of this and of (2.31 ),
it is clear that the q(z) polynomials are linked by the same three-term recurrence relation
as the &(z) polynomials, that is,

(3.21) q + z) c+ kz)q(z) zq_ z).

The difference arises from the initial conditions; instead of (3.17), we have

(3.22) qo(z)=co(w-{/2l/2-oI/2/2), q(z)=co(w-fl/z-oI/Zz).

It is interesting to note that (3.12) remains valid when p and p_ are replaced by
qk and q,_ 1, even in the singular case wl ’o 1. Indeed, in the context of second-kind
polynomials, the "critical situation" corresponds to wl’o (instead of- ). Thus,
(3.11 can be deduced immediately from (3.21 provided wl ’o differs from one.

In certain applications it is useful to introduce some shifted second-kind polynomials
q(z), having the property that they vanish at the point z ’o (see 12 ]). This is actually
possible only in the regular case wl’0 4: -1. The definition is

(3.23) q’(z) q(z)+ i’yp(z),

with the real constant 3’ iqo/Po. This implies that q’ (’o) 0 by (3.17) and (3.22). It
is clear that the shifted polynomials q(z) satisfy the three-term recurrence relation 3.7 ),
(3.21). Therefore, we have q(’o) 0 for all k, by induction. Note that q(z) is anti-
symmetric.
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In the second part of this section we examine the system of linear equations, with
the Toeplitz matrix Ck, having the coefficient vector Pk [Pk,O, Pk,k] 7" ofthe symmetric
polynomial pk(z) Z = o pk,iz as its solution. By use of (2.5), (2.14), (2.20), and (3.6),
we obtain the system

(3.24) Ckp [7, 0, 0, r] T,
for k 1, n, where r is given by

3.25 Tk pngktrk(On k)/2n k- (0).

Let us now explain how the three-term recurrence formula (3.7) can be interpreted
(and could even be established from scratch) on the basis of (3.24). Consider the ma-
trix identity

(3.26)
0 0 7 k 7k-
0 0 0 0
0 0

_
deduced directly from (3.24), for some well-defined numbers uj (playing no special role
in the sequel). In the left-hand side of 3.26 we make an abuse of notation that amounts
to identifying a polynomial with its coefficient vector. Formula (3.7) induces a linear
dependence relation between the columns ofthe fight-hand side of (3.26). In particular,
the penultimate component yields the important identity

(3.27) ark= z- 1.

Let us stress the fact that the recurrence formula (3.7) can be derived from the linear
relations (3.26) by using the argument above in the opposite direction. We shall not go
into detail about this question.

Comparing (3.27) with the identity p/1(0) agpg(O) obtained by setting z 0
in (3.7), we conclude that the product rg_ lpg(O) is independent ofk. With the help of
(2.23), (3.6), and (3.25), we obtain an explicit formula for k_ lpg(0), involving the
normalizing factors gg_ and g. This formula makes sense in the case k 1, where it
gives the value Cof/2 as a consequence of the choice (3.16). Hence we deduce the re-
markable relation

3.28 rk- lP(0) cof/,

for k 1, 2, n, if we set ro CoOOl/2fg/ to agree with (3.17). This value of to is
easily seen to satisfy (3.27) with k 1. Note that (3.26) is not valid as such in the case
k 1, since C2 has only three rows; here the requirement (3.7)yields coPo(Z) zo +
70, with ro alrl, and this is correct in view of (3.17). Note that (3.25) produces an
interesting expression for the pseudoreflection coefficient (2.27), namely,

(3.29) Ok "rk- 1/’07 k- 1.

In view of (3.28), this is equivalent to ok g(O)/pg(O), which itself amounts to the
characterization of Ok expressed by (2.27).

The results above give rise to a recursive method for computing the symmetric
polynomials pk(z), for k 0, 1, n, from a given positive-definite Toeplitz matrix
Cn-1 of order n. This method is a generalized version of the split Levinson algorithm
[5 ]. Let us select two complex numbers ’0 and Wl of unit modulus, in an arbitrary
manner. (More precisely, we choose the square roots ./2 and w I/2.) For a given ’o (the
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circle parameter), the choice of wl yields a unique value for the reflection coefficient
hence it corresponds to a well-defined singular extension Cn of Cn- 1. (Details about that
question can be found in [10 ].)

The main ingredients are the relations (3.7) and (3.27), together with the inner
productformula

k

(3.30) z-- Cik,i,
i=0

which results directly from (3.24). We are now in a position to give a complete description
of the general split Levinson algorithm 10 ].

PROPOSITION 4. The sequence (p(z))f,=0 ofsymmetric polynomials relative to a
positive-definite Toeplitz matrix Cn-1 can be computed by means ofthe three-termformula
(3.7); the coefficient is obtainable via (3.27)from the numbers -_ and - given by
(3.30). The initial conditions are given by (3.17), together with zo CoO}/2 /2, where
I/2 and /2 denote any two elements ofthe unit circle.

We shall comment neither on the computational complexity nor on the numerical
stability ofthis split Levinson algorithm. Let us mention the possibility ofdefining a split
Schur and a split lattice algorithm in close connection with the split Levinson algorithm
[6], [7], [8], [11].

Note that the appropriate reflection coefficient on (corresponding to the choice of
ol is available at the end of the procedure, in the form 0n =/n(0)/pn(0). As for the
reflection coefficients ol, "’", on-1 relative to the given Toeplitz matrix Cn-1, they can
be computed with the help of (3.5), which can be written as

(3.31) ok-- 7F-- .’--72-k
in view of (3.9) and (3.29). The Jacobi parameters )k involved in (3.31 are obtainable
in a recursive manner by means of(3.11 ), with kl 1. In the regular case wl’0 4: -1,
they can alternatively be computed from 3.12 ). The predictor polynomial an (z) relative
to Cn-1 is available from Pn(Z) and Pn-l(z) in the form

Pn(Z)-- -l/2knZPn- l(Z)
(3.32) an- (z)

pn(0)( -1 z)

This follows from (2.25), by use of 3.6 and 3.8 ). As for the corresponding prediction
error squared norm an 1, it can be obtained as an c0kn Ipn(O)1-2, in view of (3.10).

Remark. To help in making comparisons with previous publications devoted to
the split Levinson algorithm, let us make the following comments. In the (first-kind)
singular case o1’o -1 we have bk(’0) 0, for all k, whence

(3.33) wk= -ak- 1( ’o)/’0d- 1(’o),

in view of(2.28). (In fact, Sn-k(o) is proportional to

_
16k- 1(’o); see details in 4.)

Similarly, in the "second-kind singular case" 01’o 1, we have tk(’0) 0, for all
k, whence

(3.34) w r_ (’0) / ’0- (’0),

in view of(2.30). Within normalization, the polynomials b(z) that admit the pseudore-
fiectio coefficients 3.33 and (3.34) are natural generalizations of the so-called "singular
predictors" processed by the antisymmetric version and by the symmetric version of the
split Levinson algorithm, respectively (see especially [5] and [9]).
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It is interesting to see how the symmetric polynomials Pk(Z) provide a reduction of
the Toeplitz matrix Cn- to a tridiagonal form, by a triangular type congruence trans-
formation. Here we consider only the regular case. From pk(z) let us construct the Lau-
rent polynomial

(3.35) w(z) c-/z( )o’)( oZ)-t/2pk(z),
with c) or , depending on whether k is even or odd. For 0 k n 1, define
the tfidiagonal matfx J (playing a major role in [12]) as follows:

2 Re /) -/(2 2 Re((3.36) J= /
_/2 2 Re (/z)

Let W be the square matrix of order k + whose successive columns are the coefficient
vectors ofthe Laurent polynomials w0(z), w (z), w(z). Note that W is equivalent
to an upper triangular matrix under row permutation. By use of (3.24), (3.27), and
(3.28) we can derive the remarkable identity

(3.37) WCW= J,

which generalizes a result given in [7]. (Here and in the sequel, the star symbol stands
for the conjugate transpose.) This shows that J is positive definite together with C. Let
us emphasize the analogy between (3.37) and the Cholesky factofization ofC provided
by the classical predictors a(z) (e.g., see [18 ]) instead of the symmetric polynomi-
als pt(z).

Finally consider the problem of computing the predictor a(z) relative to a given
nonnegative-definite Toeplitz matrix C, (of nullity one). This can be solved by use of
the split Levinson algorithm explained above, where an arbitra value e (with el
is assigned to the parameter w. If, by accident, e equals the pseudoreflection coefficient
w that coesponds to the given o, then pn(Z) is propoional to a(z). In the other
cases this propey does not hold, but the method can be continued one step fuher so
as to produce a symmetric polynomial p+ (z) that is propoional to (0 z)a,(z).
This result will be proved at the end of 5. At least from a theoretical viewpoint, the
most interesting choice for the e parameter is the value e .

4. Discussion of the singular ease. Although it does not give rise to any difficulty
in the general theo, the singular case (often mentioned above) desexes special attention
for several reasons. We now examine that subject in a detailed manner. Thus, throughout
the present section, we assume that the circle parameter 0 obeys the singularity condition

(4.1) a(0) 0, i.e., equivalently, w0 1,

with respect to the given Schur-Szeg6 parameters
In view of (2.24) and (3.6), all symmetric (normalized) polynomials p(z) are

divisible by o z. Thus it is quite natural to consider the family of reducedpolynomials

(4.2) fi(z) uP+ (z)/p(z),

for k 0, 1, ..., n 1. Here u is a positive normalizing factor that is introduced for a
technical (or aesthetic) reason of relatively small impoance. Note that fi(z) enjoys the
symmet propey (3.18). The crucial requirement is that depends only on the parity
ofk. In other words, we have

_
2 for all k. This implies that the polynomials fi(z)
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satisfy the normalized three-term recurrence relation (3.7) where the coefficient ak is
replaced by

(4.3) k--(/-tk+ 1/Idk)ak+ 1.

The parameters to and # are now chosen in such a way that the reduced polynomials
/50 (z) and/ (z) have the appropriate form 3.1 7 ). First, since/51 (z) #1 c + & z), by
(4.2) and (3.7), we must have

(4.4) )1-- l/al,

with c -/2( + ’o0)- Then, choosing the square root &/2 l/la I, we readily
obtain the following values for the normalizing factors:

-(’1/o +’/) evenk,
(4.5) /’tk--

lal 1-1 odd k.

Let us examine the explicit definition (2.20) of bk(z) under our assumption (4.1).
Set/3 an- /n- (’0). Using (2.2), we obtain /3//3 pn’. It is easily seen that
&-k-1(’o) equals flr dk(’o). This is true by definition for k n and is proved for
all k with the help of the Szegr-Levinson recurrences (2.2) and (2.13 ). As a result, we
can write

(4.6) bk + (Z) riO’- -(k + + 1)/2 -0(k(’0) ak( Z ak( 0 Zdk( Z ].

The reader who is familiar with the theory of orthogonal polynomials on the unit circle
will recognize the presence of Szegr’s "kernel polynomial" in the fight-hand side of
(4.6). Let us now provide the required information about this classical subject see 18 ],
[22], [23]).

The inner product of two complex polynomials x(z) and y(z), of degree less than
or equal to n, relative to the positive measure associated with the Toeplitz matrix Cn,
can be expressed in the form

(4.7) (x(z), y(z)) x*Cny,

where x and y denote the coefficient vectors ofx(z) and y(z). For an integer k 0,
n 1, a polynomial (’, z), of degree k in each variable " and z, is called a kernel
polynomial with respect to the inner product (4.7) if it enjoys the reproducing property

(4.8) (( f,z),x(z)) x()

for every polynomial x(z) of degree less than or equal to k in z. Applying (4.8) to the
monomials x(z) zt, with 0, k, we see that the kernel polynomial is determined
uniquely and that its "z coefficient equals the (t, s) entry of the inverse of the Toeplitz
matrix C. Thus we have the expression

(4.9) O(’,z)=[1,z,... ,z]Cl[1,", ,’]*.

Next, consider any orthonormal basis (Uo(Z), Ul(Z), "", u(z)) of the vector
space of complex polynomials of degree less than or equal to k in z. Here, orthonormal
means (Us(Z), ut(z)) 6s,t for all s and t. A simple computation, based on (4.8), yields
the expansion

k

(4.10) O(’,z) fft(f)ut(z).
t=0
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Let us apply this to the degree-graded basis, consisting of the normalized Szeg6 poly-
nomials ut(z) rl/zdt(z), and to the delay-graded basis, consisting of the shifted
normalized predictor polynomials ut(z) r-l/Zzk-tat(z). In both cases, the orthonor-
mality relations follow directly from the Toeplitz linear systems (2.5). Substituting these
bases into (4.10), we deduce both identities

(4.11) bk( , Z) k- , Z) + r-[l k( )k(Z),

(4.12)

By elimination ofk-( ’, z) between (4.11 and (4.12) we obtain the Christoffel-Darboux
formula, which leads to the Trench inversion formula for Toeplitz matrices, via (4.9)
18 ]. For a point " ’0 on the unit circle (1 ’0[ ), the Christoffel-Darboux formula

reads as follows:

(4.13) (o--Z)k(o,Z)= r-[ rk[Odk(o)ak(z)--ak(o)Zdk(Z)].

Thus we have identified the polynomial (4.6). With o1/2 -/2 i, we have p(z)
-i-1/2( o z). Using this expression together with the results above, we can write the
reduced polynomial (4.2) in the remarkable form

(4.14

with uk Cotkglgk+l (a positive number). Hence, in view of (4.9), we can interpret
the coefficient vector k of/k(z) as the solution of the Toeplitz linear system

(4.15 Ckk lkkO/2 1, -1, -k] T.

Systems of that type have been investigated recently by Bruckstein and Kailath [3]. In
the special case where the circle parameter ’0 equals one and the reflection coefficients
0k are real, (4.15 is sometimes referred to as the discrete Gopinath-Sondhi equation.
An efficient solution algorithm for this equation has been discovered by Bube and Burridge
4 ]; it is based on a recurrence relation essentially equivalent to the appropriate special
case of (3.7); it is closely related to the split Levinson algorithm.

As indicated in the beginning of this section, the family of reduced polynomials
/k(z) fits exactly into the general theory developed in 2 and 3. Recall that we have
identified the relevant recurrence coefficients &k in (4.3), via (4.5). In principle, this
allows us to determine all other parameters, within an arbitrary choice for the positive
number ?0. We shall now identify the nonnegative-definite Toeplitz matrix (n-1 (of
order n and rank n that produces the symmetric polynomials/k(z) in the sense of
our general theory. It is important to note that the reduced polynomials belong to the
regular case (with respect to the given circle parameter ’0). Indeed,/n- 1(’0) does not
vanish, since the zeros of an(z) are simple; equivalently, we have gl’0 4: -1, in view
of(4.4).

For _-< k _-< n 1, define Zk to be the k (k + bidiagonal Toeplitz matrix
having the coefficient vector ofp (z) as its first column, that is,

(4.16) Zk -i/2 ". ".
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We shall see that the k k Toeplitz section of tin- can be written in the form (k-
Z,CkZk. In explicit terms, this means that the entries gk of (n-1 are given by

(4.17) c 2ck- ’0 ck + -1 ck- 1,

for n -< k _-< n 1. It is clear that (4.2) amounts to the vector identity Zkk-1
k-lPk (with k replaced by k + ). Hence, setting the Toeplitz matrix (k-1
ZCkZk, and multiplying the linear system (3.24) by Z, we obtain a system of exactly
the same form, with Ck, Pk, and rk replaced by dk-1, k-1, and

1/2(4.18) rk-1 --lo k-Irk

Note that the discussion should be slightly different when k 1; however, the conclusion
(4.18 remains valid in that case. In view of the uniqueness of the Toeplitz matrix (n-1
underlying the family of symmetric polynomials/k(z), for a given ’0, this argument
proves the claim (4.17 ). The consistency of the results can be checked by examining the
identities (3.27) and (3.28) for the reduced polynomials. In summary, we have the fol-
lowing result.

PROPOSITION 5. The reduced polynomial k(z) is proportional to the kernel poly-
nomial Ok( , z) with = o (the circleparameter) its coefficient vector obeys the equation
(4.15). Furthermore, k(z) coincides with the degree k symmetric polynomial that is
canonically associated with the Toeplitz matrix n- whose entries are given by (4.17 ).

The corresponding pseudoreflection coefficients g:k can be determined with the help
of 3.29 and (4.18 ); the result is

(4.19) g:k --’0(’0k + 1.

The case k n reads n-1 -’opn. Alternatively, this follows from the very definition
of the reduced predictor, i.e.,

(4.20) 6n-l(z)= an(z) 1 z).

As for the remaining reflection coefficients k relative to (n-1, they can be determined
by means of formula (3.31 ). In view of (4.2), this involves the Jacobi parameter ,k
(lk/lk-1)lk+ 1, where

Pk+l(Z)
(4.21 lk + -1/2 lim

zro pk(z)

by (3.12). From 3.31 we readily obtain

(4.22) k -1-- O]Ok k + 1-- 3 2l k / kk + 1--

Note that the sequences (),k) and (lk) satisfy the same recurrence relation 3.11 ),
with the initial values X and ll . By subtraction, this implies

(4.23) lk+ --)tk+ X{ l1.

With the family of "first-kind" symmetric polynomials/k(z), we can associate a
family of "second-kind" antisymmetric polynomials k(z). They satisfy the same three-
term recurrence relation as the first-kind polynomials (with the same coefficients
The initial conditions o(Z) and 01 (z) are given by 3.22 ), where Co and o: I/2 are replaced
by 0 C0#o#l and g: I/2 #l 1. We could also consider shifted second-kind polynomials
t]k(z) + i’/k(z), vanishing at the point z ’0, as in (3.23).

5. On duality and its interpretation. Replacing the Schur-Szeg6 sequence
(ok) 7, by its dual (p) 1, with o , Onn k (where Oo as in 2.12 ), and preserving
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the circle parameter ’o, we obtain a family of symmetric polynomials p(z), which we
call the dual of the original Pk(Z) family. This dual family is quite interesting in that it
enjoys the same embedding property,

(5.1) p#n(z)=p#(O)a,(z),
#as the original family, since we have an(z) sn(z) an(z) in view of (2.15). In other

words, P#n(Z) is proportional to Pn(Z), while it is clear that p(z) is generally not pro-
portional to pk(z) for 0 < k < n. Let us now examine some remarkable features of this
duality relation.

By definition, p(z) is the normalized version p(z) gb(z) ofthe on-symmetric
predictor polynomial b(z) given by

(5.2) b(z) ’(o- n)/2[ an- k( fo)S- (Z) "- Ondn- ( o)Zgk- Z)].

Indeed, our duality permutes the roles of ak(z) and Sk(Z); hence (5.2) is the dual of
(2.20). The pseudoreflection coefficient w of the polynomial b(z) is given by w
k(’o), with the classical inner function (z) Ondn (z)/ an- k(z). Information con-
cerning the connection between the Toeplitz matrices C and their duals C can be found
in [13].

In the sequel we consider only the regular case, i.e., an(’0) 4: 0. Our objective in
this section is to explain how the dual family can be interpreted in the original framework.
We are mainly interested in the coefficients a of the dual three-term recurrence (3.7).
For k 1, n, n + 1, define the complex number w (of unit modulus) by

(5.3) w -a_ ’o)/’oa- (’o).
+ + 4: 0n. The dualIn particular, o { -’ and on +1 -’ On. Note that we have

pseudoreflection coefficients are given by

(5.4) w=-’’ -+pnOOn + k.

Elementary computation shows that the dual version of formula (3.14) can be written
in the form

(5.5) a# #
n+ 1_ kan_ k ’o( + ’oW_ )

The fight-hand side of (5.5) coincides exactly with that of (3.14), except that w is
replaced by w{. As a consequence, the numbers a generated by the relation (3.14) thus
modified have the form

ta n k even k,
(5.6) a= -a_ odd k,

for a suitable constant t. Note that (5.6) makes sense for k n, with the value of
given by (3.19), i.e.,

(5.7) a ’/2( +on)-’.
The numbers o defined in (5.3) obey exactly the same Schur-type recurrence relation
(2.29) as the "correct" numbers wk, except that we have w -’ (instead of Wn
0n). Hence they correspond to the distorted sequence of reflection coefficients
given by

+ +(5.8) O=p fork 1,2,...,n-1, On

Let us now consider the family of symmetric polynomials p(z) associated with
this distorted sequence. It is generated by the recurrence formula (3.7), with the coefficients
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a given in (5.6). The initialization is p(z) 0 and pi(z) -i’/2(1 ’-lz). The
first coefficient is found to be a] ./2( + ’ool) -1 Hence, the dual versions of(3.1
and (3.9) yield c #n-1 ),a], with ), denoting the dual Jacobi parameter (3.8). This
determines the factor in (5.6) to be the positive real number X. By construction,
the family of polynomials p(z) belongs to the singular case; we have a+(’o) 0 (as a
consequence of w ’0 -1 ). Thus, as shown in (4.14), the reduced polynomial/ (z)
is proportional to the Szeg6 kernel Ok( ’0, z) relative to the Toeplitz matrix Ck, for 0 _-<
k _-< n (see (5.8)).

The coefficient vector of the polynomial p(z) obeys a linear system of the form
(3.24), with the same Toeplitz matrix Ck (even when k n) but with a different number

+ is not zero, since a +(z) differsrk, denoted here by r. In particular, let us stress that
from an(z). Our definition of a+, given by (5.6) and (5.7), allows us to go one step
further in the recurrence (3.7) and thus to obtain a symmetric polynomial +Pn+ 1(2) of
degree n + 1. We shall see that it has the quite remarkable form

+(5.9) p++ l(z)=pn+ 1(0)( ’ z)an(z).

Thus, the extended family of polynomials p{ (z) relative to the distorted Schur-Szeg6
sequence enjoys the same type of embedding property as in the "official theory," except
that n is replaced by n + and an(z) by a++ l(z) -1 z)an(z). It is interesting to
compare this extension operation (from n to n + with the reduction operation (from
n to n reflected in (4.20).

As explained at the end of this section, in a more general setting, the result (5.9)
can be established by straightforward verification, based on explicit expressions for
P,+-l(Z) and p+ (z). Here we use an alternative argument relying specifically on duality.
Set the positive constant r X#-/Ui In view of (5.6) and (4.3), the reduced version

image (r.+(Z) of +Pn + (z) is produced by the normalized mirror - # #

#-1) producing the polynomialra), with e (-1 )n, of the sequence (a, al#,
p(z). Now it is a simple exercise to prove that the mirror image operation preserves
the output polynomial ofthe recurrence 3.7 ). (See 12 for further details on this subject.)
Therefore,/+ (z) is proportional to p(z), so that the desired result (5.9) is nothing but
(5.1). The main conclusion can be stated as follows (an application is given in the
companion paper 12 ).

PROPOSITION 6. The distorted sequence of reflection coefficients (o-)= 1, defined
in (5.8), produces a family ofreduced symmetric polynomials 1(z), for k O, 1,
n, the last element ofwhich is proportional to the predictor polynomial an(z).

+ defined in (5.6) can beLet us emphasize that the coefficients a , a, ..-,
computed, together with the polynomialsp(z), by running the split Levinson algorithm
of 3 for the given Toeplitz matrix Cn; it suffices to set the parameter oi equal to
_-l. (Note the property r- ico.) The matrix identity (3.26) is satisfied up to k n

+ 0 and with Cn +1 denoting the unique singular(with 1{ instead of ll, etc.), with r

Toeplitz extension of order n + 2 of Cn. (Note that Cn + is nonnegative definite and has
nullity two.) Let us stress that all recurrence coefficients a{ in this "extended" split
Levinson algorithm are given by a r

_
/r, as in 3.27 ), including the last ofthem

(for k n). Further details on that subject can be found at the end of the paper.
As explained in the general theory of 2 and 3, a family of second-kind antisym-

metric polynomials q-(z) can be constructed from the same coefficient sequence
(a)f,= 1, via the recurrence (3.21). It can be checked that the final polynomial,
+q + (z), is given by

(5 10) + +qn+ l(Z)=Pn+ 1(0)( ’ Z)len(Z),
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in terms of the classical second-kind predictor rn(z). The proof is basically the same as
that of(5.9); details are omitted. In contrast with (5.10), note that none ofthe polynomials
q(z) with < k < n vanishes at the point z ’0. The property qn++ (’o) 0 shows
that the Jacobi parameter n++ 1, defined formally as in (3.11 ), is equal to zero. In other

+

__
-/2+ -1words, we have Xn+ (-1/2c Thus, the result (5.9) can be interpreted as

an extension of the formula (3.32) where n is replaced by n + (and Pn by pn++ 1). Note
kn+that the property + 0 agrees with (3.10)

As alluded to above, the polynomials p{(z) can be introduced in an alternative
manner, which is equally interesting. Assume that the available data are the entries of
the Toeplitz matrix Cn, rather than the corresponding Schur-Szeg6 parameters ol, ,
On. In this situation, the recurrence coefficients ck can no longer be computed by way of
(2.29) and (3.14). Choosing any complex number e of unit modulus, let us apply the
split Levinson algorithm of 3 to the Toeplitz matrix Cn, with the initialization

(5.11) po(Z,,)-’,-l/2-l/Z2t-,l/212 Pl(Z )--.-l/2-Jl"t2112Z
and z0 oel/2’/2. This is formally the same as (3.17), with wl(e) e in place of wl.
The algorithm produces some well-defined symmetric polynomials pk(z, e) and recurrence
coefficients a(e), depending on the e parameter. Of course, p(z, e) equals p(z) for
all k if and only if e equals wl. Looking at the initial conditions, we see that the choice
e -.1 leads to the polynomials p(z) examined above; we have

(5.12) p(z,-l)=p{(z),

for k 0, 1, n. As explained below, this identity extends to the case k n + 1, in
a natural manner.

For any value of e (with el ), elementary computations give

(5.13) pn_l(z,e)=-l(e)Pn(O,e)-l/Z[a,-l(z)+cOn(e)on-l(z)],

p.(z,e):p.(O,e)[a._ l(z)+ co.(e)zn_ (z)],

.-,(): n- ,X()Pn(O,)On()/-,

(5.16) n() .- Pn(O,)[On()--

As a consequence, provided we have e 4: wl, i.e., On(e) 4 On, the split Levinson algorithm
can be applied one step further to yield

(5.17) Pn+ (Z,e)=p,+ (0, e)( Z)an(Z).
Comparing with (5.9), we see that (5.12) is actually valid for 0 _-< k =< n + 1. Note that
the special choice e --1 is characterized by the fact that pk( ’0, e) vanishes for all k,
while this is true only for k n + when we choose e 4: -1. Thus, a family of reduced
polynomials can be defined exclusively in the case e --1.
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ON RANDOM CORRELATION MATRICES*

R. B. HOLMES,"

Abstract. This report contains a detailed study ofrandom correlation matrices, including algebraic, statistical,
and historical background. Such matrices are ofparticular interest because they serve to model "average signals"
for simulation testing of signal processing algorithms. The statistical behavior of spectral functions of the two
major types of random correlation matrices is extensively discussed in the latter half, from both theoretical and
empirical aspects. The emphasis is on eigenvalue distribution and condition number behavior. Actual application
to algorithm testing will be described in a subsequent report.

Key words, correlation matrix, random correlation matrix, random spectrum, Gram matrix, random Gram
matrix, random eigenvalue, condition number, spacings, spectral distribution function
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1. Introduction. This paper derives from a study of the relative efficacy of certain
(group-theoretic) data transforms for various canonical signal processing tasks. Two such
tasks are, in particular, data compression and decorrelation. For a given data transform,
realized as a unitary matrix U, the extent of such activity can be measured from the
transformed data covariance matrix. Thus ifa data vector x has covariance C, its transform
Ux has covariance D UCU*, and the data compression (respectively, decorrelation)
efficiency of the transform U can be assessed by examination ofthe diagonal (respectively,
off-diagonal) entries of D.

In order to make a serious statistical study ofthe efficiency ofgroup transforms and
filters for the various signal processing tasks, it is necessary to have an assortment of
standardized signal models. These fall into two classes: parametric models and "purely
random" models. The former determine, after sampling, structured covariance matrices
with entries having a simple dependence on a few parameters. The simplest and most
familiar example is the first-order Markov or autoregressive signal model, from which N
samples generate the covariance matrix [p li-jl], where 0 < pl < 1, and _-< i, j _-< N.
On the other hand, it is somewhat less clear a priori what a "purely random" covariance
structure might be. Clarification and discussion of this term is the primary object of the
following sections. Speaking intuitively for the moment, it is evident that this term must
be precisely defined if we are to be able to do any serious simulations of the action of
the various transforms, and to eventually say that one or another of them, for fixed data
dimension, is superior in the performance of a particular task "on the average."

This paper is written in a somewhat discursive style, with and 2, along with
3.1 and 4.1, being essentially expository. Relevant definitions and aspects ofnumerical

linear algebra are collected in Appendices A and B. Appendix A is primarily a review of
known, if not "well-known," bounds on norms and eigenvalues. Appendix B focuses on
the important concept of condition number, the behavior of which, under various con-
ditions of randomness, is a major object of study of 3 and 4. The main result in
Appendix B is a sharp lower bound on the norm of the inverse of a correlation matrix.

1.1. Definitions. In the background we have an N-dimensional real or complex-
valued second-order random vector x. We will usually assume that x has zero mean
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E(x) O, the zero vector. The covariance matrix of x is the N N matrix Cx de-
fined by

Cx= [E(xij)].

Such matrices are characterized as being Hermitian and positive semidefinite. We will,
in fact, always assume that Cx is actually positive definite, so as to eliminate degenerate
probability density functions. Hence the eigenvalues { hi, hN ) of Cx are all positive;
they constitute the spectrum a(Cx), of Cx, and their relative size will always be indicated
by subscript: hi ->- h2 >-- >= hN > 0.

We recall the statistical significance of these eigenvalues: letting { b, bN} be
the orthonormal set of eigenvectors corresponding to ),1, hN, we have

(a) hi var ((x, 8/));
(b) tr (Cx)= hi +"" + hN--E(I]xII2);
(C) hm+ -- - hN minsm E(d(x, Sm)2), m 1, N- 1.

The first assertion here is that h; is the variance ofthe ith principal component ofx; these
random variables occur as the coefficients in the expansion of x in the (Karhunen-
Love) basis { 41, 4N}. Statement (b) is a special case of (c) (take m 0, there).
The final assertion is that the best mean square approximation to x by m-dimensional
subspaces Sm occurs when Sm is spanned by { 41, )m }, with error as the indicated
function ofthe eigenvalues. For applications ofthese and related formulas to multivariate
statistics, pattern recognition, and signal processing (estimating x from noisy observa-
tions), see, respectively, ], 18 ], and 33 ].

From now on we will make a slight specialization by assuming that all components
of the random vector x have the same variance, which we take to be unity. It follows
that the diagonal of Cx consists ofones, tr (Cx) N, and the modulus ofeach off-diagonal
entry ij satisfies cil < 1. These entries are, in fact, the correlation coefficients of the
and j components of x. Any such matrix is called a correlation matrix, and will be our
primary object of study. Bounds and estimates for various quantities associated with
such matrices are reviewed in Appendix A. Here we note that ifC is any N Ncorrelation
matrix, then < [1CI[ h -< h -- - hN N, so that the set I’(N) of all such C is
a bounded convex subset ofthe N(N + )/2-dimensional real space ofN NHermitian
matrices. (If the scalars are complex, this latter space is of real dimension N2.)

In general, it is difficult to tell by inspection whether a given symmetric or Hermitian
matrix C with diagonal entries equal to one is positive definite, and hence a correlation
matrix. Several nonlinear inequalities involving the off-diagonal entries must be satisfied;
these correspond to the positivity of the leading principal minors of C.

Two simple sufficient conditions for positive definiteness are available, however.
These are:

(a) C is diagonally dominant, so that the Gershgorin theorem can be applied; and
(b) C can be partitioned as

C=
F* /2

where the I’s are identity matrices, and F is a matrix whose (spectral) norm is less
than one.

1.2. Notions of randomness. We now want to address the question of randomly
selecting a correlation matrix of some fixed size. Our particular interest in this question
has already been indicated in the introductory remarks above, and further motivation
will be provided in the next section; in general, we may say simply that a satisfactory
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answer to this question will permit generation of random test problems for a variety of
statistical methods.

Roughly speaking, any method ofgenerating random correlation matrices will begin
by generating some number ofpseudorandom variates uniformly distributed on the unit
interval, and then performing certain deterministic mathematical steps to arrive at a
correlation matrix. Four possible such methods will be described below, and two will be
discussed at some length. But we have to acknowledge at the outset that no method is
completely satisfactory. This is due to the lack of structure of the set I’(N), on the one
hand, and to the presence of structure in the individual members of I’(N), on the other
hand. That is, each element C of I’(N) has associated with it, as a matrix, entries, eigen-
values, and functions ofthese, such as norm, condition number, etc., all ofwhich become
random variables with their own distributions, which naturally depend on the manner
in which C was produced. But the set I’(N) does not carry a natural invariant measure.
This deficiency may be contrasted with the cases of the orthogonal or unitary groups,
which carry a canonical (unimodular) Haar measure. Nor is I’(N) a homogeneous space,
such as a sphere, on which a transformation group acts and leaves invariant some measure.
Thus, while such phrases as "random orthogonal matrix" and "uniform distribution
over the unit sphere SN- ’’ have a clear conceptual meaning, and indeed there exist
successful numerical procedures for generating such variates (see, in particular, 2 ], 57
for the former case), the situation remains murky for correlation matrices.

As a brief aside we offer two remarks. First, the topics ofapproximating and efficiently
sampling from the uniform (Haar) distribution on finite or compact groups persist under
current investigation. In addition to the references just given for the case of the orthogonal
group, see recent articles by Takacs [60] for finite groups, and by Diaconis and Shah-
shahani and various coauthors ([11] and references) for an assortment of groups and
applications. The basic approximation result, that the distributions of the successive
terms in a random walk on a compact group converge vaguely to normalized Haar
measure provided that the support of the common distribution of the individual terms
is sufficiently diffuse, goes back at least to Grenander 24 ]. The condition on the support
of the distribution can also be rephrased as a spectral property of its (operator-valued)
Fourier transform. Second, although as noted above, I’(N) is not a homogeneous space,
the cone P(N) of all positive definite N NHermitian matrices is such a space. Namely,
it is acted on by the general or special linear groups according to the rule

A TAT*,

for A P(N) and T nonsingular. It follows from general theory, including the fact that
these linear groups are unimodular, that there is an invariant measure on P(N) 44 ].

Returning now to the matter of random correlation matrices, we indicate four pos-
sible methods of generation; only the last two will be discussed in any detail, beginning
in the next chapter.

Method 1. Direct acceptance-rejection. Here we must obtain symbolically the lead-
ing principal minors of the general symmetric N N matrix with unit diagonal. This is
possible for moderate size N via a computer algebra program. Requiting these minors
to be positive then constitutes a set ofN- 2 nonlinear constraints on the N(N- )/2
off-diagonal entries. Then a set C12 C1N C23 C2N CN- 1,N of pseudo-
random deviates uniformly distributed on (- 1, ), or in the open unit disc, is generated
and tested to see if the constraints are satisfied. If so, a correlation matrix C is obtained;
if not, a new set ofuniform deviates is generated, etc. To our knowledge, the distributional
aspects of the spectral features of the resulting matrices are unknown.
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As might be expected, this method is at best feasible for rather small values of N,
say N =< 6. Indeed, based on 1,000 N trials, the empirical rejection rate ru .195, .583,
.875, and .977, respectively, for N 3, 4, 5, 6. Hence, the expected number of iterations
until the algorithm succeeds in producing a correlation matrix is ru) -1 1.24, 2.4,
8.0, and 45.5, for these values of N.

For the general theory of acceptance-rejection methods, reference may be made to
Devroye 10 ].

Method 2. Perturbation about a mean. This method is discussed by Marsaglia and
Olkin 40 ], which is generally the most current source ofinformation about our subject.
However, it is not of particular interest to us as, for our purposes, there is no reason to
have in mind any a priori mean value.

Method 3. Random spectrum. As we know, the spectrum of an N N correlation
matrix consists of N positive numbers (not necessarily distinct) that sum to N. As will
be recalled in the next section, every such set ofN numbers occurs, so that the possible
spectra fill out a simplex in real N-space. Since it is numerically feasible to generate
pseudorandom uniform samples from this simplex, we can, by a succession of suitably
chosen orthogonal or unitary transforms, arrive at a random correlation matrix. An
automated procedure for doing this latter task is commercially available in the IMSL
subroutine GGCOR. Statistical aspects of this method will be discussed at some length
in3.

Method 4. Random Gram matrix. As is well known, every real positive-definite
matrix A has a Cholesky factorization

A TT*,

where T is a uniquely defined lower triangular matrix with positive diagonal entries. Let
the rows of T be denoted l, tN. Then

ao ( ti, t),
and so A can be considered a Gram matrix defined by the vectors tl, tN }. If also
A is a correlation matrix, then each vector ti must have length one. Consequently, any
procedure for generating pseudorandom unit vectors, with any distribution, will result
in a random correlation matrix of Gram type. These vectors may or may not end in
zeros, as in the Cholesky factorization, but naturally we do less work if they do. This
method is the most efficient of the general methods, 1, 3, and 4; some of its statistical
aspects will be discussed in 4 (see also [40] again).

Whatever method we might eventually choose for a particular application will depend
on the nature ofthe application and. just which aspect ofthe random correlation matrices
we wish to have an unambiguous uniform distribution.

1.3. Background and motivation. In terms of the preceding introductory material,
and prior to the more technical developments of the remaining chapters, we will briefly
review some of the relevant statistical literature. Specifically, we will comment on the
contents of four articles, 4 ], 3 ], 31 ], 40 ], listed in chronological order.

In 4 ], Chalmers 1975 presents an algorithm which produces correlation matrices
with a common spectrum. His motivation is the study of strongly structured data, that
is, random vectors whose first two or three principal components explain much of the
variability of the data. He wants to be able to distinguish between causes of the observed
associations among different subsets of the components of the data, whether these are
due to the physical nature of the variables themselves, or to some inherent structure in
the data as captured by the underlying principal components. An empirical approach is
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to generate other correlation matrices with eigenvalues identical to those observed, and
to then compare results from these matrices with those from the original data. The
algorithm itself is derived from a geometric lemma which asserts the existence of an
infinite set oforthogonal generators to certain quadratic cones in real n-space. Normalizing
these generators then leads to the columns of an orthogonal matrix which transforms a
given diagonal matrix of eigenvalues into the desired correlation matrix.

In [3 Bendel and Mickey address the same problem as Chalmers, but more sys-
tematically, and with more concern for whether the resulting correlation matrices are
truly "representative" of the entire class of correlation matrices with given spectrum,
thought of as those which could arise from a given experiment. They note that parame-
terizing subsets of I’(N) by structure, e.g., equi-interclass correlation (constant off-diagonal
entries) or first-order autoregressive (Markov-1 data) leads to very narrow classes of
correlation matrices, unsuitable for many applications. Their approach is to treat the
eigenvalues as parameters, especially when they, in turn, are functions of one or two
parameters. For example, the eigenvalues might be required to form a geometric pro-
gression. In general, if the parameterized eigenvalues are roughly constant, and therefore
approximately equal to one, the data variables are approximately independent, while a
large spread in the range of the eigenvalues indicates strong interdependence between
the variables.

Starting with a spectrum {),1, "", )kN} and setting D diag {),, .-., N}, the
method of Bendel and Mickey yields a correlation matrix C of the form

C=U*DU,

where U VRN- 1" "R2R1. Here Visa randomly chosen orthogonal (or unitary) matrix
and the R’s are matrices representing Givens rotations, chosen successively to make one
diagonal entry at a time ofthe product equal to one. The V’s can be generated by various
procedures (see references 2 ], 57 already mentioned in 1.2 ). They go on to describe
the application oftheir method to the problem ofstopping rules in the statistical procedure
known as stepwise regression. They also offer some comparisons between their method
and that of Chalmers.

In [31], Johnson and Welch (1980) also emphasize the use of simulated data to
test alternative selection procedures in stepwise regression, particularly to build confidence
in the use of such procedures on real data with uncertain structure. Ifthe joint distribution
of the dependent and regressor variables is Gaussian, then it is standard to sample ran-
domly from it by factoring the covariance matrix and using a string of pseudorandom
N(0, variates. Thus only the structure of the distribution remains to be specified, and
this, of course, is completely determined by the (mean and) covariance. If this is assumed,
as it is, to be of correlation type, then it can be partitioned as

where C is the intercorrelation matrix of the regressors, and o is the vector of correlation
coefficients between the regressors and the dependent variable. So the emphasis is on
generating such C’s, and this is done by viewing C as a Gram matrix: C TT*, with
the rows of Tbeing unit vectors. They suggest generating each entry of Tfrom a symmetric
beta distribution, varying the free parameter from row to row. They note that a certain
control over some aspects of the matrices so defined can be maintained, such as the
degree of correlation between some regressors, and the coefficient of determination for
the complete regressor set.
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Finally, in [40], Marsaglia and Olkin give a rigorous mathematical description of
Methods 2-4 described in the preceding section. Their major result is to obtain the
explicit form of the distribution of the entries of a random Gram correlation matrix
C TT*, when the entries of T are generated in a particular fashion. Some of this work
will be reviewed later, in the appropriate context.

2. Two principal methods. As noted in 1.2, only the methods labeled there as
Methods 3 and 4 are discussed in any detail here. We begin this discussion now, setting
the stage for the presentation of the new results later.

2.1. Random spectrum. As we know, the spectrum ofa correlation matrix C Y(N)
has a spectrum a(C) { Xl, kN} consisting ofN positive numbers of sum N. The
set of all such N-tuples defines a simplex SN, and we first want to observe that every
point in SN occurs in this fashion, that is,

u{ (c).cr(N) } sN.
This is a consequence of a general characterization of Hermitian matrices due to several
authors. Namely, ifA is a Hermitian matrix of order N with eigenvalues Xl >- >- XN,
and diagonal entries dl > >-_ du, then

(2.1) d + + dk <= , + + kk

for =< k -_< N- l, and

(2.2) d, +’’’ +dN X, +’’’ + kw=tr (A);

(see 50]). Conversely, given real numbers d., i } satisfying all these conditions, there
exists a real symmetric matrix A with diagonal entries d,,..., dN, and eigenvalues
Xl, N (Horn 29 ], Mirsky 43 ]; in contemporary terminology, the vector of diag-
onal entries is majorized by the vector of eigenvalues of a Hermitian matrix [42 ]).
In our case, however, the result follows more directly from a theorem of Fillmore 16 ],
namely, that any matrix A is unitarily equivalent to one with a constant diagonal. This,
in turn, is an easy consequence of the convexity of the numerical range W(A), so that
tr (A)/N W A ), and an induction argument.

The upshot of the above paragraph is that, given (X,, XN) SN, there is a
correlation matrix C with these numbers as its spectrum. How, in practice, is such a
matrix to be obtained? As already noted, answers have been given by Chalmers and
Bendel and Mickey; there is also the paper by Chan and Li 5 which more generally
provides an algorithm for constructing a real symmetric matrix with given diagonal
entries and eigenvalues satisfying the conditions (2.1) and (2.2). It appears that for
present purposes the most natural is that proposed by Bendel and Mickey, namely,

(2.3) C Rv- ,"" R;R DR, R2" RN-

where D diag ,, XN], and Rk is a rotation in the plane spanned by the standard
unit vectors lk and lk + ,. The matrix Rk has the form

s
s c

IN-k-1

with c2 + s2 1. The rotation angle arc cos (c) is chosen so that the kth diagonal entry
of C is one.
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We can strengthen the preceding remark by replacing the diagonal matrix D in
(2.3) by A U*DU, U unitary. That is, A is an arbitrary positive-definite matrix with
spectrum { k, kN}. Then A can still be transformed into a correlation matrix C,
as before, and there are, in fact, exactly four choices for each Rk in (2.3).

To see this, consider first the specification of R. R’AR should have a diagonal
entry equal to 1. Let Ap be a principal 2 2 submatrix ofA, say

with a, d > 0. Let Q be a 2 2 orthogonal matrix, either a rotation

or a reflection

[c
C S 1.S

Then the upper left entry of Q*ApQ is ac2 + 2 Re (b)cs + ds2, respectively. From the
behavior of the Rayleigh quotient of Ap, we see that this quadratic form in (c, s) will
somewhere assume the value one if and only ifAp has one eigenvalue less than or equal
to one and the other greater than or equal to 1. Now since a, d are diagonal entries of
A, and tr (A) N, Ap can be chosen so that one of a, d is less than or equal to 1, and
the other greater than or equal to one. Its eigenvalues X >= ,2 then satisfy

)k2 min (Apx, X) <- min (a, d)

=< =< max (a, d) <- max

So the condition on Ap is satisfied, and therefore four choices of Q exist to yield a in
the upper left corner of Q*ApQ. R is then created immediately as a direct sum of Q and
an identity matrix. The whole procedure can then be repeated, since the sum of the
remaining diagonal entries of RAR2 is N- 1.

The preceding remarks are a slight elaboration of some made at the end of 4 of
[40]. We note that in all the discussion of this section so far, there are no issues of
randomness. These can be introduced in two stages. First, if a point (X, X) e SN is
given, we can form the corresponding diagonal matrix D, select an orthogonal matrix V
at random from the orthogonal group O(N) with normalized Haar measure, and select
a succession of orthogonal matrices, one of four choices at random at each step, so as to
transform V*DV into a correlation matrix C. This C may fairly be said to be a random
correlation matrix with specified spectrum. Second, the spectrum may itself be chosen
from some probability distribution on SN. The resulting matrices are said to have a
random spectrum. The special case where the distribution ofSN is uniform will be discussed
at some length in 3. Some issues involved here are that this method is evidently rather
computationally expensive, and that the distribution of the entries of the resulting cor-
relation matrices is not well understood. However, we will be able to say something about
the distribution of some global features of these matrices.

2.2. Random Gram matrix. We first quickly review the concept of Gram
matrix. Let x, XN be linearly independent vectors in any pre-Hilbert space. The
corresponding Gram matrix is the N N Hermitian matrix G G(x, XN) with
(i, j)-entry (xi, xj-). The determinant g(xl,’", XN) is called the Gramian of the
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set x, XN}. Clearly, the covariance matrix of a set of normalized second-order
random variables falls under this definition. In general, Gram matrices are positive semi-
definite as follows from the formula

for any N complex numbers a, oN. Furthermore, as already noted in 1.2, by
Cholesky factorization, any real positive-definite matrix is a Gram matrix; more generally,
any complex positive-semidefinite matrix has a positive-semidefinite square root, and so
is a Gram matrix.

The Gramians are symmetric functions of their arguments, and obey the inequalities

(2.4) 0 <= g(x XN) I1Xl 2"’" I1XNI] 2,

with equality on the left if and only if Xi } is linearly dependent, and equality on the
fight if and only if xi } is orthogonal. To prove the fight-hand inequality we first reduce
to the case that each xi is a unit vector, and then

g(x, ,XN) l/N-- (IIki) 1IN

--Zi-- tr(G)-N r
where { k } if(G).

We sense from this that the Gramian and other spectral features ofthe Gram matrix
bear some relation to the relative orientation ofthe vectors { X }. Along this line we recall
that if the vectors xi belong to RN, then

(2.5) vol )kiXi" 0 <= )i <= ei g(x XN) 1/2 I-I $i,

so that, in particular, g(x, XN) is the square of the volume of the parallelepiped
spanned by the set { xi ). If the xi belong to some other space, (2.5) serves to define this
volume.

In addition to the simple Hadamard inequality in (2.4), we have further

g(Xl Xm y YN) <= g(Xl Xm g(y YN)

and, in fact, the ratio of the left side to the fight side is known to be sin2 al’’" sin 2
aM,

where a, at, M -< N, are the angles between span x/. } and span { yj }.
Gram matrices occur naturally in all manner of least squares problems, such as

Gram-Schmidt orthogonalization, linear regression, and pseudoinversion. Indeed, the
basic problem ofcomputing the orthogonal projection onto span { xi } requires the solution
of a linear system with Gram coefficient matrix. It is familiar that as the basis vectors xi
deviate more from orthogonality, such problems become more ill-conditioned, and as-
sociated statistical procedures are said to suffer from "collinearity." For example, if xi(t)
is the monomial i, and the inner product comes from some Lebesgue-Stieltjes measure
with compact support, then the corresponding Gram matrices, indexed by N, have a
condition number that grows at least as fast as 4N; the classical Hilbert matrices are
special cases ([61], the main result of this reference is reviewed in Appendix B; for a
recent review of the collinearity problem with suggestions for its measurement by more
subtle indicators than simply condition number, see [58 ]).
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TABLE
Statistics for random N N matrices.

Mean c.n.
Standard dev.
Median c.n.
Interquartile range
Trimmed mean
Standard dev.
Mean F norm
Mean norm
Mean min. e-value
Standard dev.

N=5

111.
754.
15.8
30.7
39.2
70.3
2.88
2.31
.191
.161

10

553.
1.18E4
40.5
80.9
95.4
157.
4.24
2.92
.100
.093

Random spectrum

N=5

1.37E6
4.29E8
114.
446.
1.57E3
5.48E3
2.99
2.43
.042
.054

10

7.85E6
2.19E8
809.
3533.
1.57E4
6.65E4
4.36
2.94
.009
.012

Random Gram

As a reference point for later use, we record here a well-known distance formula
involving Gramians. Let M span {x, XN}, and let x be another point in the
space containing M. Then

(2.6) dist (x,M)2=
g(xl,
g(xl

Recall that random Gram matrices were defined by Method 4 in 1.2. In present
notation the x; are taken to be random vectors uniformly distributed over the sphere
SN- in Ru. We now report some results from a small simulation, intended to compare
such matrices with those of random spectrum (Method 3). We give here only the cases
N 5 and 10, as they appear typical of all cases considered. In each case, the summary
statistics are based on 1,000 trials. In the left column of Table 1, c.n. means condition
number, F norm mean Frobenius norm, and norm means spectral norm. Also, trimmed
means that the largest one percent and smallest one percent of the samples have been
deleted.

Probably the most striking contrast to be made on the basis of this numerical ex-
periment is the much higher condition numbers of the random Gram matrices relative
to those ofthe matrices with random spectrum. This aspect ofthe data persists even after
trimming, and after passing to medians. It strongly suggests that random Gram matrices
do not have a random spectrum. It also raises interesting questions about the relative
orientation of a batch of two or more vectors drawn independently from the uniform
distribution on the (N- )-sphere. Some of these will be considered in 4 below.

3. Correlation matrices with random spectrum. Some background for the chapter
was given in 2.1. There, two essential steps in this process were recognized:

mPick a point (X, ,N) "at random" from the simplex SN, and form the
diagonal matrix D diag (X1, ,N).

nConstruct a matrix C R* V*DVR, where V is drawn at random from the
orthogonal group O(N), and R is a product of randomly selected rotation/re-
flection matrices, chosen to successively put ones on the diagonal of C.

Naturally, the second step leaves a(C) , and hence leaves all spectral functions of C
unchanged. Among such functions are the spectral and Frobenius norms of C, and its
condition number. (In general, any unitarily invariant norm of a Hermitian matrix is a
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spectral function ofthat matrix.) Consequently, once a probability distribution is selected
on SN, so as to define the "at random" condition of the first step, the spectral functions
of any correlation matrix defined by the second step may be studied directly. Note that
this approach does not apply to other numerical attributes of C of possible interest, such
as its individual entries; their distribution naturally depends in part on those of the V
and R matrices.

3.1. Method of generation. From the preceding discussion we see that a probability
distribution t must be specified on the simplex SN. Then a sample __X drawn from will
be a random spectrum. Having no reason to weight any region ofSN more than another,
we will take to be the uniform distribution on SN, and denote by

k U(Su)

a point

_
so chosen. Two tasks remain:

Specify/ analytically,
Specify # operationally.

This latter task simply means to prescribe a method for a computer to make these draws
in terms of an assumed capability to generate pseudorandom numbers U[O, ].

The analytical specification of u depends on (a special case of) the general
theory of order statistics and spacings. Here we only need the case of independent sam-
ples from the uniform distribution. Thus let u()_-<... =< U(N-1) be the order statis-
tics of a random sample from U([0, 1]). Define u(0)= 0, and u(u)= 1. As shown by
Wilks 66 ], the joint distribution of these order statistics is uniform over the simplex
{ 0 <= Xl <= <= XN-l ----< } in RN- Then the spacings of the sample are defined by

Si-- U(i)- U(i- 1), =< =< N.
Observe that for each sample, the spacings are positive numbers that sum to one. It was
also shown by Wilks that the spacings vector (s, SN-1) is uniformly distributed
over the simplex

0 N Xi, Xi =< in RN 1.

Now, for fixed N, the mapping

T(xt ,XN- (Xl ,XN-1, l--X1 XU-1)

carries this simplex bijectively onto the simplex 0 _-< xi, 22 x;= l} in RN, and carries
over the uniform density (by an elementary change of variables).

The upshot of the preceding paragraph is that, for fixed N, the uniform density
on the simplex SN can be specified analytically as the distribution of the random vector

(3.1) NT(sl, ,SN- 1)"

And, ofcourse, it follows that u can be specified operationally in terms ofpseudorandom
number generator, and a sorting routine.

There is by now a fairly extensive literature of spacings (sometimes known as "gaps,"
"coverages," or "random division of an interval"). This topic can be traced back to the
work of Whitworth 64 at the turn of the century on the distribution of the largest
spacing. His result was utilized by Fisher 17 to give a significance test for the largest
amplitude in a numerical harmonic analysis of a time series. (In fact, Fisher’s test turns
out to be the uniformly most powerful symmetric invariant decision procedure against
simple periodicities. More recent work is concerned with compound periodicities, and
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hence with the distribution of other functions of the spacings besides the maximum. It
is not germane to detail any of this work here; the interested reader may consult some
papers of Siegel, e.g., 51]. We merely want to draw attention to the unexpected link
between the spacings concept and time-series analysis.)

In the later 1930s and then in the 1940s other work on distributions of functions
of spacings was done by several authors: Levy, Greenwood, Moran, etc. Most of this
originated as specific problems in applied statistics. The best review of all this is that of
Pyke 46 ]. Other useful references are 8 and 55 ]. Among (many) other things, these
references point out alternative .analytical specifications of spacings. For instance, if
Y,’", YN are independently exponentially distributed with arbitrary mean, and
z y + + YN, then the random vector

Z-1 (Yl,

is distributed as the spacings vector T(s,..., SN-1). Hence random spectra can
also be generated by use of exponential variates. From this it follows that spacings
can also be simulated from the (normalized) interarrival times of a Poisson process
{N(t)" >= 0 with N(0) 0. Namely, if Tk is the elapsed time between the (k )st
and the kth event, and > 0 is fixed, then the conditional distribution, given
N(t) n, of

t-l( T, T,_ ,t- TN(t))
is the same as the spacings vector. This is a classic construction of spacings with important
modern applications to the limiting behavior of empirical processes [46].

The distribution of spacings and some functions thereof is also briefly discussed by
Kendall and Moran in 34 ]. Naturally, geometric aspects are stressed. For instance, the
joint distribution of the spacings is, with proper scale factor, exactly that of the lengths
of the N perpendiculars from a random point inside the simplex SN to the N sides. The
authors go on to discuss some situations where probabilities can be computed from
simplicial geometry.

3.2. Distribution ot" eigenvalues. Pursuant to the foregoing discussion we take as a
random spectrum

_
SN, N times the random vector of spacings defined by a random

sample of size N- from the standard uniform distribution. We denote this vector as
_

(h, hN). In this short section we discuss the distribution of the h;, while in the
next two sections we consider that of certain functions of the hi related to correlation
matrices C with o(C) _.

We first note that the hi are exchangeable random variables since, because of the
uniform distribution of

_
on SN, that distribution is unchanged under permutation of

its components. It follows that the hi are identically distributed and, using the formula
for the least order statistic, the distribution function FN is given by

(3.2) fN(t) 1-- 1--

Thus, for large N, hi is approximately exponentially distributed with mean one. From
(3.2) we can conclude that

N-1
E(i) 1, var (i) N+I’

for each i.
Expressions for the joint distribution of the hi have been given by Steutel 55 ].
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Namely,

Pr(Xl>, ,hN>OI.N)’-- t (
0

rZ Oi

if not

oti<N,

and

aj Olj_[_ ak N-1

Pr(h, <=a,, ,hN-<aN) 1--jE,.= 1-- +,<=j<k<___UE 1-N -+’" ""

These formulae are derived by Laplace transform techniques and the relation, already
alluded to in 3.1, between the spacings distribution and that of certain exponential
vafiates.

In similar fashion we could go on to describe the joint distribution of pairs
the associated covariance, etc. Here we will just note that

-1
corr hi, hj) N- 1"

But actually all such formulae oflikely interest follow directly from the multiple moments

formula

(3.3) E( XP’. ")= NPI’(N)
r(p, + )... F(PN+ 1)

r(p+N)

where p p + + PN. This expression can either be derived by the Laplace transform
method of Steutel [55 ], or, somewhat more directly and geometrically, as in Kendall
and Moran [34, p. 34].

3.3. Distribution of norms. We continue with the assumption that we are dealing
with a correlation matrix C whose spectrum has been chosen randomly according to
U(SN). The issue now is the distribution of the norms IIcll and IICIIF, as defined in
Appendix A.

Let us begin with c which, for both typographical and historical reasons,
we will denote by GM(N). In the statistical literature this quantity is known as the
Greenwood-Moran statistic, after the authors of 23 and 44 ]. It was originally proposed
as a test for uniformity in response to a problem in epidemiology (time intervals between
outbreaks ofan infectious disease). Moran 44 derived a general formula for the moments
of GM(N); it was rederived by Steutel [55]. For us, it is enough to use the moments
formula (3.3) to obtain

2N2

E(GM(N)) N+I’

E(GM(N))2 4N4(N+ 5)
(N+I)(N+2)(N+3)

and hence

var (GM(N))
4N4(N

(N+ )2(N+ 2)(N+ 3)

O(N).
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A second point to be made about GM(N) is that it is (slowly!) asymptotically
normal, a result due originally to Moran [44], and reproved by a more general method
by Darling [7] (see also [46], [55 ]). As usual, Pyke has the most complete discussion
of this topic. Once this asymptotic normality is established, the corresponding property
of (GM(N)) 1/2 [IClIr can be worked out by general theory concerning smooth
functions of asymptotically normal variates. In fact, since GM(N)/2N has mean
N/(N + 1, and variance av O(I/N), its asymptotic normality implies that
(GM(N)) /2 /2N is asymptotically normal with mean one, and variance 2N/4. Hence
(GM(N)) 1/2 is asymptotically normal with mean 2, and variance 1/2Na2N 1/2.

Next we consider the spectral norm C II, for an N N correlation matrix C with
random spectrum as usual. Since C]l kmax, the maximum eigenvalue of C, the dis-
tribution of ]IC]I is that of N times the maximum spacing determined by a random
sample ofN- points from the standard uniform distribution. We let Vu denote this
maximum spacing, so that kma C NVN.

As already noted in 3.1, the distribution of VN goes back to Whitworth [64], and
has a history of interesting statistical applications. A convenient source for this distribution
is 7 ], wherein we can also find a derivation of the asymptotic behavior, due originally
to L6vy [37]. We find that

Pr (NVN<X) =o(-- ) ---- +

where (t)+ max (t, 0). From this we could derive the mean and higher moments, as
needed. As a somewhat neater alternative, we can appeal to some well-known relations
between the distribution of the spacings and certain exponential variates, as briefly re-
viewed in 3.1. Now making use of the fact that the sum of exponential variates y is
gamma-distributed, and the known distribution ofthe order statistics from the exponential
distribution, we can obtain

NVNNmax {yi}/z.

Also, a formula was given by Devroye [10]"

In both cases z Yl + + YN. From all this we can deduce that

E(kmax)-E(NVN)- ++"" +
_, log N+,

where 3’ .577... is Euler’s constant.
Finally, the Levy-Darling asymptotic formula for the maximum spacing, scaled to

apply to the maximum eigenvalue of the matrix C is

Pr (NVN< log N+ x) --* exp e-X),

as N --* . From this, it follows that

var (NVN) --" r 2 / 6,

as N--* .



252 R.B. HOLMES

Thus we have obtained the exact means of the norm functions C and c II, and
the asymptotic behavior of these, along with ][CI[F, as N - c. In particular, we have
observed that the Frobenius norm tends to normality, while the spectral norm tends to
obey an extreme value distribution.

3.4. Condition number expectation. We continue to study an N N correlation
matrix C with random spectrum. Now our focus is on the distribution of the condition
number K(C), as defined by (B1). As we know from (B3), K(C) hmax/Xmin, the ratio
of the largest to the smallest eigenvalue of C. We have just described the distribution of
max C I]. In fact, the joint distribution of (max, min) can be inferred from the work
of Darling 7 ], in the following form:

Pr(Xmin>X,,max<Y) (--)J 1-x -y
j=O +

From this, by letting y -- N, we obtain the distribution for the least eigenvalue:

(3.4) Pr()kmin>X)=(1--X)N- 0<X< 1.

This formula yields the moments of kmi as

N-1
E( )kmin) , var kmin) N2(N+ )"

We might pause here to collect the formulas giving the expected behavior of the
eigenvalues, and their important functions, as a function of N, for N N correlation
matrices with random spectrum. Namely, we have seen that

E(i) 1, i<-)i<-N,

E(Xmax) log N+ "y,

E(kmin) 1/N,

E( Z X,2) 2N.

Returning now to the joint distribution of )max, ’m.), it can also be inferred from
7 that these quantities are asymptotically independent, as a consequence ofthe formula

Pr (Xmin>., kmax<lOg N-log y)--exp(-x-y),
as N -- c. This permits us to write, for large N,

E((C)) E(Xmax/Xmin)

E(Xmax)E( 1/,min).

However, although the first factor is finite, as we know, the second is not:

E -x x)N- 1) dx

1(1--X)
N-1

dx(N- l)
x

_+... dx=+.(N- l)
x
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This observation suggests that the condition number K(C) may not have a finite
first moment. Additional grounds for such suspicion can be based on its validity at the
other extreme case where N 2. In this simple case the assertion goes as follows: if a
single number s is drawn at random from the interval [0, 1], and U (respectively, V) is
the min (respectively, max) of { s, s }, then the ratio V U obeys the distribution

Pr =<t -t+l’
and so has infinite expectation. This formula is derived by Feller 14, p. 24 ]. We now
generalize this fact to the case of arbitrary N.

THEOREM. Let C be a correlation matrix with random spectrum. Then the condition
number K( C) has infinite expectation.

Proof. In the notation of 3.1 we let 0 < U(1 < U(2 < < U(N-1) < be the
order statistics ofa random sample of size N- from the standard uniform distribution.
The joint distribution P of these statistics is the ordered (N )-variate Dirichlet dis-
tribution [66, 8.7 ], and is uniform over the region

’ { X: 0 <Xl <X2 <’’" <XN- < }
in RN. Therefore,

E((C))= [’... ’max {U(1),U(2)--U(1), "’", 1--U(N-,)}
dP

min {

U U-,),f...fmax
d H(1)

>_-(N-1)! f... f 1__ du(1) db/(N- 1),

T H(1)

where T is the subregion of 2 defined by

x =< rain { x2- x,x3- x2, XN-

and we have used that the maximum spacing greater than or equal to 1/N. Now, the
last multiple integral over T exceeds, for sufficiently small e > 0, the iterated integral

o;dXl21-(N-2,xl fx
1-’v-3)x, fxl-x’dx2 dx3"’" dXN-

Xl Xl + X2 + XN-

1/(N- )! + xq(x)
dxl30 Xl

where q is a polynomial. This last integral is clearly divergent.
This completes our discussion ofcorrelation matrices with random spectrum except

for the spectral distribution function, for which, see 4.4.

4. Correlation matrices with random Gram structure. In this final chapter we dis-
cuss random Gram matrices, as defined in 1.2, and briefly discussed in 2.2, along
with some simulation results. We will follow the same plan as in the preceding chapter,
namely, generating such matrices and distribution of certain related random variables.
Finally, we will make a few comparisons between the sample behavior of the two types
of random matrices.
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4.1. Method of generation. We recall from 1.2 that an N N random Gram
matrix C has the form

(4.1) C-- TT*,

where the rows of T are independently and identically distributed vectors distributed
uniformly on the sphere SN- in RNo That is, for each row t of T, we have

[i U(Su ).

So, just as in 3.1, the first question is how to express such random vectors in terms of
standard univariate random variables.

Not surprisingly, this is a well-researched problem, with contributions dating back
at least 30 years. The short paper by Marsaglia 39 has a review of this early literature,
along with an improved method. More recent references are the pragmatic paper by
Rubinstein [49 ], which also discusses the problem of 3.1, and the extensive book of
Devroye 9 ]. Again we distinguish between the analytic and the operational specification
of u(sN-). The basic analytical result is that if X is a continuous radially symmetric
N-dimensional random vector, then its projection on the sphere is uniformly distributed,
that is,

x/ x u(sN 1).

In particular, we can take X N(0, I), the standard spherical multivariate normal dis-
tribution. Operationally, the components ofX can be generated by any of several standard
pseudorandom normal variate routines. These eventually utilize pseudorandom uniform
variates. The latter can also be used more directly to generate pseudorandom U(SN-

vectors, as is pointed out in [39 ], [9, Chap. V]. These are in addition to the brute force
acceptance-rejection method, which tends to be very inefficient for large N(N >_- 5, say).
However, we will stick with the projected normally distributed random vectors.

Suppose now that we have a random vector X u(sN-). It will be important to
know how the components ofX are distributed. It turns out that each

(4.2) x Beta
2’ 2

and that the density function of xi is

(4.3) CN( -t2)(N-3)/2, Itl < 1,

where CN I’(N/2 / I’( / 2 I’((N / 2 is a normalizing constant. It is interesting
to observe that these distributions vary considerably with dimension. In particular, we
see that xi follows an arc sine distribution when (x, x.) U(S), while x is uniform
on (-1, when (x, x2, x3) U(S2). As N increases beyond three, the density is
unimodal with an ever steeper peak at 0.

We might note here that the joint density of two or more of the xi is also available,
as a consequence of some work of Stam 54 ].

As a consequence of these facts we have the following geometrical lemmas: ifX, Y
are independently and uniformly distributed on Su- then

(4.4a) E((X,Y))=O,

(4.4b) E((X,y)2)=,
2(N- 1)

(4.4c) var((X, y)2)=N(N+2
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Indeed, (4.4a) is a consequence of the so-called "formula of total expectation,"

E(f(X, Y))=E(E(f(X, Y) X)),

for scalar functions oftwo random vectors. The other two equations follow from realizing
(X, Y> 2 as the squared length ofthe projection of a random point in SN- on a random
axis, along with standard properties of the beta distribution. This geometrical information
will be used below in the next two sections.

4.2. Distribution of norms. As earlier, in 3.3, we will study the distributional
behavior of IIcIl and IIcII, but where now C is a random Gram matrix of the form
of (4.1), with the rows of T uniformly distributed over the unit sphere of appropriate
dimension.

The study of C F is greatly facilitated by the preceding results, since these imply
that the square ofeach off-diagonal entry ofC has the beta distribution of(4.2). It follows
immediately that

(4.5)

N(N- 1)E([]CII ) N+ 2.--.
N 2

=2N- 1.

However, a variance formula is not so immediate, as we indicate next.
We consider the second moment of C 2F about the origin, that is,

(4.6) E(IICII4F)=E N+2 2 2 cg-
i=lj=i+l

Recalling that the first two moments of the beta distribution B(a, b) are a/(a + b) and
a(a + )/(a + b)(a + b + ), respectively, we have, upon expansion of(4.6),

E(]l C 4F) N2 + 4N" 1. N(N
N 2

3 N(N- 1)
(4.7) +4"

N(N+ 2) 2

+4.N(N-l) N(N-1)_ll. x
2 2

where x" is a genetic notation for 2 2E(cijckt), for # k orj # l. Certainly if both # k
and j 4: l, then x /N-, by independence.

In the remaining cases we are in the following situation. We have three random
vectors u, v, w independently and identically distributed U(SN- and we are considering
the bivariate distribution of ((u, v), (u, w)). This distribution has also been consid-
ered by Stam [54], who gave a formula for the density of the trivariate distribution of
( u, v ), ( u, w), ( v, w)). He also proved that this distribution converges in total variation

to the standard normal distribution on R 3. In view of the complicated nature of the
aforementioned density, and of the rather rapid approach to the normal, as shown by
simulations, we will ignore possible weak dependencies for small N, and use the ap-
proximation x 1/N2 throughout (4.7). Therefore, after collecting terms there we arrive
at the approximation

N-1 2
(4.8) E(IICII4F),,4N2-4N + 6 N+--+.
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Simulations show this to be actually very accurate for N >= 5. (In fact, extensive statistical
testing never permits rejection of the hypothesis that the variates ( u, v) and ( u, w) are
uncorrelated, for any N.) Finally, we see that

N-1 2
var(IICIIF)6N+2 +--2,

which, of course, is approximately four for large N.
These formulas for the first two moments of IIcII F invite comparison with the cor-

responding formulas for correlation matrices with random spectra developed in the pre-
ceding chapter. While the means are very close, and asymptotically equivalent, there is
a distinct difference in the behavior of the variances. Namely, the variance of IIcII F,
when C has random spectrum, varies as 4N, approximately, while that of c , when
C is random Gram, is asymptotically constant.

Writing IICII in the form used in (4.6), and appealing to the central limit theorem,
the asymptotic normality follows readily:

( N2-2N+ 1)C 2F Normal 2N- 1,4
N2 +U

for large N. As in the earlier section we could also establish the asymptotic normality of
C IIF, but at this point that can be left to the interested reader.

We now want to turn to the issue of the distribution of the spectral norm C of a
random Gram correlation matrix C. This particular topic brings us to the edge of a large
and active field of research on the spectra of random matrices (see, for instance, Section
II of the AMS conference proceedings [47 ]). This area has a long history, as indicated
in the papers of Girko [20] and Geman [19] and their references, as well as the AMS
volume. In turn it relates to many studies in the multivariate statistics field of spectral
behavior of sample covariance matrices, for which see, for instance, Anderson [1 ].

The essential observation runs as follows. We have C TT* as defined in (4.1).
Then the columns of T* are independent samples from the uniform distribution on
Su- and hence the matrix

N

T’T= tt

is the sample second moment matrix for such a distribution. (Here t is the kth row of
the matrix T.) Now TT* and T*T always have the same eigenvalues, and hence, as a
special case,

(4.9) c Nil SNll.
With this observation we can now refer to the considerable body of previous work

mentioned in the preceding references, and also to Watson 63]. None of this seems to
be exactly what we need. In particular, it is unlikely that we can ever know the precise
distribution of C for any fixed N. However, there are many asymptotic results. Here
we will just take note ofan improvement ofGeman’s theorem by Yin, Bai, and Krishnaiah,
as referenced by Yin and Bai [67]. Namely, let Xv be a p n random matrix with
independently and identically distributed entries, n n(p) an increasing function of
p with

lim --P y, 0<y<
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Suppose that the entries of Xp have mean zero, variance 02, and finite fourth moment.
Then

(4.10) lim I1UXpX =(l+f-fy)a2 a.s.
n

At this point of the original version of this paper we made the conjecture that

(4.11) lim [IC[I=4 a.s.

and advanced some reasons in its support. Here C is an N Nrandom Gram correlation
matrix. First, we know from [19 that ifN N matrix G has independent entries, each
a standard normal variate, then

lim
N-- - GG* 4 a.s.

Next, let D be the N N diagonal matrix with ith diagonal entry equal to
1/[lith column of GII, and set T* GD. Then

c T*Z 602a * a(NO2 a * II,

and insofar as ND2 I for large N, we may expect (4.11 to hold. We suggested that
an order statistic analysis of the 2 distribution might be helpful here, but did not go
further. However, one ofthe referees observed that this heuristic could be made rigorous,
and the next paragraph is a slight paraphrase of his remarks.

The key fact is that not only is it true that

X2(N)
lim a.s.,

N

0.080

2’O

0.063 0.051 0.037

’o ’o ’o o o o
Order of Natrix

0.033

100

FIG. 1. Empirical spectral norm ofC TT*.
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but also the same is true for

max {X2(N)/N <-_iNN} and min {X2(N)/N <=iNN}
52 ]. Now with H [ND, the eigenvalues ofboth Hand H-1 tend to one almost surely,
uniformly in i. So we have II(GH) --< II(G)II II(g)ll --< II(GH)IIII(H)IIII(H-1)II, which
implies that GG* ! G(ND2)G* tends to one as N- o, and thereby validates (4.11 ).

Finally, a simulation for N <= 100 leads to the empirical curve of E( c against
N shown in Fig. 1. Each data point for N =< 50 is based on 500 trials, while those for
N 75, 100 are based on 50 trials. The sample coefficient of variation is shown next to
the data points.

4.3. Condition number exlectation. In 3.3 it was shown that the condition number
ofa correlation matrix with random spectrum has an infinite first moment. In the present
section we will demonstrate the analogous fact for random correlation matrices ofGram
type. The numerical results reported back in 2.2 (refer to Table ), along with their
theoretical result just mentioned, certainly have prepared us for this fact. Recall that the
key empirical difference between the two main types of random correlation matrices
was, in fact, the comparatively ill conditioned nature ofrandom Gram matrices. We will
discuss some other aspects of the spectral behavior of such matrices in the next section.

THEOREM. Let C be a random Gram correlation matrix. Then the condition number
K( C) has infinite expectation.

Proof. Making use of Taylor’s inequality (B 10) we have C TT* and

K(C) C C-1ll >= / min d,2.

where di dist (_t;, Mi), ti ith row of T, so each t is independently and identically
distributed and u(sN- 1), and Mi span { fi’j 4 }. Now since codim (Mi) in
RN, almost surely, dl is the magnitude of the projection of_tl on the line M1 Let u_U_l be
a unit vector in this subspace; then

d{ (tl, b/1 ) 2.

That is, d2 is the squared length of a random point on a random direction, and, as such,
it has the distribution of (4.2), with moments given by (4.4). See also [40]. Therefore,

E((C))>= E( 1/dl)

t-1/2( -l)(N- 3)/2 dt

(,(N- 1)i
and this integral clearly diverges at zero. []

4.4. Empirical spectral behavior. This final section addresses the question "How
random is the spectrum of a random Gram matrix?". Now, in one sense, this question
has already been answered by the results of 3.3 and 4.2. Namely, in those sections we
derived the behavior of C 2, C F, and C for both types of random correlation
matrices. Expressing these functions of C in terms ofthe eigenvalues shows that, at least,
not all spectral functions behave the same, and hence, in particular, that random Gram
matrices do not have a random spectrum. Below, we will briefly discuss some other
aspects of this question.

We begin by considering the behavior ofthe least eigenvalue XN ofan N Nrandom
Gram matrix C. In view of the boundedness of c as N- o and the earlier observed
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higher condition numbers of such matrices relative to those with random spectrum, we
might expect ku to be much smaller than the least eigenvalue of a correlation matrix
with random spectrum. Now, the same kind of argument as was used in 4.3 leads to
the conclusion that lim ku 0, almost surely. But the same is true for the least eigenvalue
of a correlation matrix with random spectrum, as follows from the distribution function
formula in (3.4). However, use of this formula in a Kolmogorov-Smirnov one-sample
test ofthe hypothesis that Uobeys this distribution leads to its rejection, at the 99 percent
level, at least for N _-< 20.

Instead of dealing with the extreme eigenvalues X, XN, of C we can also inquire
about the behavior, in some sense, of the entire spectrum r(C). For example, we have
already considered the statistic

N

c Z
i=1

and noted that asymptotically its mean behavior is that ofa matrix with random spectrum,
but its second moment behavior is quite different. But the most striking distinction
between the two types of random correlation matrices can be made by considering their
spectral distribution functions, and we turn to this topic next.

Given any square matrix A with real spectrum, its spectral distribution function FA
is defined by FA (x) fraction of number of eigenvalues _-< x. When A is random then,
of course, so is FA(X). In this situation the asymptotic behavior of FA has long been of
interest (some useful surveys ofthis field are [62], [65 ], and [67]). Let us see what these
distribution functions look like, for large N, for each ofour two types ofrandom correlation
matrices. The situation is fairly simple for the case of random spectrum, thanks to the
fact that each eigenvalue is identically distributed according to (3.2). It follows that the
limiting spectral distribution function is FRs(X) e-x, 0 < x < .

By contrast, the situation for random Gram matrices is less immediate. The basic
relevant fact is the "quarter-circle law for Gaussian matrices" 65 ]. This states that if
the matrix G is defined as just after (4.11 ), then its spectral distribution function converges
to the distribution function of a random variable S-, where S has probability density
function (pdf) of- 1/27r((4 t2)) /2, -2 _-< =< 2 [62]. It routinely follows that Shas
a pdf of / 2r((4 / )) 1/2, 0 < < 4. But now the same analysis as validated (4.11
can be employed to show that the spectral distribution function ofN Nrandom Gram
matrices has the same limit. That is,

FRG(X)- dt, 0<x<4.

The fact that F’R(X) becomes infinite as x 0 while F’R(X) does not is perhaps the
most striking single distinction between our two types of random correlation matrices.
But, of course, in principle it applies only in the limit as N -- . What about the cases
where N remains finite which is, after all, our primary concern? We offer two responses:
one graphical and one statistical.

The first response is displayed in Figs. 2 and 3 for the case ofrandom spectrum and
random Gram matrices, respectively. In each case we consider in turn N 3, 6, and 10,
and from 500 trails for each N, we compute and plot the average ofthe spectral distribution
functions. These averages may be compared with their limiting cases FRS and FR, re-
spectively.
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FIG. 2. Limiting and expected spectral distribution functionsfor correlation matrices with random spectrum.
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FIG. 3. Limiting and expected spectral distribution functions for random Gram correlation matrices.
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The second response takes the form of a statistical test for uniformity based on the
entire spectrum a(C) { X, XN } of an N N random Gram matrix, for N =< 30.
Namely, the transformation

Xk kN k +
.3t_ ,,..qt_ kN + kN

replaces a(C) by a sample of points { x, XN- } in the unit interval which, under
the null hypothesis of a uniform spectrum, is a sample from the uniform distribution
U([ 0, ]). In this case we applied Neyman’s test [53 for uniformity, based on batches
of 1,000 random Gram matrices for the various values of N. Here Neyman’s statistic

N2= v + v
was computed, where the vj are the sample Fourier-Legendre coefficients when the density
functionf, from which the x’s are drawn, is expanded in terms ofLegendre polynomials:

f(x)=c exp + cjLj(x)).

The motivation and theory of this test is discussed in the reference, and will not be given
here. The distribution of N2 is known approximately, and is asymptotically x 2(2). The
null hypothesis is to be rejected for large values of N22. For each N we calculated the
fraction of the 1,000 samples that exceeded various percentage points of the N distri-
bution, with the results indicated in Table 2. It is evident from these figures and the large
number of trials that the null hypothesis of uniformity must be rejected. A closer ex-
amination of the data reveals that not only is there a very small eigenvalue ,u, as noted
above, but in fact there are enough small eigenvalues to pull the sample mean 2 far
enough below 0.5 to greatly inflate the value of v (precisely,

v 2n(2- 1/2),

where n sample size 1,000, here). Incidentally, the sample coefficient of variation
of the Neyman statistics decreased steadily from 0.27 at N 5 to 0.045 at N 30,
showing very little scatter about the increasingly large values of N22.

Finally, we offer two comments about the empirical behavior ofthe condition number
ofrandom Gram matrices. First, for various N (=<20) we generated batches of 1,000 each
ofrandom Gram matrices and correlation matrices with random spectra, and performed
a Kolmogorov-Smirnov two-sample test on the respective condition numbers, to test
the null hypothesis of a common distribution. This hypothesis was decisively rejected
for all values of N, and this rejection continued when the samples were subjected to
trimming.

TABLE 2
Fraction of Neyman statistics exceeding various percentage

points, and sample average.

N % 50 90 95 Mean N

5 99.8 45 10.5 4.3
8 100 98.5 84.4 7.0
10 100 99.5 8.9
15 100 13.3
20 17.7
30 26.5
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TABLE 3
Empirical ratio ofcondition number ofcollinearity measurefor random Gram matrices.

N Batch size Sample mean ratio Sample coeff, of var.

5 1,000 5.20 .21
10 1,000 8.82 .25
20 100 15.86 .24
35 100 22.65 .24
50 100 29.28 .22

Second, beating in mind the condition number bounds established in Appendix B,
we studied by simulation the tightness of the upper bound (B 13). That is, for various N
(=<50) we generated batches of random Gram matrices, computed their condition num-
bers, the collinearity measure on the fight-hand side of (B 10), and then their ratio as in
(B 13 ). The results are displayed in Table 3. They suggest that the admittedly crude upper
bound in (B 13) can indeed be reduced, and perhaps even be replaced by a term that is
of order o(N).

5. Summary. Let us now, in conclusion, summarize not only the foregoing tech-
nicalities, but also the place ofthis material in a larger scheme. In addition, we will point
out several issues that remain to be resolved.

As noted at the outset, our interest in random correlation matrices stems from their
interpretation as covariance matrices of purely random or "average" (standardized) sig-
nals. A companion research project has as its goal the evaluation ofthe efficacy ofvarious
group-theoretic signal processing algorithms. One ingredient that must be specified before
a well-defined question can be posed in this context is a definite signal model. As remarked
in the Introduction, such models can either be defined by a few (typically =<2) parameters,
or they can be essentially nonparametric. A further possible subdivision of this latter
class is into random stationary signals, or into purely random signals. The corresponding
covariance matrices are then random correlation matrices with, in the first case, a Toeplitz
structure. The question of generating such matrices, and the statistical behavior of the
corresponding entries, spectral functions, etc., is interesting, and is being studied, with
results to be reported elsewhere [28 ].

We therefore have chosen to concentrate on random correlation matrices of the
two principal types defined in 1.2, and studied in detail in 2-4. We observed early
on that random Gram matrices exhibited a more exaggerated spectral behavior relative
to correlation matrices with random spectrum. As we discovered later, this is due to the
very different small eigenvalue behavior as quantified by the respective spectral distribution
functions.

Some other results, both theoretical and empirical, point out the very different spectral
behavior of these two classes of random correlation matrices. For example, the spectral
norm ofa correlation matrix with random spectrum tends to grow logarithmically, while
that of a random Gram matrix remains bounded, almost surely, as the dimension in-
creases.

Some other new results pertain to condition number behavior. Specifically, in Ap-
pendix B we have extended earlier work of Taylor [61] on condition number lower
bounds, and assessed their tightness. This result is strictly deterministic. We then used
this bound to show that the condition number of random Gram matrices (of a fixed
size) has an infinite first moment. In view of our earlier empirical observations, this
conclusion was not a complete surprise. Yet it also turned out that correlation matrices
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with random spectrum also have infinite first moment (for each fixed dimension N >= 2,
the case N 2 being due to Feller [14]).

We might offer an additional comment on the condition ofrandom Gram matrices.
Namely, referring back to the basic definition ( 4.1 ), we could allow the row vectors ti
there to be drawn randomly from the unit sphere in a larger-dimensional space. Geometric
intuition suggests that with more "room" in the sample space, collinearity should be less
of a problem, with consequent improvement in conditioning. Numerical experiments
show that, to an extent, this expectation is fulfilled. For example, in contrast with the
data reported in Table 1, the mean (respectively, median) condition number of 500
5 5 random Gram matrices based on vectors drawn uniformly from the sphere S9 is
11.6 (respectively, 8.7). The corresponding values for 500 10 10 random Gram matrices
based on vectors drawn from S 19 are 17.5 (respectively, 15.2). However, as long as
dim (t.) has the form N + p, where p is a fixed positive integer, then the limiting form
of the spectral distribution function, as derived back in 4.4, will remain the same.

Appendix A. Aspects of numerical linear algebra. This section contains a briefreview
of some quantitative aspects of linear algebra that are pertinent to the material that
follows. For general background information on matrix theory we may refer to two recent
volumes: Horn and Johnson 30 or Lancaster and Tismenetsky 35 ]. More specialized
treatments of numerical linear algebra are given by Stewart [56] and Golub and Van
Loan 22 ].

A.I. Bounds on norms and eigenvalues. Given an N N matrix A we shall have
occasion to use its operator or spectral norm

A max { Axll/II xll" x 0},
and its Frobenius norm

IIAII:( laijl2) 1/2.

In terms of the positive part P (AA *)1/2 ofA, we have

(al) 0 =< [IA[[ r(P) <- []AIIF /t (p2),

where r(.) means spectral radius. Bringing in the eigenvalues 1 >- > )kN of A, and
the singular values Sl >-- >= SN (these are the eigenvalues of P), we have [[A sl, and

N N

(A2) Z IXil= IIAIIF Zs2,

with equality if and only ifA is normal (theorem of Schur and Mirsky).
For general matrices A the singular values have many fascinating properties and

applications, such as min-max characterizations, smooth dependence on A (which leads
into perturbation theory), and geometric interpretations as distances from A to spaces
ofoperators oflower rank. This latter property, on the one hand, leads into regularization
techniques for least squares signal processing and, on the other, permits generalization
to compact operators on infinite-dimensional spaces (s-number theory).

Let us now specialize to the case of primary interest here, namely, that where
A C is a correlation matrix. Then we have

(A3) llCII--r(f):inflllCIII _-<max { Ilrow, ll, "", IIrowNII, } N,
where II1" III refers to a general matrix norm induced by some vector norm, and I1" I1 is
the -vector norm. The expression "max { }" above is just the matrix norm induced
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by the l-vector norm. Its advantage, as with the bound C IIF, is that it is immediately
computable from the entries of C. Either of the extremes 1, N can be reached by some
Ce I’(N). The second equality is true in much greater generality, in fact, for any operator
on a Banach space [27].

IfA is positive semidefinite, then

al <= ]/aiiajj 1/2(aii + ajj),

showing, in particular, that all off-diagonal entries of a correlation matrix have modulus
less than or equal to one. Of course, such a matrix need not be diagonally dominant.

An improvement on the bound c --< C IIF has been noted by Leclerc [36], spe-
cifically for correlation matrices. Namely,

(A4) ,lC[, < / (N-1 )1/2 =< cll,
N 0

where Z is the sum of squares of off-diagonal entries of C. The fight-hand inequality
here is strict unless all off-diagonal entries have modulus one. This bound on C[[ can
be either larger or smaller than the "max" bound of (A3).

At this point we have given some upper bounds for I[C[I, and hence for all the
(positive) eigenvalues of C. Upper bounds for C-[I are equivalent to lower bounds on
the eigenvalues of C, using I1C-[I r( C- ); note that C- 1, while still positive definite,
is no longer a correlation matrix in general. This kind of bound is not of particular
interest to us here, but lower bounds on c-’ll are important, in connection with condition
number estimates, and will be discussed later on. Here we will just recall an inequality
of Kato [32 ], which gives a bound on IIA - II, for any nonsingular A"

A -’11 --< A N -1 / det (A)1.

There are innumerable inequalities pertaining to the eigenvalues ofpositive-definite
matrices, and more generally to the singular values of arbitrary matrices. Here we mention
just two. They are originally due to Fan 13 ], with a short proof now available 21 ],
based on the characterization of the kth singular value sk(A) of a matrix (or operator)
A as the distance from A to the set of matrices of rank =< k 1, in the spectral norm.
Thus

Sin+ n-l(A + B)Sm(A)+ sn(B),

Sm+,- (AB) <=Sm(A)s,(B),

form, n>_- 1.
Finally, we mention the concept of spread of a matrix A. This is the quantity

(A5) S(A) =diam r(A)-=max [Xi- X[.
When A C, a correlation matrix, the following bounds on S(C) can be derived:

2 max col <-S(C)<=(2(IIC]I2F--N)) /2.
i4j

Since Ilfl[ F Y , the last inequality offers a lower bound on this quantity. But, in
fact, a stronger two-sided inequality can be established, namely,

S(C)2 + N=< IIC[I 2F<=-NS(C) 2

2

by working with the eigenvalues.
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An alternate concept of spread, the condition number, is defined in Appendix B; it
uses the maximum ratio as opposed to the maximum difference of eigenvalues, for pos-
itive-definite matrices (cf. B3 )).

Appendix B. Condition number estimates. The condition number K(A) ofan arbitrary
matrix A is defined by

(B K(A A A + A a
where the "+" means pseudoinverse, and the second equality is naturally only applicable
ifA is nonsingular. Note that this is the spectral condition number; other matrix norms
might be used in (B ). In terms of the singular values ofA we have

(B2) =< K(A) sl/sN,

with equality if and only ifA is a nonzero multiple of a unitary matrix. (Naturally, (B2)
is restricted to nonsingular A.) Many kinds of singular matrices A can have r(A) 1;
for instance, orthogonal projections and, more generally, partial isometries.

Condition numbers are widely used as measures of sensitivity of the solution of
linear systems to inaccuracies in the data. Similarly, the condition number of the matrix
of eigenvectors of a diagonalizable matrix measures the closeness of an approximate
eigenvalue to the true spectrum. Roughly speaking, the percentage change in the (least
squares) solution x of the system Ax b is bounded by the percentage variation in the
data b times r(A), and this bound cannot be lowered. Thus r(A) is a measure of the
inherent resistance ofa particular system to accurate solution, and which does not depend
on the particular numerical method employed. The larger the condition number, the
more "ill conditioned" a particular system is, and the less we can infer a small error from
a small residual.

We might also remark that r(A) can be characterized geometrically by the least
angle p resulting as A is applied to all possible pairs of orthonormal vectors. Precisely,

K(A cot ff / 2 ).

It is instinctive to want to measure ill-conditioning by some function of the eigen-
values, but this is only fruitful for normal matrices. For example, there is the N N
"Kahan matrix":

1 -1 1

-1
1

which clearly has all eigenvalues equal to one, yet a condition number greater than
(N2N-2)) 1/2. However, when A is positive definite with eigenvalues k >= >= kN,
then

(B3) (A) kl/kN,

and we have the inequality of Kato:

4 (tr(A))N(A)<
det (A) N

Thus, for correlation matrices C, (C)det (C) is a bounded function. Note that (B2)
and (B3) together imply that

(A *A K(AA * (A )2,
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showing how the familiar "normal equations" of many least squares procedures can
become very ill conditioned (and, eventually, motivating the use of factorization methods
which deal only with A, as an alternative).

In 1955, Riley [48] used the fact that

B4 K(A + M) _-< K(A

for any positive-definite A to suggest an iterative improvement procedure for solving an
ill-conditioned linear system Ax b. This was a forerunner of the ridge regression and
regularization methods of statistics and signal processing, which trade off some bias for
lowered mean square error. The inequality (B4) was greatly extended by Marshall and
Olkin 41 who proved that

(A+B)<=(A)

whenever A and B are positive definite with (B) =< (A).
We now turn to the matter of lower bounds for condition numbers. These will be

ofgreatest interest for the case ofGram matrices, but we consider first, briefly, the general
case. (We note, too, the considerable interest in recent years in numerical estimatesm
not boundsmfor condition numbers, by estimating some norm of the inverse matrix
[61, [121, [26].)

First, if A is any nonsingular matrix, with eigenvalues ordered by modulus:
[kl[ [’U[, then

(B5) IA/Aul <-K(A).

This follows from the relations

A-’[I - inf Axl[" xl[ }
IlAel[ I1,

where e is any unit eigenvector associated with 2 r(A ). Ofcourse, as the earlier example
of the Kahan matrix illustrates, the left side of (B5) may severely underestimate the true
condition number (A), when A is not normal.

Now assume that A is positive definite. A variant of the well-known Kantorovich
inequality [25] tells us that

(B6) [[x[[Z<(Ax’x)(A-lx= ’x)<(ml+m2)2=
4mlm2

provided that

mlI<=A <=m2I,

for 0 < m N m2. Taking m (respectively, m2) to be the least (respectively, greatest)
eigenvalue ofA, and x any unit vector, we obtain

4(Ax, x)(A-lx,x) <= +-+ 2 <= + 3,
K

yielding a lower bound for K(A) for each x. Of course, an estimate involving A-1 is
not of great practical value.

Another kind ofinequality comes from the theory ofSchur (or Hadamard) products
of matrices. We will not review this concept in any detail here; see 59 for a nice survey.
This product, for conformable matrices A, B, is defined by

A B]i,j aj bij.
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This multiplication, unlike the usual one, is commutative. The original result of Schur
is that ifA, B are positive semidefinite, then so is A. B. An inequality of Fiedler 15 for
positive-definite A reads

(B7) A.A->-I.
Note that, as a consequence of either this or the left side of the Kantorovich inequality,
when C is a correlation matrix,

C-1 ]i,i 1, 1, ,N.

In 1982, Marcus [38 proved the matrix norm inequality

A. B[[ =< A [1B[]

for the Schur product. Taking B A-1 yields a lower bound for the condition number

A. A -11 =< (A ).

Finally, in preparation for part of our discussion in 4, we want to specifically
consider the case where A is a Gram matrix

A=G=G(x, ,XN)

in the notation of 2.2, with each xi a unit vector in some inner product space X. As
already remarked in 2.2 it has been empirically noted that many common Gram matrices
tend to be ill conditioned, and an inequality derived in [61] can be used to quantify
these observations by providing a lower bound for K(G) in terms ofthe relative orientations
of the vectors { xi }. By virtue of our own numerical experiments reported earlier, ill-
conditioning is a prominent feature in random Gram matrices also. We now discuss an
improved version of this inequality, and its sharpness. These results are purely deter-
ministic; statistical implications are discussed in 4.

We now work with a fixed Gram matrix G G(Xl, ,XN), IIXiI[ "-1,
1, N. G is a correlation matrix, and [[G[[ r(G), so the real problem is to find a
lower bound on G-1 in terms of the vectors { xi }. Let M (respectively, Mi) be the
subspace ofX spanned by { x } N (respectively, { x: j 4 } 1N). Let v } be the basis for M
that is dual to x }. Also, for an arbitrary real or complex unit vector e (according as X
is real or complex), let b G -le. Then

Z x. - v 112.

Now, with v as just defined, it is easily checked that-- ( l),’l)i

so that if v vi, one ofthe dual basis vectors in M, then Gb e;, the standard unit basis
vector.

We also observe that, since Mi is of codimension one in M, the duality formula for
distance,

(B8) dist(x,Mi)=max {l(x)l: /S(M{)},



268 R.B. HOLMES

for x e M, implies that

di-- dist (xi,Mi) (xi, vii []vii] )
/IIv, ll.

Putting all this together, we conclude that

IIG-II >__ (G-e,e>= Ilv;ll =
(B9) g(x XN)

di g(xl XN)

where the last equality follows from the Gramian distance formula of (2.6), and "g;"
means the Gramian with x; deleted.

The ensuing inequality

(B10) [IG-[I >-max d?2=
min d

is due to Taylor 60, p. 46 ]. The major difference between his approach and the present
one is that use ofthe duality formula (B8) strengthens the inequality by avoiding reliance
on the Schwarz inequality. Thus the sole source of inequality in (B 10) is the inequality
appearing in (B9). This inequality is only a measure of the behavior of the Rayleigh
quotient for G-1 and does not explicitly involve the Gram structure of G. Hence the
following theorem gives a measure of the tightness of Taylor’s inequality (B 10).

THEOREM. sup
A r(N) max ,A ei )

Proof. For notational ease, we will replace A -1 by A, and then

max{<Aei, ei>’i: 1,... ,N}

by #(A). We first note that ifA is any N N positive-definite matrix,

<= IIAII/g(A)<=N,

and that these bounds are sharp (within this larger class of matrices). The left inequality
is trivial, and is achieved for diagonal matrices. The fight inequality follows from

ItAll r(A) ),1 <- tr (A) <=Ng(A).

To verify its sharpness, let e > 0, and D diag 1, e, e), and apply the theory in
2.1 to obtain A, unitarily equivalent to D, with constant diagonal. Then

I[All =< tr (A)= Nt(A) +(N- )e;

now let e 0. So the point of the theorem is that if the A’s are restricted to the class
{ A" A -1 e F(N) }, the upper bound on A /g(A does not decrease.
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To complete the proof, consider a special family ofA’s, namely, { A" A alu + B,
bij 6o)b }, where a > b > 0. We have

(Bll)

IIAII a+(N- 1)b
t(A) a

b
+(N- 1)-,

and it will be shown that a and b can be chosen so that A-1 6 I’(N) and

(B12) lim -=b 1.

Let A det (A). We have

A=(a--b)U-l(a+(N 1)b),

and since the diagonal entries ofA -1 are

ith-cofactor
(A-lei’ei)= A

it follows that

(A-lei, ei)
(a+(N-2)b)(a-b)N-2

=(a+(N- 1)b)(a-b)N-I"

So, ifA is to be a correlation matrix, a and b must satisfy the equation

a+(N-2)b=(a-b)(a+(N- 1)b).

If we treat this as a (quadratic) equation for b and solve it, we obtain

(a- 1)(N-2)+((N-2)2(a 1)2+4(N 1)(a2-a)) 1/2

b=
2(N- 1)

After dividing both sides by a, and manipulating, we have

where

a a 2N-2
+
/N2 + e-N
2N-2

e -2 --(N- 1)<0.
a a

This shows that b < a and that the limit in (B 12) is one, as required. [

At this point we might justify an assertion made just after (A3), namely, that

sup IIAII N.
A r(N)

We know from that equation that this supremum is at most N. That it is not less than
N follows from consideration of the same family of matrices just used, and the value of
the norms of such matrices given in (B 11 )" just take a and let b -- 1.
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To sum up, for a Gram matrix G G(xl, XN), we have the lower bound on
K(G), due to Taylor:

(G)>_-
min d,2.’

an equivalent form

gi(Xl
r(G) >= max

g(Xl, ,XN)

and an upper bound on the tightness of this lower bound:

(B13) < K(G)
lower bound

It is possible that this upper bound could be decreased, but we have not investigated this
point. Some evidence was given earlier in 4.4.
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RATIONAL ITERATIVE METHODS FOR
THE MATRIX SIGN FUNCTION*

CHARLES KENNEYy AND ALAN J. LAUB"

Abstract. In this paper an analysis of rational iterations for the matrix sign function is presented. This
analysis is based on Pad6 approximations of a certain hypergeometric function and it is shown that local
convergence results for "multiplication-rich" polynomial iterations also apply to these rational methods. Mul-
tiplication-rich methods are of particular interest for many parallel and vector computing environments. The
main diagonal Pad6 recursions, which include Newton’s and Halley’s methods as special cases, are globally
convergent and can be implemented in a multiplication-rich fashion which is computationally competitive with
the polynomial recursions (which are not globally convergent). Other rational iteration schemes are also discussed,
including Laurent approximations, Cayley power methods, and globally convergent eigenvalue assignment
methods.

Key words. Pad6 approximation, matrix sign function, Riccati equations, rational iterations
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1. Introduction. It is a classical result that the algebraic Riccati equation can be
solved by using an invariant subspace ofan associated Hamiltonian matrix. This motivated
the introduction, by Roberts [21 in 197 l, of the matrix sign function as a means of
finding the positive and negative invariant subspaces of any matrix X which does not
have eigenvalues on the imaginary axis. This and subsequent work 9 showed that the
matrix sign function could be used to solve many problems in control theory.

The sign ofX can be defined constructively as the limit of the Newton sequence

(1.1) Xn+ 1/2(Xnqt-X;1), Xo:X,

(1.2) sgn (X)-= lim X.

Newton’s method has the pleasant feature that it is globally convergent; if X has no
eigenvalues on the imaginary axis then the limit in 1.2) exists. As a definition, however,
1.2) does not reveal many of the important properties of the sign function. Because of

this, it is useful to have an equivalent definition based on the Jordan canonical form of
X (see [4], [7]). For a complex scalar z with Re z :/: 0, define the sign of z by

1.3) sgnz=I if Rez>0,

-1 ifRez<0.

For a complex matrix X such that A(X) c C + tA C- (i.e., X has no eigenvalues on the
imaginary axis) let T take X to Jordan form:

0
T,
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where P and Nare in block diagonal Jordan form with, respectively, positive and negative
real part eigenvalues. Then the sign ofX is given by

(1.5) sgn (X)= T-’[I00I]T’
where I and -I in (1.5) have the same dimensions as P and N in (1.4). This shows
immediately that the sign ofX is a square root of the identity which commutes with X:

(1.6) S2- I, XS SX,

where S sgn (X).
Using (1.4) in 1.1 ), shows that the eigenvalues ))n) ofXn are decoupled from each

other and obey the scalar recursions

+ x))=

)(n)with lim,_ +o ,,j sgn ()j). This decoupling greatly simplifies the analysis of methods
like 1.1 ).

Because of the need for pivoting, matrix inversions are sometimes not as amenable
to parallel or vector implementation as matrix multiplications. Thus, a current trend
in evaluating sgn (X) and related functions such as the polar decomposition [5],
[11 ], [12] is to favor algorithms which are "multiplication-rich," such as the Newton-
Schulz iteration

(1.8) X,,+ 1/2X,,(3I-X).

(The recursion (1.8) is obtained from (1.1) by using Schulz’s approximation X
Xn + (I- X2)X, as suggested in [12 ].) This method avoids the matrix inversion in 1.1
and is quadratically convergent provided

(1.9) III-X=ll < ,
where I]" is any reasonable matrix norm (see Theorem 5.2). If (1.9) is not satisfied
then a starter method such as 1.1 must be used until I- X < 1.

Higher-order polynomial recursions for the polar decomposition of a nonsingular
matrix were developed independently by Kovarik 17 and Leipnik 18 and are applicable
to the matrix sign function. These methods are based on polynomial approximations of
the hypergeometric function

and generate convergent matrix sequences provided that (1.9) is satisfied. The motivation
for studying this function is that for nonzero real x, sgn x x Ix] x/( ()/2 where
( x2. In 3, we show that the sufficient condition (1.9) actually provides a rather
good approximation to the true region of convergence for these methods. Consequently,
we might feel that loss of global convergence is the price that must be paid in order to
use multiplication-rich algorithms. Rather surprisingly, this is not the case.

For example, recursions based on rational (Padr) approximations of (1 ()-1/2
have much larger regions of convergence. In fact, the main diagonal approximations
(those for which the degree m of the denominator is equal to or one greater than the
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degree k of the numerator) lead to globally convergent iterations that satisfy an elegant
error formula:

(I.II) S Xn S -+- Xn -1 S Xo )’Yn s .-Jf- Xo -’Yn

where 3’ k + m + is the order ofthe approximation. (For Newton’s method, a similar
result was proved by Balzer [3, eq. (39)] and by Roberts [21, 1.3 ].) These methods
are easily modified to allow exact one-step convergence of specified eigenvalues (much
like the eigenvalue assignment schemes of Balzer in [3 ]) while still remaining globally
convergent. An analysis of the Halley family of algorithms of Gander [10 for the polar
decomposition shows that these methods belong to this class of assignment procedures.
The work in 10 can also be adapted to give a local convergence theory for general sign
function iterations of the form Xn / F(Xn).

A second family of globally convergent multiplication-rich methods is based on the
Cayley transform

(.2) Y=(I-X)(I+X)-,
which takes the positive real part eigenvalues ofX inside the unit circle and the negative
real part eigenvalues ofX outside the unit circle. If Y is multiplied by itself repeatedly,
then these eigenvalues move toward zero and infinity, respectively. Transforming back
to get X,,

(1.13) . (I- Y")(I+ y,,)-I

moves these eigenvalues very near one and minus one, respectively. (IfX has -1 as an
eigenvalue, then I + X is singular and a modified version of(1.12), (1.13) must be used.)
A fascinating correspondence between the Cayley power method and the Pad6 approx-
imation method is that if the power u in 1.13 is equal to 3? in 1.11 ), then Xn is equal
to ),! This does not mean, however, that these two methods should be viewed as identical
because in this case the Pad6 method requires n matrix inversions while the Cayley
method requires only two. Similar equivalency results for different members ofthe Pad6
method can also be proved (see Theorem 3.4). An interesting sidelight on the Cayley
power method is that (1.12) can be replaced by any transformation which is a rational
or analytic function of X that takes the fight- and left-half complex planes inside and
outside the unit disk, respectively. For example, if Y e-x then Y" is just the fundamental
solution matrix to I2 -XY at time v: Y" e-"x and (I- e-"X)(I + c-x) -1.
Note in this case that I + e-"x is never singular, since the eigenvalues ofX are not on
the imaginary axis.

In the next section we present the theory of the Pad6 approximants of )-/2
for k >_- rn 1, which is based on well-known results for hypergeometric functions. This
theory is then used to analyze scalar sign function recursions in 3, where we also show
how it can be adapted to give globally convergent eigenvalue assignment iterations. In
4 we consider other rational iterations including Laurent methods. These scalar results

are useful because matrix convergence is predicated on the scalar convergence of the
eigenvalues ofX( 5 ). This leads to local convergence results for k >_- m 1, and global
convergence for the main diagonal approximants k m and k rn 1.

2. Pad6 approximations to (1 r)-/2. Let (a)n (a)(c + 1)’" "(c + n 1)
with (C)o 1, and define the family of hypergeometric functions

(2.1) 2F1 (G/’ "Y’ ) n (’,’),,
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From ],

(2.2) (1 -j)-l/Z 2F1(1/2, 1, 1,()= f().

In general, the [k/m] Pad approximant to f is a rational function Pkm/Qkm where
deg (Pkm) k, deg (Qkm) m, and

(2.3) f()
Pkm( .____.) O(k+ m+ 1).
Qkm( t

Because fis a hypergeometric function, a great deal is known about Pkm and Qkm [1 ].
First of all [13], Qkm is related to the set of orthogonal polynomials over [0, defined
with respect to the weight function w(() ((-1/2/r)( ()-1/2(k+ l- for k >= rn 1.
Ifm is the mth such polynomial with m( 1, then

2.4 Qkm( fz g;mm(t-),

and Qkm(O 1. From (2.4), the zeros of Qkm are just the reciprocals of the zeros of ff,.
Since the zeros of /m are simple [22] and lie in (0, ), the zeros of Qkm are also simple
and lie in 1, oo ). (This result could have been anticipated from another point of view
since ()-/2 has a natural branch cut along 1, oo) and, as noted in [2, pp. 51-57],
the zeros and poles of a Pad6 approximant tend to fall along the branchcuts of the
functions they approximate.) Denoting the zeros of Qkm by < z < z2 < < Zm, we
may write

(2.5) Qkm() I-[ (zi--g;)/zi.
i=1

This identity is useful for convergence analysis, but a more convenient form is

(2.6)

Qkm(() 2FI (-m,-1/2 k, -k- m, ()

, (-m).(-1/2-k),"
,=o n!(-k-m),

=_ E q.mt".
n=O

From [13], ekm is given by

(2.7)
.0 1/2 )n( 1/2 m)m(n- k- m)m

Pkm()--
n!(-k- m)m(n+ 1/2 m)m

k

Zeknmn.
n=O

The key to the local error analysis ofPad6 recursions is the following theorem, which
was proved by Leipnik [18, Thm. and stated by Kovarik 17, lemma following Thm.
2 for the polynomial case rn 0.

THEOREM 2.1. For k >= rn 1,

(2.8) Qm()--(1--)Pm()-"k+m+l( ii),
i=1
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where i i( k, m) > 0 for 0 <= <- I max (2k + 1, 2m) (k + rn + ), and

(2o9) arn(
i=1

Proof. From (2.3) and the fact that am() )em() is a polynomial of
order+k+m+ 1,

Qm()-(1-)em()=j Qkm Qkm

--k+m+l( cii),
i=1

for some constants Co, c, c,. Setting gives (2.9). It remains to show that the
coefficients ci are positive. The idea of the proof is best illustrated by considering the
diagonals, m k t, for 1, 0, 1, , k in the Pad6 table. (For example, see Table
1.) For the first main diagonal, -1, t 0 and multiplying out the left side of (2.8)

kk+l 2gives Co qk / > 0. For the second main diagonal, 0,/ 0, and c0 (p)2 >
0. For the first superdiagonal, 1, u 1, and

c0 ): > 0, c,

In general, for 0, u t, and the coefficients, G can be written as the sum of terms of
the form

(2.10) "k-
t’ Dkk-

+ P +

and

(2.11 o- o-
k-r k+r-s

where

(2.12) ONrNsNtNk.

We complete the proof of the theorem by showing that each term of the type (2.10) or
(2.11 is positive. From (2.7),

e--(+r )+r-s( + t-k)_t(t+ r-s-k)_t
(2.13)

(k+ r-s)(t-2k)_( + t+ r-s)_t

Since both o- pt+ and have sign (-

2.14 o o
k-r k+r-s >0.

Using (2.13),

p(p _p +1) o_o_ ( (s-r)(t-s+r+
=-+- 1-(s_r+k_t)(k+r_s+ >0

by (2.14) and (2.12) because (s r)/(s r + k t) N and

(t-s+r+)/(k-s+r+ 1)<1.

(Note that the degenerate case k s r does not cause a problem because (2.10)
oo which is positive by (2.14)then reduces to o
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3. Scalar Pad recursions. As we show in 5, the convergence ofthe matrix sequence
Xn } is determined by the convergence of the scalar sequences for the eigenvalues ofXo.
The scalar Pad6 recursions have the form

(3.1) Xn+ --X
Pkm( Xn)
Qkm( X2)

where Pkm/Qkm is the [k/m] Pad6 approximant to )-1/2. Table gives the expres-
sions for the fight-hand side of (3.1) for k and rn between zero and three. For example,
the case k 0, rn gives

(3.2) Xn+l
2Xn
+x2

which might be called the "inverse" Newton method for solving the equation X2

0 since the values Xl, x2," generated by (3.2) are the inverses of those generated by
the "regular" Newton method

(3.3) x,,+== xn+--
Xn

The case k 1, rn gives Halley’s method (see [10] for a related application). The
next theorem generalizes the local convergence results ofLeipnik 18 and Kovarik 17 ].

THEOREM 3.1. Let [1- x) <1 for xo 6 C and define { x, by (3.1) for
k >= rn 1. Then

2(3.4) l-x,, -x) (+m+ln

and

(3.5) lim x sgn (x0).
q-oo

Proof. By (3.1),

(3.6) 1-x2=(Qm()-(1-)Pm())/Qm(),

where Xo2. But Qkm has zeros Zl, Zm in 1, + ), so by (2.5)

m_lzi g;I fi--lZi fiZi--1(3.7) IQkm()l H > I__> =Qkm(1).
Zi Zi Zi

TABLE
Padd recursions for the matrix sign function.

m=0

m=l

m=2

m=3

k=0 k=l k=2 k=3

2x
+x

8x

x x x
(3-x g(5- Ox+3x") (35-35x+Zlx"-Sx)
x(3+x2) x(15+ 10x2-x4) x(35+35x2-7x4+x6)
+ 3x 4 (1 + 5x2)

4x( + x2) x(5 + 10x + x4)
3 + 6x x -t- 6x + X + 10x + 5x

16x 8x(3 + 5x) 2x(3 + 10x + 3x4)
5 + 15xz- 5X -- X 5 + 45X + 15X X + 15x -Jl- 15x x

8 + 7X2)

X (35 + 105X + 2 lX X6)
2 (3 + 42x + 35x4)

x(7 + 35x + 2 lx q- X6)
+ 2 lx + 35x + 7x
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Using Theorem 2.1 in (3.6) gives

II--x211 <. I[k+m+l( il[i)/IQkm()[ 2

i=1

[1-xlk+m+l( ci)/[Qkm(,)l 2

i=1

<--_ ]I-x[k+m+Qm(1)/IQ.m()] 2

=< I1 -xg + m+l

2by (2.9) and (3.7). Repeating this argument gives (3.4). From (3.4), Xn -- 1. To see
that xn -- sgn (x0), let h(x) XPkm( X2)/Qkm( X:Z). Since the only poles of h lie
on the imaginary axis, h is continuous on the set

(3.8) S={x" l-x21 <}=-S+S_,
whereS+-- {xeS’Rex>0},S_= {xeS’Rex<0}.By(3.4),htakesSintoS.
Since S+ N S_ and each is a connected set, h(S+) must lie entirely in S+ or S_,
because the continuous image of a connected set is connected. But S+ and h(

S+, so h(S+) S+. Similarly, h(S_) c S_. Thus if x0 e S+ then X S+_ for all n, and
by (3.4),

lim

In order to assess how well the set S in (3.8) approximates the region ofconvergence
for the recursions in (3.1), we define the basins of attraction for the fixed points
+1 of h"

(3.9) B+={x" lim xn=l}, B_={x" lim Xn=-l}.
n-- +o n--+

The Julia set 6 ], 19 for the recursion 3.1 is the boundary of the basin of attraction
of+l"

(3.10) Jkm=OB+.

Because of the unusual properties associated with Julia sets, Jkm is also the boundary of
the basin of attraction for -1"

(3.11) Jkm--On-.

(See [19] for a very readable introduction to Julia sets and the properties of rational
recursions such as (3.1); for a deeper study, see [6].)

Computationally, Jkm can be approximated by starting with (almost) any point
z0 C and then reversing 3.1 to solve for the predecessors of z0:

2 2(3.12) Zn Zn+ 1Pkm( Zn+ 1)/ Qkm( Zn+

where Zn X-n in (3.1). Since (3.12) can be written as a polynomial in Zn+ of order
1 max (2k + 1, 2m), there are 1 solutions n+’i) to (3.12), one of which is selected
at random to continue the iteration. This scheme takes advantage of the fact that for the
forward recursion 3.1 ), the Julia set is repulsive; points near Jkm move to + 1. In reverse,
under (3.12), the Julia set becomes attractive and nearly all orbits of points are dense
in Jkm (see 6, Thm. 2.5 ). Thus by plotting { zni) ) for n > 30 (to allow the initial points
time to approach the Julia set) we obtain a good graphical approximation of Jkm and
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thus can assess easily the real region of convergence of (3.1) as compared to the set
]1 x2 < 1. This was done for each of the recursions given in Table (excluding the
globally convergent main diagonal recursions), and the results are displayed in Figs. 1-
9, along with the set x21 for comparison (this set looks like an "infinity" symbol
centered at zero). In each of these figures, the principal domains of attraction of + are
the largest connected regions, inside the Julia set, which contain + 1, respectively. The
other connected regions nested within the Julia set map onto these principal domains
after a finite number of steps in (3.1). For the multiplication-rich polynomial recursions
(m 0), the set x21 < provides a rather good approximation to the actual region
of convergence. However, as m increases toward k, that is, as we move toward the main
diagonals k m or k m 1, the region of convergence becomes much larger than
[1--xZ[ <1.

We now show that along the main diagonals, the regions ofconvergence are as large
as possible and we have, in fact, global convergence. That is, ifXo is not on the imaginary
axis then lim_.+ x, sgn (x0).

First note a rather remarkable property of (3.1) for k m and k m 1: the
polynomials -xP,m( x2) and Qm( x) are, respectively, the odd and even parts
of x)+m / . This makes it very easy to write down the appropriate recursion. For
example, if k m 2, then

(l--x)k+m+l 1--5X+ 10X2- lOx3+5X4--X5,

SO xP22 x2) 5X 10x x5, and Q22 x2) + 10X2 -t- 5 X4. Thus the
4 42 / 2 recursion is xn + xn 5 + 10x2 + xn)/ + 10x2 + 5x,). This property can be

proved either by manipulating the series (2.6), (2.7) or by starting with --XPkm( x2)
and Qm( x2) as the odd and even parts of x)+m+ and then showing that
(2.3) is satisfied.

THEOREM 3.2. Let Xo C + U C- and let { x, } be defined by (3.1)for k m or
k m- 1. Then

for XoeC +(3.13) +x, +xo

and

(3.14) l+Xn (l+Xo)(k+m+l)n for x0eC--x -x0

In either case, for s sgn (x0),

(3.15) s+xn +Xo/

Proof. Equations (3.13) and (3.14) are identical except for being inverses of each
other to avoid division by zero when x0 + 1. Let x0 e C + for convenience and set xl
XOPkm( Xg)/Qkm( xg).By the preceding remarks, for any x, and k m or m 1,

(3.16) Qkm( X2 XPkm( x2 x) + + 1.

Replacing x by -x gives

(3.17) Qk,( x2 + XPkm( X2 -{- X) k + + 1.
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FIG. 1. Pad convergence region for k 1, m O.
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FIG. 2. Pad convergence region for k 2, m 0.
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FIG. 3. Pad convergence region for k 3, m O.
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FIG. 4. Padd convergence region for k 0, rn 2.
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FIG. 5. Padd convergence region for k 2, rn 1.
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FIG. 6. Padd convergence region for k 3, rn 1.
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FIG. 7. Pad convergence region for k O, rn 3.

FIG. 8. Pad convergence region for k 1, rn 3.
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FIG. 9. Pad convergence region for k 3, rn 2.
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Thus,

and

--Xl-- (Qkm(1--X)--XoPkm(1--Xg))/Qkm(1 --Xg)

(l--NO)k + m + /okm

-I-Xl--( -I-Xo)k+m+ l/Qkm --X).
Dividing, we obtain (3.13 for n 1. Repeat to get the general statement.

From Theorem 3.2, we immediately get Theorem 3.3.
THEOREM 3.3 (Global Convergence). Ifxo C+ U C-, then for k m or k

rn l, with m _-> limn- +o xn sgn (xo).
Proof. By Theorem 3.2, we need only show that I( Xo)/( + Xo)l < for Xo

C + or I( + Xo)/( Xo)[ < for Xo C-. Let Xo Pei - C + with -7r/2 < 0 < 7r/2.
Then l( Xo)/( + Xo)l 2 20 cos 0 + 02)/( + 20 cos 0 + 02) < 1, and similarly
for Xo C-.

From Theorem 3.2, we see that the distance measure from Xo to given by
d+(xo) =- [( Xo)/( + Xo)[ and its counterpart for-l, d-(xo)=- I( + xo)/( Xo)l,
are more natural than [1 x and [1 + x I, respectively. For example, Xo 10 .6 and
1/xo 106 are equidistant from under the regular Newton method (since (1.2) is
symmetric with respect to xo and 1/xo) but xol while 1/Xol 106. (See
[3] and [15].)

Theorem 3.2 is also useful in establishing the equivalence of certain methods in
the Pad6 table. For example, if xo C /, then two steps of the inverse Newton method
(k 0, m give

(3 18) l-x2= (1-xo)
4

l+X2 I+X0

However, if 21 denotes the result of taking one step from Xo with the recursion (k 1,
m 2), then

(3 19)
1--)l _(1-Xo)4

+2 -Xo
Solving for x2 and .l, we find x2 21. Similarly, if we take one step with (k 0,
m followed by a step with (k 3, m 3) the result would be the same as one step
with (k 6, m 7).

THEOREM 3.4 (Equivalency). Let xo e C + tO C- and let Xr be the result ofapplying
r steps ofthe (possibly different) main diagonal Padd recursions [k/mll, [k/ml.
Then Xr 2, where 2 is obtained by main diagonal steps [kl/rhl],
provided that both are ofthe same order, i.e.,

(3.20) (ki+ mi+ )= [I (/i+ rfii+ )p.
i=1 i=1

Proof. Applying Theorem 3.2 for each individual step,

--Xr XO -l+Xr l+x0

Solving for X and 2e gives Xr 2f. If xo C-, use (3.14). rq
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4. Other rational methods. In this section we consider other rational iterations,
including eigenvalue assignment methods, Cayley transform methods, and Laurent series
methods. Eigenvalue assignment methods were introduced by Balzer 3 ], in the form of
scaled Newton methods which move specified real eigenvalues to x in one step.
These methods were shown to be globally but not quadratically convergent. By using the
methods ofTheorem 3.2, it is easy to construct globally convergent methods ofarbitrarily
high order that will move any selected set { k } of real or complex conjugate eigenvalues
to x in one step.

For example, if we want a fourth-order method which assigns X 2, ),2 + i,
and 3 to x 1, then we let -xp(x2) and q(x2) be, respectively, the odd and
even terms in the expansion of x)4(2 x)( + x)( x):

(1 X)4(2 X)(1 -k- i- x)(1 i- x)

Then

4 22x + 52x2 69x + 56x4 28x + 8X6 X7.

xp(x-) 22x+ 69x3 + 28x + x7 x(22 + 69x2 + 28x4 +
q(x2) 4 + 52x2 + 56x4 + 8X6 =4( + 13x2 + 14x4 + 2x6),

and the desired iteration is

x,(22 + 69x2 + 28 X4n + x6)
Xn+ 4( + 13X2 + 14X4 + 2X6)

In order to prove global convergence for these assignment methods, we need the
following lemma.

LEMMA 4.1. Let Re z > 0, Re ), > 0, and r > O. Then

(4.1)
rDz

rWz
<1,

and

(4.2)

Proof. If we set x z/r, then Re x > 0 and

r-z
r/z

1-x
l+x

<1,

as in the proof of Theorem 3.3. Now say X rei, z peie where 4, 0 (-r/2, r/2).
Then

I(X- z)(X- z)[ 2 (r2- 2or cos 0 cos b + 02 COS 24)) 2

+ sin 2 (202 COS (]) 2or cos 0) 2

< r2 + 2or cos 0 cos + p 2
COS 2)2

+ sin 2 )( 202 COS b q- 2or cos 0) 2

-I(X/z)(X/z)l 2,
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THEOREM 4.2. Let { X, X2, X,} be a conjugate symmetric set in the open
right-half plane and--xp(x2) and q(x2) be, respectively, the odd and even parts of

x)v(Xl x)...( x). Then the iterative method
2xp(x)

(4.3) xn+ q(x2)

is globally convergent oforder and takes { , 2, ,} to x in one step. Moreover,
for s sgn

(4.4)
s+x,+l s+x, s+ ,s+

and

(4.5) s+xn+ s+xn
Proof. We shall prove (4.4) and (4.5) for the case s 1, since the case s -1

follows immediately. From (4.3),

1--Xn+l q(X)--x,,p(x2)
+X,+l q(x])+x,,p(x2,,)

(-x)(X-x)...(X-x)
(1 q-X)3’(kl At-X)"" "(X# AvX)

which proves (4.4). Inequality (4.5) then follows from (4.4) and Lemma 4.1. E]

Remark 1. Since xp(xZ)/q(x2) in (4.3) is an odd function, it also moves
{ Xl, k2, k,} to in one step.

Remark 2. In 10], Gander gives a family of quadratically convergent methods
which depend on a parameterf:

(4.6) x+ Xn
22f-3 +xn

f-2+fx2
In Theorem 2 of[10 ], it is shown that (4.6) is globally convergent for f > 2 and for
f= 3 gives Halley’s method, which is cubically convergent. For f< 2, prescaling must
be done to ensure convergence. We can interpret Gander’s method as a second-order
method which makes one real eigenvalue assignment. Expand

(1--X)2(X--X)=X--(2X+ 1)X+(2+X)X2--X3,

and use the method of Theorem 4.2 to obtain the iteration

(4.7) Xn+
x,(2X + +x2)
X+(2+ X)x2

This is the same as (4.6) for X f- 2. Thus the condition f> 2 for global convergence
in (4.6) is just the requirement that the real eigenvalue X, which gets mapped to x 1,
must be in the right-half plane as in Theorem 4.2. Moreover, f 3 corresponds to X
being triply assigned to x 1, so that the iteration is cubically convergent (Halley’s

method).
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Remark 3. Allowing some of the eigenvalues X in Theorem 4.2 to be multiple
results in methods in which X is mapped to x and points near X are taken at least
quadratically to x 1. For example, expanding x)2(2 x) 2 gives the second-order
method in which ), 2 is doubly assigned to one:

xn(12 +6x)
2 4"Xn+l 4+13x+x

If x0 2.1, then Xl .99985. ..
As indicated in the Introduction, another family of methods can be based on the

Cayley transform. For x 4 -1, let

1--x
(4.8) Y-1 +---"
Let 2, denote the result of multiplying y by itself u times and then transforming back:

(4.9) 2,-
l+y."

From this we see that

(4.10) (1 +2-- \ +x]

Now suppose that x is defined by (3.1) for one of the main diagonal (k m or k
m Pad6 recursions where u (k + m + ). By the Equivalency Theorem 3.4, we
must have

(4.11 x xn.

Thus the Cayley transform method and the Pad6 recursions produce exactly the same
results, except that the arithmetic operations of inversion and multiplication have been
rearranged. It was pointed out earlier that this can have a significant effect in the matrix
case, since the Cayley transform approach is multiplication-rich compared to the Pad6
methods. We now extend the Cayley transform method to the case where x -1 or
where -1 is an eigenvalue ofX in the matrix case.

From (4.8) and (4.9),

(4.12)

1-
l+x

1+
1+

(1 +x)"-(1 -x)
(1 +x)"+(1 -x) ""

The next lemma shows that the fight-hand side of (4.12) is well defined for any x which
is not on the imaginary axis.

LEMMA 4.3. Let x C + t_J C-. Then + x) + x) 4 0 for any positive inte-
ger .

Proof. Suppose to the contrary that (1 + x)" + (1 x)" 0. Then x 4 1, so
+ x)"/( x)" -1. This means that + x)/( x) is a th root of- 1: + x)/

x) ei where 0 is not an odd multiple of 7r (else x + oe ). Solving for x we find
x (sin 0/( + cos 0))i C + U C-, which is a contradiction.
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We end this section with a short discussion ofLaurent methods, which are polynomial
iterations in x and x- of the form

x.+,= E

These methods are motivated by a desire to generate a "multiplication-rich" iteration
once X-1 has been computed. For example, Newton’s method is of this form with u

1, b-ll 1/2 bll. If we let

Z
j--

then the coefficients bj, can be determined from L( 1, L’( 0, L (2"- i)(
0. (Other conditions which assign specified eigenvalues to x can be used as well.)

-2

-4

FIG. 10. Laurent convergence region for , 3.

-5 o 5

FIG. 1. Laurent convergence region for , 5.
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Because of symmetry reasons we generally want L to be an odd function, L(-x)
-L(x), so that u should be odd and bj, 0 wheneverj is even. After Newton’s method
(v the next two methods (v 3 and u 5) are of order four and six, respectively,
and take the form

Xn+ =-{-d --X-n +-+x. 9Xn--X3" forv= 3,

(73. 660 4270
Xn+ =7552 XSn x3 xn

+4580xn- 815x3 + 104XSn) for v= 5.

These methods are multiplication-rich in the sense that they require one matrix inver-
sion and + multiplies per step. However, they are not globally convergent and, in
fact, the region of convergence for these two methods does not even include the set

Ix2 11 < 1, as do the Pad6 methods. This is illustrated in Figs. 10 and 11, where the
set Ix2 11 is included for comparison.

5. Matrix convergence. In this section we show that convergence in the matrix case
is determined by the scalar convergence of the eigenvalues. This allows us to apply the
scalar convergence results of the previous sections to the matrix case.

The following general result is the key to this process.
LEMMA 5.1. Let R R(x) be an odd rational function such that R(1) and

R’( O. Let Xo e C + tO C- such that limn- +oo Xn sgn (Xo), where x +1 R(x,).
Let Xo be a Jordan block oftheform

o 1
Xo" 0

0 1
Xo

Then the matrix sequence defined by Xn + R X satisfies limn-++ Xn sgn (Xo).
Proof. Let Rl(x) R(x),R_(x) R(R(x)), andin general Rn+ l(x) R(Rn(X)).

Because Xo is a Jordan block,

5.1 X,, R,,(Xo)

a2 av
al

0 ". az
al

where u is the order ofXo and

aj aj( n
d-(j- 1)! d7---1R"

x0

Thus al(n) R,,(Xo) x,, -+ sgn (Xo) by assumption. Forj 2,

a2 n ---X
xo X Rn XO

T
Xo
X

Xn -1
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by the chain rule. But limn-+o dR/dxlx._l dR/dxlsgn(xo) 0 since sgn (Xo) +/-1

and dR/dx( +_ 0 by assumption. Thus a2 (n) -- 0.
As an induction hypothesis suppose that aj(n) -- 0 for 2 _-< j _-< 1. Then by the

chain rule

ai(n- )+ rnai(n) Xxn -1

where r, has a fixed form, independent of n, involving sums and products of aj. for 2 _-<
j =< 1. Thus r, -- 0 by the induction hypothesis. Since dR/dxlx._, also tends to zero
we have lim_+ ai(n)=O. This means that limn_+ X sgn (x0)I sgn (X0).

Using Lemma 5.1, we obtain the matrix analogues of Theorems 3.1-3.4 and the
Cayley power method.

THEOREM 5.2. Let k >= m and assume that the eigenvalues ofXo lie in C /

C- Assume that [II X ) < and define

Then

X+ --X,Pkm(I-- xZ,)Q-m(I- X2,).

5.2 I-X. < I-X (k + +,

and

(5.3) lim X sgn (Xo).
/oo

Proof. The condition I- X < ensures that 11 )k2[ < for any eigenvalue
2 of Xo. Hence by Theorem 3.1, the eigenvalues h,"(i) for X converge to sgn (Xo(i)). By
Lemma 5.1 and the definition of sgn (X0) in terms of its Jordan form, (5.3) is true. The
matrix inequality (5.2) can be obtained by using the matrix analogue of the arguments
in the proof of Theorem 3.1.

THEOREM 5.3. Let A(X0) c C + U C- and assume that k m or k m in
(4.3). Then for 3’ k + m +

(5.4) lim X=sgn Xo=-S,
/oo

(5.5)

and

(5.6)

(s-x.)(s+x.)- [(S-Xo)(S+ x0)-’]"

Xn= (A’’- B-’)(A’n + B"/’)-

where

(5.7) A=I+Xo and B=I-Xo.

Proof. By Theorem 3.3 the eigenvalues ofXo converge under (3.1) to the appropriate
value of + 1. By Lemma 5.1, this means that lim._ X. sgn (Xo). Equation (5.5) is
obtained by considering the individual Jordan blocks and using (3.15). Similarly, use
Lemma 4.3 to see that (5.6) is true for each Jordan block and hence for Xn itself. Vq

6. Conclusion. In this paper, we have presented a theory of rational recursions for
the matrix sign function, including Padr, Laurent, Cayley transform, and eigenvalue
assignment methods. Of particular interest are the globally convergent main diagonal
Pad6 iterations and their multiplication-rich Cayley transform equivalents.
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Several important aspects concerning the numerical evaluation of sign function
iterations have been treated elsewhere and so have not been discussed here. For example,
scaling can significantly increase the speed of convergence of Xn to sgn (X) as noted in
[3] and [4]; for scaling related to the polar decomposition, see [11]. The choice of
optimal and nearly optimal scaling constants for Newton’s method is discussed at length
in [15] and it is not hard to adapt these results to the main diagonal Pad6 recursions.
Similarly, the problem of estimating the sensitivity of the sign of a matrix is considered
in [16], based on the work in [8], [14], and [20].
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THE RESTRICTED TOTAL LEAST SQUARES PROBLEM:
FORMULATION, ALGORITHM, AND PROPERTIES*

SABINE VAN HUFFELf AND HONGYUAN ZHA

Abstract. The restricted total least squares (RTLS) problem, presented in this paper, is devised for solving
overdetermined sets of linear equations AX B in which the data [A; B] are perturbed by errors of the form
E* DEC. D and C are known matrices and E is an arbitrary but bounded matrix. By choosing D and C
appropriately, the RTLS problem formulation can handle any weighted least squares (LS), generalized LS,
total LS, and generalized total LS problem. Also, equality constraints can be imposed.

In order to solve these problems, a computationally efficient and numerically reliable restricted TLS al-
gorithm, based on the restricted singular value decomposition (RSVD), of the matrix triplet ([A; Bl, D, C),
is developed. This RSVD is a generalization of the ordinary SVD for triple matrix products. The matrices
involved may be rank-deficient and the explicit formation of matrix inverses and products is avoided. Using
the RSVD, some properties of the RTLS problem are proven.

Key words, generalized total least squares, generalized least squares, restricted singular value decomposition,
numerical linear algebra

AMS(MOS) subject classifications. 15AI 8, 65F20

C.R. classification. GI.3

1. Introduction. Every linear parameter estimation problem gives rise to an over-
determined set of linear equations AX B. Usually, R(B) g R(A) and hence this set
does not have an exact solution. In these cases, a best estimate ofX is found by fitting
a best subspace S to the data [A; B] such that rank () rank ([;/]), where [.3;/]
is the projection of [A; B into S. By solving this adjusted setX =/, is obtained.

In the ordinary least squares (LS) approach the measurements A are assumed to be
free of error (.3 A) and hence, all errors are confined to the fight-hand side matrix B.
However, this assumption is frequently unrealistic: sampling errors, human errors, mod-
elling errors, and instrument errors may imply inaccuracies in A as well. For those cases,
the total least squares (TLS) approach has been devised and amounts to fitting a "best"
subspace to [A; B] when the errors in the measurements A and B are uncorrelated with
zero mean and equal variance. As proven in [9 ], this TLS solution is a strongly
consistent estimate of the true solution X of the corresponding unperturbed set AoX
Bo provided limm-. AAo/rn exists and is positive definite, i.e., " converges to X with
probability one as the number of equations rn is going to infinity.

However, in many linear parameter estimation problems some columns ofA may
be error-free. Moreover, the errors in the remaining data may be correlated and not
equally sized. In order to maintain consistency ofthe result when solving these problems,
the ordinary TLS problem has been generalized 29 ], 27 ]. The generalized TLS (GTLS)
problem assumes that the first columns A1 ofA [AI; A2 are error-free and that square
nonsingular, error equilibration matrices D and C are known such that the errors in
D-I [A2; B]C- are equilibrated, i.e., uncorrelated with zero mean and equal variance.
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This GTLS problem can now be further generalized. Before defining this so-called re-
stricted TLS problem, we introduce our notation used throughout this paper.

A matrix is always represented by a capital letter, e.g., .4. The corresponding lowercase
letter with the subscript and ij refers to the ith column and (i, j)th entry respectively,
e.g., ai, aij.

The superscript T denotes the transpose of a vector or matrix.
The m m identity matrix is denoted by Im.
The notation diag (al, ap), P min { m, n }, is used to denote an m n

matrix A, defined by aij 0 whenever j and aii i for 1, p.
R(M), Null (M), M, MIIF, and MII= denote, respectively, the range, null space,

pseudoinverse, Frobenius norm, and 2-norm of a matrix M.
o(.) is the expected value operator.

Restricted TLS formulation. Consider the following set of m linear equations in
n d unknowns X:

(1) AXB A6 mXn Be mxd X ynxd

where the data matrix [A; B] [A0; Bo] + E*. Ao, B0 are the error-free data and E*
represents a "restricted" perturbation matrix of the form

(2) E* DEC.

D mp and C li?, qx(n+d) are known matrices while E ,Pq is unknown and
arbitrary but bounded.

Then, the problem of finding a matrix [zk; A/] of the form [A; A/] DC
such that

(3) R(B- A)_R(A- Afl),
and

(4) II IIF is minimal,

is referred to as the restricted TLS (RTLS) problem and any X satisfying

(5) (A- AA)X= B-A
is called a RTLS solution.

Whenever the RTLS solution is not unique, a weighted minimum norm solution,
denoted by , is singled out in the sense that FIEF2 lie is minimized with F ""
and F2 e 1dd appropriately chosen nonsingular weighting matrices.

The term "restricted TLS" originates in its applications. We try to find a matrix/
ofminimal unitarily invariant) norm that reduces the rank of A; B DCwith given
[A; Bl, D, and C sufficiently such that the approximate set ([A; B] D/C) [_] 0 is
solvable. Hence, we attempt to reduce the rank of [A; B by restricting the modifications
to the column space ofD and the row space of C.

Observe that this RTLS formulation is more general than the GTLS formulation
given in [29] and [27]. Indeed, D and C may be rectangular, even rank-deficient, and
error-free columns in .4, if any, need not be stored in the first columns of .4. Using an
appropriately chosen D and C, even columns in B may be error-free and equality con-
straints can be imposed (see 2). Finally, if the RTLS solution is not unique, then not
only the solution " with minimal I1 lie can be singled out but any other with an
appropriately "weighted" minimal norm F1)F2 F.

The primary goal of this paper is to present a general problem formulation which
includes a whole variety of well-known problems, together with an efficient and numer-
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ically reliable algorithm which solves these problems. In fact, the RTLS formulation can
handle any LS, generalized LS, TLS, and generalized TLS problem, as well as any variant
of these problems, and even more general problems which are not yet fully investigated.
Also equality constraints and weighting matrices can be included. In 2 it is shown how
the aforementioned problems are converted to RTLS problems, illustrating the generality
of the RTLS problem. Not only does this unified approach allow for an elegant problem
formulation but at the same time it provides a deeper geometrical and algebraic insight
in the connections between the different problems.

In order to solve the RTLS problem, the restricted singular value decomposition
(RSVD), introduced by Zha [31], [32 ], can readily be applied to (3)-(4) to yield the
solution ofthe RTLS problem. In essence, the RSVD applies to a given triplet of (possibly
complex) matrices T, D, C of compatible dimensions and provides a factorization of
the matrix T, relative to the matrices D and C. It can be considered as the ordinary SVD
ofthe matrix T, but with different (possibly nonnegative definite) inner products applied
in its column and in its row space. The properties and structure of the RSVD are inves-
tigated in detail in [5] and [32], as well as its connection to generalized eigenvalue
problems, canonical correlation analysis and other generalizations of the SVD. Addi-
tionally in 5 ], a lot ofapplications are discussed. Just as the SVD (respectively, generalized
SVD) is a valuable tool for the solution and analysis ofthe TLS (respectively, generalized
TLS) problem, so the RSVD plays the same role of the more general RTLS problem, as
pointed out in 3.

Based on this RSVD, a powerful and numerically reliable RTLS algorithm is outlined
in 4 and can be used in practice to compute the RTLS solution. Its main difference
with respect to the ordinary TLS algorithm is the use ofthe RSVD instead ofthe ordinary
SVD. Its greatest advantage is the fact that only one algorithm is needed to solve a wide
variety of problems. Ofcourse, there are much faster direct ways of solving special RTLS
problems (see, e.g., 12 ). Nevertheless, ifthe problem is not too large and since computing
power is generally so cheap, it will often make sense to use the RTLS algorithm at least
when code for it becomes part of widely available and reliable subroutine packages. This
is because the added information on structure and sensitivity that it provides, the ease
of switching from one problem to another and analyzing the impact of any restriction
on the sensitivity of the solution, can be very helpful in understanding the problem and
finding the best problem formulation.

Although RTLS problems in their most general form are not yet fully understood
and investigated, it is the authors’ beliefthat the RTLS problem and the RTLS algorithm
will become an important tool in the analysis and numerical solution of numerous
problems.

Finally, 5 gives the conclusions.

2. Special RTLS problems. It is easy to see that the RTLS formulation can handle
any LS and generalized LS problem, as well as every TLS and generalized TLS problem.
Indeed:

If D equals m m identity matrix, denoted by Im, and C In+ d (respectively,
C- [0dn; Ia]), then we have the ordinary TLS (respectively, LS) formulation [11],
[12], [26]. LS and TLS problems arise in a broad class of scientific disciplines such as
signal processing [28], system identification [2], [13], automatic control or in general
engineering, statistics [9 ], economics, medicine [23 ], etc.

If D Im and C [0qnl; Iq] with q n + d- n, a mixed LS-TLS problem is
obtained: this is an extension of the ordinary TLS and LS problems which assumes the
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first n columns ofA to be error-free [10 ], [23 ], [5 ]. For instance, in regression analysis,
e.g., in curve fitting and intercept models [9 ], we often encounter such problems, as well
as in system identification [22] and signal processing applications [28 whenever some
signals can be observed without error while the other ones are disturbed by zero-mean
white noise.

The generalized TLS (GTLS) problem also assumes that the first n columns A1 of
A [Al; A2] are error-free but moreover allows for correlations between the errors E*
in the noisy submatrix [A2; B] provided square, nonsingular matrices D and C2 are
known such that the elements of D-1EC are equilibrated, i.e., uncorrelated with
equal variance. By taking C [0; C2], C2, and D as defined above, we have /
[0mn,; D-l[ ZL2; A/]C ], which shows the correspondence between the RTLS for-
mulation and the more restrictive GTLS formulation used in [27] and [24 ]. IfD Im,
then C2 is, up to a factor ofproportionality, given by the square root ofthe error covariance
matrix r(E fEz*) which defines the correlations between the errors in each row of
[A2 B ]. These GTLS problems frequently occur in regression analysis 8 ], as well as in
transfer function modelling [28] and the identification of multi-input multi-output sys-
tems whose outputs, and possibly the inputs, are disturbed by zero-mean correlated noise
[13], [15], [16].

If rank (D) p and C [0a,; Ia], we obtain the generalized LS (GLS) problem
formulated as follows 19 ]:

min Eli F such that B AX+ DE.
D represents, up to a factor of proportionality r, the square root of the symmetric non-
negative-definite covariance matrix g(EE r) 2r DD r, where E2* represents the errors
in the fight-hand side matrix B. Many estimation problems are led to the solution of a
GLS problem. For instance, in control engineering the Kalman filter can be viewed as a
GLS problem [14]. In regression analysis, the one-dimensional (d GLS solution
provides the best linear unbiased estimate ofX in all cases of the general Gauss-Markov
model, given by b Ax + e*, where e* is a zero-mean random vector with covariance
matrix rZDD r [19]. Whenever the coefficient matrix A is ill conditioned, this GLS
solution is very sensitive to perturbations. In order to stabilize the solution and decrease
its variance, Zha and Hansen 33 suggested adding Tikhonov regularization and proposed
the following regularized Gauss-Markov model: min { Ilel[2 + xzllcxll} such that
Ax + De b. Just as the generalized SVD is the main tool for the analysis and solution
of the general Gauss-Markov model, so the restricted SVD plays the same role of the
regularized Gauss-Markov model, as pointed out in [33].

The RTLS formulation can also handle any variant ofthe GTLS and GLS problem
allowing for error-free columns in A2 and B as well, e.g., the RTLS problem:

(6) AX B, E* DEC1 0 d with C C 0q d and D, C1 known,

defines a GTLS problem which assumes B to be error-free. If C1 01 (i- 1), 1, 01 (n- i)],
q d 1, then (6) defines a GLS problem in which A and B are error-free except for
the ith column ofA. Furthermore, the RTLS formulation also allows to solve any (un-
der)determined set of linear equations (i.e., m _-< n), defined as follows:

min F12F2IIF such that A2= B.
2

This set always has one exact solution ). Hence, E* must be set to zero in the RTLS
formulation, e.g., by taking D 0 or C 0.
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Finally, observe that equality constraints can be imposed, given by the error-free
rows of [A; B], e.g., if the first m rows of [A; B represent equality constraints, then

0mlD2P]
By adding the assumption that also n columns of [A; B are error-free, a whole class of
RTLS problems AX B can be defined, characterized by the fact that only one submatrix
of [A; B is perturbed and may be changed by the RTLS algorithm, e.g.,

D and C C Oq ,,, ].
0m xp

These structured perturbation problems have been treated by Demmel 3 ], 4 and arise
in the design of control systems based on H optimization 7] and in stability analysis
of various problems in linear algebra. In practice, engineering design problems are very
often formulated as optimization problems using LS (or TLS) approaches. As pointed
out in ], many of these problems involve equality constraints which represent some
physical laws, e.g., in inverse kinematics of redundant and parallel manipulators, robot
trajectory planning, mechanical systems design, etc. As shown above, constrained linear
LS problems are easily transformed into RTLS problems but also constrained nonlinear
LS problems can be solved with RTLS provided the solution method alters the problem
in each iteration step to a constrained linear LS problem of the form:

(7) min(f-Ex)TW(f-Ex) or min[lW/Z(f-Ex)[I2

(8) subject to Gx h.

W is a positive-definite weight matrix and W/2 is its square root. By defining

D=
W1/2 C--J0, ,0, 1]

in )-(2), (7)-( 8 can be reformulated as an RTLS problem. An example of a con-
strained TLS problem, discussed in [21], consists in estimating the granulometry of
minerals in a separator. Here, the equality constraints represent mass balance equations
of the system in equilibrium.

IfF :/: Im or F2 :/: Id, the corresponding "weighted" problems are considered, e.g.,
the GLS problem given in [30] and [6] (d ):

min ell 22 such that b Ax+ De with F1 xl] 2 minimal,
’,X

is a special RTLS problem with C [01 n; 1], F2 1, and F, D as defined above. This
problem is encountered in many important applications, e.g., aircraft wing flutter analy-
sis 171.

Finally, observe that the RTLS problem is not always solvable. Two kinds of un-
solvable RTLS problems must be distinguished. First of all, the RTLS problem is un-
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solvable if no matrix/ exists such that rank ([A; B] D/C) =< n, e.g., the following
RTLS problem described in [4]"

[A;B]=
0

and [AA;A/]=D/C givenby [01]=
0

Since the coections ;], applied to the data [A; B], may only affect the peurbed
entries in [A; B] (specified by D and C), the rank of [A; B cannot be suciently reduced
in these problems in order to obtain a solvable set (A )X B . Second,
condition (4) may be satisfied but not condition (3), i.e., there exists an with mini-
mal F such that rank [A; B DC) N n but R(B A) R(A ). In this
case, many C(e) peaurbations , of can make R(B ) R(A ), where
[; ] DC, but there is no smallest value of IILIIF for which (3) is satisfied,
e.g., [12, p. 4201"

[A;BI 0 0 C=I, D=I, = 0 e 0
0 0 0 e 0

This kind of unsolvability only occurs when A is (nearly) rank-deficient or when the
set of equations (1) is highly conflicting. By imposing additional constraints on the
solution space, i.e., for all [] e Null (DC), for all e {El IIEIIF minimal and
rank ([A;B] DEC) n}"

(9) [;1
0 d=ODC 0

=0,

these RTLS problems can be made solvable and are refeed to as nongeneric RTLS
problems. We say that these RTLS problems are not solvable in the generic sense (i.e.,
condition (4), subject to 3 ), is not satisfied) but may be solvable in the nongeneric sense
(i.e., condition (4), subject to 3 and (9), is satisfied). See 26 for more details.

Note that the nongenefc RTLS problem can also be considered as a slightly changed
genetic RTLS problem AX B, E* DEd in which d is an appropfately chosen
projection of C into R(C) such that

R( d)_l_R
0 d 0

satisfies(9)

3. Relation with the restricted SVD and properties. While the ordinary TLS al-
gorithm is strongly based on the ordinary SVD [12 ], the RTLS algorithm is strongly
based on the restricted SVD (RSVD) as shown in 4. The RSVD, introduced by Zha
[31], [32] as the implicit SVD of a triple matrix product (see also [5 ]) and therefore
closely related to the S, T-SVD [30] and the HK-SVD [6], can be described as follows.

DEFINITION. Restricted singular values (RSVs) of T, D, C). Let T x be
perturbed by a matrix of the form E* DEC where D mxp, E Pq, and C
q n. Then the RSVs of the triplet (T, D, C) are defined as follows:

ai( T, D, C) min ElI21 rank T+ DEC) <= i- },
Ee

i=l,...,n.

The RSVs are arranged in nondecreasing order of magnitude, i.e., O" O"i+l. Observe
that the RSVs are generalizations of the well-known ordinary singular values and gen-
eralized singular values. Indeed, the ordinary singular values are given by ri( T, Im, In)



298 S. VAN HUFFEL AND H. ZHA

while the generalized singular values are given by ai( T, Im, C) or ai( T, D, In) [32]. If,
for some i, no matrix E exists such that rank (T + DEC) =< 1, we simply define
ai( T, D, C) . Also, define ai( T, D, C) 0 if rn < n and rn + _-< <- n.

These RSVs are computed from the RSVD of T, D, C), as follows.
THEOREM 1. Restricted singular value decomposition (RSVD) of (T, D, C). If

T lmn, D mp, and C lqn, then there exist orthonormal U PP and
V lq q and nonsingular P l and Q l such that

PTQ= 0 0 $2, PDU= ,D
t2, VrCQ= [Zc; 0

0 0 t2 0 tl
$1 tl

where

o o o o o o
0 Ik 0 0 D-

0 0 0 0 k+lZv= 0 0 Iz 0 0 0 D 0
0 0 0 ST 0 0 0 I

0 0 0 0

c 0 Iz 0 0
o o o
0 0 0 I$1

j+k

and T diag(,..., 7s) s, D diag(,’-., ) and c
diag (q, -s) 6 lszs, 7g > O, 6g > O, g > O, for all g 1, s.

Let ljk + j + k and define

7"i 1, i 1, yi 0,

=1, =0, =0,

=1, =0, =1,

=0, =1, =1,

i=l,...,j,

i=j+ l, ,j+ k,

i=j+k+ 1, ,ljk,

=ljk+g and g=l,...,s,

ljk+ s+ 1, ,ljk+ s+ min (s,s2),

then the RSVs of( T, D, C) are given by

7"
oi( T,D, C)

i,.Yi
i- 1, ,rank (T)

=0, i=rank (T)+ 1, ,n.

Trivial RSVs, defined by , are set to zero.
This theorem is proven in 32 ]. The integer indices are determined by the rank of

the given matrices. Defining

T D

rtd= rank ([ T;D]),
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we have

j rtc + rank (D) rtdc,

k rtdc rank (D) rank (C),

rt+ rank (C) rtac,

r r,dc + rank T)- r

S r,- rank (T) and n rt,

s2 rt- rank (T) and t2 m- rta.

The properties and structure of the RSVD are investigated in detail in [5 and 32 ]. In
particular, it is shown that the RSVD not only allows for an elegant treatment ofalgebraic
and geometric problems in a wide variety of applications, but that its structure provides
a powerful tool in simplifying proofs and derivations that are algebraically rather com-
plicated. Additionally in [5], many applications are discussed including the analysis of
the extended shorted operator, unitarily invariant norm minimization with rank con-
straints, rank minimization in matrix balls, the analysis and solution of linear matrix
equations. In particular, it is shown how the RSVD allows us to solve a special class of
RTLS problems, namely, constrained TLS problems AX B with some error-free rows
and columns in [A; B] and the close connection to Carlson’s generalized Schur com-
plement is emphasized. Finally, generalized Gauss-Markov models with and without
constraints are discussed: it is shown how these models convert to special RTLS problems
and how the RSVD simplifies the solution of these generalized LS problems with con-
straints.

As pointed out in [32 ], RSVs play an important role in the rank determination of
a matrix To under a restricted perturbation of the form E* DEC where E satisfies

Ell 2 -<- e and e is known. It is easy to see that the best estimate of the rank of To T-
DEC, T, D, C) known, is given by

rank (T) max { i[ ai( T, D, C) > e },

i.e., there exists a matrix/ satisfying I[/ [[2 e such that rank T D/C) but no/
exists satisfying 1[/[[2 =< e such that rank (T- DC) < i. This matrix/ can be easily
computed from the RSVD of T, D, C) and allows us to compute the RTLS correction
matrix [z4; ZX/] DISC satisfying (3)-(4) (see 4). Indeed, comparing the definition
of the RSVs with the RTLS condition (4), the following theorem can be proven.

THEOREM 2. Assume that the RTLS problem Am xnX Bmxd with given Dmxp,
Cux(n+d is solvable and rn([A; B], D, C) > an+ l([A; B], D, C), then:

The RSVD ofthe RTLS approximation ([A; B] [z; A], D, C) is given by the
RSVD of A B], D, C), in which the smallest d RSVs are equal to zero.

Proof. Since the RTLS problem is solvable, there exists an E such that
R(B AB) c_C_ R (A AA), AA; AB DEC. This implies that there exist X N? x a

such that (A AA)X B- AB, i.e.,

{[A;B]-DEC}
-I

Thus, the matrix in curly brackets has at most rank n. By following the argument in
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Theorem 4.4 of [32], it can be shown that
n+d

IIEII2F>_--II/ll a]([A;BI,D,C) min
n+ Ee ooCPxq

{ Ell rank ([A ;B DEC) <= n }

and that equality results by setting E /. The condition O" > ffn+l ensures that/ is
the unique minimizer. Hence, the unique RTLS approximation [A; /}] [.4; B]
[; A/}] of rank n satisfying (3)-(4) is obtained by setting [L; A/}] DE’C, i.e.,
the RSVD of ([A; /}], D, C) is given by the RSVD of ([A; B], D, C) by setting
fin+ I([A; B], D, C) ffn+d([A; B], D, C) O. Fq

The concept of RSVs also allows us to define the conditions of solvability of RTLS
problems (see 2).

If rn+l([A; B], D, C)< but R(B- AJ) R(A- z) for rn+l([A; B],
D, C) rn+d([A; Bl, D, C) 0, then the RTLS problem is not solvable in the
genetic sense (but may be solvable in the nongeneric sense).

If n+l([A; B], D, C) o, then the RTLS problem is not solvable in the
(non)genetic sense. Finally, the following theorem allows us to derive the consistency
of the solution of most RTLS problems described in 2.

THEOREM 3. Consider the RTLS problem, defined by (1)-(2), where C is of
theform

C---
0 C2 Cba Cb
nl n+d-nl n d

and C2, D square, known, and nonsingular. Denote by or’ (respectively, or) the minimal
restricted singular value ofthe matrix triplet (A, D, Ca) (respectively, ([A; B], D, C)).
Let r have multiplicity d and denote D TD and

(a (labcg CrC
cba
n d

If or’ > or, the RTLS solution is given by

(10) )=(AT-lA--ff2qffa)-l(AT-lB--ff2ab

Proof. Since D is nonsingular, the solution . ofthe RTLS problem, defined above,
equals the solution of the generalized TLS problem A*X B* where [A*; B*]
D-[A; B] and the perturbations of[A*; B*] have the form

E* [0; EC21.
nl

Using the definition ofthe RSVs, it is easy to verify that a mini { ai([A *; B* ], Im, C)
(respectively, a’ mini { (ri(A *, lm, Ca) is the minimal generalized singular value of
the matrix pair ([‘4 *; B* ], C) (respectively, (‘4 *, Ca)). Equation (10) then follows im-
mediately from Theorem 4 of 29 ], applied to this generalized TLS problem.

Theorem 3 proves the correspondence between the RTLS solution and well-known
expressions of consistent estimates in statistics, as well as in system identification. If
D Ira, (10) is a well-known expression in linear regression analysis. Its consistency
and other statistical properties have been investigated by Gallo [8 and Fuller 34].
Gleser [9 studied the special case that C In+ d and n 0, corresponding to the
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ordinary TLS problem. Using their results and assuming that limm AAo/m (defined
below) exists and is positive definite, it can be concluded that the RTLS solution is a
strongly consistent estimate of the true parameters X of the general errors-in-variables
model, defined as

(11) Bo=(Ao)mnXnd=A1Xl+(A2)oX2, A2=(A2)o+AA2, B=Bo+AB.

A is known but (A2)0 and Bo are not. The observations A2 and B ofthe unknown values
(A2)0 and B0 contain measurement errors AA2 and AB such that the rows of AA2; AB
are independently and identically distributed (i.i.d.) with zero mean and known positive-
definite covariance matrix (2 CC2, up to a factor of proportionality. Not only in
statistics, but also in system identification, expression (10) (with D Ira) is well known
(see, e.g., 22 ], 15 ]). In particular, (10) arises as a consistent estimator in transfer
function modelling. These models are given by

(12) y(t)+ay(t- 1)+ +anaY(t-na)=bu(t 1)+ +bnbu(t-nb),

where the { u(t) } and { y(t) } are the input and output sequences, respectively, and { aj }
and { bj } are the unknown constant parameters of the system. If sufficient observations
are taken, (12) gives rise to an overdetermined Toeplitz-like set of equations. If the
observed in- and outputs (respectively, observed outputs) are disturbed by mutually
independent stationary zero-mean white noise sequences of equal variance, i.e., C2 I
and n 0 (respectively, ne), the RTLS solution of this set, given by (10), coincides
with the Koopmans-Levin estimate 2 (respectively, the compensated LS estimate [22])
and is hence strongly consistent under the same conditions as described in 2 and 22 ].
Several authors, e.g., 13 ], 15 ], 16 ], extended these results in order to prove consistency
for multi-input multi-output systems, modelled by (12), in which the disturbances are
not necessarily white provided the covariance matrix (d2 CC2 of the correlated noise
in the input-output data is known, up to a factor of proportionality. See [29 for a
complete list of references and a detailed description of the consistency conditions.

The condition D =Im is not a real restriction for consistency. Indeed, if D is non-
singular, the same consistency conditions apply to the transformed data [A*; B*]
D- [A; B]. Also, the assumption that the first n columns of A are error-free is not a
restriction. In fact, we can always find an appropriate permutation of the columns ofA
such that the consistency conditions are satisfied.

Summarizing, these results prove that the solution " of RTLS problems, given by
( )-(4), in which C 0; C2 ], C2 and D are square and nonsingular, is consistent under
mild conditions whenever E(ErE) I, and E has zero mean. Consistency ofthe solution
ofmore general RTLS problems has not yet been proven and needs to be further analyzed.

4. Algorithm. The basic problem is to find a matrix ;//] D/Cwith minimal
F such that rank [A; B z; A/ =< n and (3) is satisfied. Heretofore, the RSVD

of the matrix triplet T, D, C), T [A; B],is computed. This is done as follows. First
v(5) D) C)), which only contains the nontrivialof all, the regular submatrix triplet 33,

finite RSVs ofthe general matrix triplet T, D, C), is extracted from T, D, C) by means
of orthogonal transformations. Since D and C are nonsingular, the implicit SVD
algorithm of Ewerbring and Luk [6] or Zha [31] can now be applied (Steps 2.1-2.2) in

(5) (5)-1order to compute the SVD of the triple matrix product D T33 C3 without ex-
plicitly forming the products and without inverting D or ,3. This guarantees its
better numerical performance. Moreover, by first performing orthogonal transformations
(Step ), the RTLS algorithm only needs to compute the implicit three-product SVD of
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a smaller submatrix, hereby improving its computational efficiency. satisfying (3)-
(4) can now be computed and also a basis of the null space of [A z; B A/] of
dimension at least d (Steps 2.3-2.6 ). From the latter, the RTLS solution )can be deduced
(Step 3). If the RTLS solution is not unique, the solution ) with minimal ]1F)Fz]]F is
singled out.

ALGORITHM RTLS.

Given

the data matrix Tmx(n+a) JAmn; Bmxd].

the matrices D, xp and Cq (n + a), as defined in the RTLS formulation.

nonsingular weighting matrices (F)n and (Fz)a a such that, in case of non-
uniqueness, the RTLS solution " with minimal FfF21IF is singled out.

Step 1. Reduction of T- DC to - by orthogonal transformations. Five or-
thogonal transformations, with row or column pivoting wherever possible, are performed
in order to separate the regular submatfix triplet from T, D, C). Denote the kth trans-
formation by:

[P) 0 ]IT-1) D-I)][Q) 0 ] IT) D)]0 pk) C- ) 0 0 Qk) Ck) 0

where -i and (i 1, 2) are oahogonal matrices defining the kth transformation
or the row or column permutation or simply the identity matrix. T), C), and D)

are the transformed T, D, and C after k transformations. All the submatfices are con-
formally paitioned. Let T) T, C) C, and D) D.

1.1. Transform C) to [0; C)] such that C) has full column rank:

[[T 1) T1)] D][0 0

1.. Transform T to
11

such that T
0

has full row rank:

(2)011

122
(2)
12(2)] [ --(2)]1

2
(2)

[o o

1.3. Transform D(22) [0]to D3) such that D3) has full row rank:

o
[o o

,-/-,(3) ,-/-,(4) ,/-,(4)1.4. Transform -22 to [122 ;0] such that 122 has full column rank:

0 T3(224) 133 D
[ 0 C C4,] 0



RESTRICTED TOTAL LEAST SQUARES 303

(5)](4) /- (5) (4) 13 (5) (5)1.5. Transform D3 to [,-,31 ;0] and C3 to such that D31 and C13 are non-
singular and upper triangular:

0

IT(5)
111

0

0

0

0

nl

12 T13 DI
,-r,(5)
122 0 0 0
,-r,(5) (5) (5)
132 T33 D31 0

(5) (5)]C12 C13
(5)C22 0 0

/72 n3 + d m3 p- m3

ml

n3+d
q-n3-d

m3 -- m m m2; n3 - n n n2

1.6. { check solvability ofRTLS problem )
If n m n2 < 0 then stop { RTLS problem not solvable.

e3; such that rank T-D/C) =< n }
Step 2. Combination of and Null( T DC).
If m3 0 then begin 2 - In3+ a; r - 0; go to Step 2.5 end
Ifn3+d=0thenbegin r--0;gotoStep2.5 end

r (5) ,-r,(5) (5)2.1. { Reduction of ,31 133 and C 13 to upper triangularform }
If m3 > n3 + d then begin

33 OT

(5)TH-’D31 QT

[LllO]n3+dH-- Qz
L21 L22
n3+d

E--LI; F--RT;
end

else begin
OlQ 

c
H=Qc [Nil0 NRl] m3

m3

(QR factorization

(QL factorization)

(RQ factorization)

(QR factorization)

FR,; G--R11

end
(5)-1 (5) (5)--1 vT2.2. { Compute the implicit 3-product SVD" D31 T33 C 13 UE

(JTE-IFG-1I?=diag(rl,...,rs) i_l>=ri i=2,...,s=min{m3,n3+d}, I7"6 orthonormal

ifm3>_n3+dthenU__QD[l 0 ]; V--- 17"
0 Im2-n3-a

else U- l)" V,,- Qc [ 17" 0 1 O’i--O
0 In3 + d-

for/= m3 + 1,

,n3+d
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2.3. { Compute . }
If not user determined, compute r by means of a user-defined rank determinator
Ro such that rank ([A- AA;B- A/])= m + n2 + r _--< n"

0"1 " O’r No O’r + O’n3 d

0
with/11 fit ui vthen q

0 i= +

Z4. { Compute a basis 2 of Null T53 D3C
Solve C)22 [Vr+ 1, Vn3+d] (back substitution)

2.. { Compute a basis 2 of Null (]b-/}/3 }
(5)// D ll [Ur+ 1, Us] diag (+ 1, ) 13 2

(5Ifml n > 0then solve 111 1 H (back substitution)
else compute minimum norm solution ofT21 Hand

Null(T) }
ifm > 0 then begin

.0][Q ] m’1 Rr,, Q7 (RQfactofization)
ml

solve RT, Ill H
21 ---- Q71211end

else Q72 In,

n3+d-r nl--ml

H1

n3+d

2.6. { Compute a basis Z of Null (T- D/C) }

[Z]n (2)Z--
Z2 d-QI)Q1 Q

(back substitution

(back transformation

Step 3. RTLS solution ’.

3.1. If m +//2 + r < n then begin

Z1 -t-- F1Z1; Z2 FlZ2
if(F1 /or F2 ,?c IorC In+d)andd> 1,
orthonormalize:

[ZII=QzRzz2 with QzrQz ln3+d-r+n-m,;

[Zl]
3.2. Perform Householder transformations Q such that:

Z2
Q=

0 r d
and Fax d upper triangular
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END

IfI’ nonsingular then begin {.RTLSproblem generic
solveXF Y (back substitution)
ifm + n2 + r < nthen-- F-{IF
end

else begin ( RTLSproblem nongeneric }
ifr =< 0 then stop { nongenericRTLSproblem not solvable
r- r- o o multiplicity of O"

ifr < 0 then stop { nongenericRTLSproblem not solvable
go back to Step 2.4
end

The following comments are in order:
Submatrices with zero row or column dimension may be annihilated, e.g., if

ml 0, then TI does not exist, nor do in Step 2.5 and Z1 in Step 3.
Step 2.1 of the RTLS algorithm, based on the canonical correlation computation

procedure of 6 ], reduces all three matrices involved in the three-product SVD to upper
triangular form ofequal dimension. In Step 2.2, the algorithm PSVD-2 of 6 can readily
be applied to find the implicit three-product SVD. For more details and an analysis of
the computational complexity, see [6]. An alternative method for computing the implicit
three-product SVD is described in 31 ]. The special case where D Ira3 reduces PSVD-
2 to the well-known generalized SVD algorithms [18], [20] for computing the SVD of
the product FG-1 implicitly. These algorithms are all based on an implicit Kogbetliantz

,,(5) r(5)approach and are suitable for parallel implementation. If, 3 I and ,3 I, the SVD
in Step 2.2 is simply the ordinary SVD.

The case m < n implies that linear dependencies exist between the columns of
[A; B]. Ifonly columns ofA are involved in the linear dependency, then the corresponding
rows in X cannot be uniquely determined. Statistically, this means that some linear
relations (or functionals) of the model parameters cannot be estimated. In this case, A
is rank-deficient and the RTLS problem will be nongeneric [26], [25].

If the RTLS problem is solvable and has a unique solution, the RTLS approxi-
mation is given by (/ is defined in Step 2.3)"

[A- AI;B- A] [A;B]-DC with ,= Q3)OzS)PzS)P2).

The n + d RSVs of (T, D, C) are equal to the n + d RSVs of (7,/3, ) be-
cause of the invariance of RSVs with respect to orthogonal transformations [32].
Hence, the n + d RSVs of (T, D, C) are given by the n2 + m infinite RSVs, the

(5) (5)
r/3 -t- d RSVs of (T 33 D3 w3 and n m trivial RSVs, to be considered as zeros
(n > m if Null (T) Null (C) 4: { 0 } ). The d smallest RSVs of T, D, C) are thus

(5) r(5)given by n m trivial RSVs and the d- n + m smallest RSVs of (233,
CI)). The latter are (made) zero in the RTLS approximation [A- ;B-A/]
(Step 2.2 ).

If the RTLS problem (3)-(4) has a unique solution/ or is one-dimensional
(d or the d smallest RSVs of ([A; B], D, C) coincide, then/ always has min-
imal II/ IIF and minimal II/ 112. Only if these conditions are not satisfied (i.e., d > and
a([A; B], D, C) r+ ([A; B], D, C) > r+a([A; B], D, C)), the RTLS algorithm
singles out a weighted minimum norm solution which still satisfies 3 but (4) is only
satisfied for the two-norm, i.e., the correction matrix/, corresponding to the computed
minimum norm solution 3, has minimal ll/ll2 but it is not guaranteed that [I/IIF remains
minimal (see also [23, p. 31]).
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The following theorem proves that the RTLS algorithm indeed solves the RTLS
problem.

THEOREM 4. Ifthe solution ofthe RTLS problem 3 )-(4) exists and is unique, the
RTLS algorithm solves the RTLS problem.

Proof. We use the notation used in the RTLS definition and the RTLS algorithm.
Formula (3) implies that there exist J nd such that (A z)J B A/, i.e.,

(13) { [A;]- [XA;zXI 2
O. { T-DC

--Id

Thus the matrix in curly brackets has at most rank n. Ifrank (T) =< n then 0 satisfies
(3)-(4) and [T; id]T Null (T), which is of dimension at least d. If rank (T) > n,
this must be accomplished by finding a matrix/ 4 0, reducing the rank of T- D/C
such that ]]F [IF is minimal and T- D/C has at most rank n. This/ is found as follows.
In Step 1, using only orthogonal transformations T- DC is reduced to
given by

(14)

0(5) (5) (5 (5)=rank (TI)) +rank (*22)+ rank (T33 --D31)/ll C13
=ml +n2+r.

The reduction of T- D/C of rank greater than n to rank less than or equal to n can
(5) (5)only be accomplished by reducing the rank of T33 D31 ,IC to r n ml n2.

.(5) (5)Since z)31 and C 13 are nonsingular, the matrix Ell with minimal [[/llllF is directly given
fr,,m *h VD ’f D(5)- 1T(5),.(5)-, r

31 33 %13 u olag (r,, Os)V by applying the Eckart-
Young theorem 12 ], i.e., the best lower rank r approximation D)- m(5)(5)-

33 t-13 ,11

that minimizes II/llllF, is given by/11 2/s’=r+ 10"ibli)f.
The RTLS problem has a unique solution if m + tt2 + r r/and e > yr+ 1. Then

/11 is the unique minimizer. Since II?llf must be minimal,/ is given by [l ]. From
this, [z; A/}] DC DQ3)Q’)ff,P5)p(21)C follows immediately. Since II/IIF
II?I[F, also satisfies (3). Since/ is known, the RTLS solution can now be computed
from Null T- D/C). Indeed from (13), R([2 r; I] T)

_
Null T- D/C). Hereto,

we first compute Null (7 -/5/() and then use the relation 2 e Null
Z QI’)Q2)Q4)2 e Null T- DC). Now, using (14) and partitioning

(7 6/d)2 0 equals

(5)

(16)

2= 20
2 n3+d

T()21 + (T() (5) CI))2o+(T})_DI (,)
ll ,2 --Dll ,l l)JllCl3 ),2 =0,

(2o=0,T22
() ( () _(5) ())22=0.(r3 -3)ic))20+(r. -l -I3
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,r(5)Since 122 is nonsingular, Z0 0. Since D 13 are nonsingular and using the SVD
(),()-of D3)- T33 t_. 13 and/ll, (16) also yields

F(5)- (5) (5) T (5)(31 T33 C[ -11)C’13 22=0 Z ffiHiVi C13 22=0.
i=1

Since the (n3 + d r)-dimensional space R([ I)r+ 1, l)n + d ]) _L R([/)1, l)r]),
(16) is satisfied if CI)2R([Vr/I, ,vn3+d]), or equivalently, 2
R C53 Vr / l, vn3 / a )- Hence, the (n3 + d r) basis vectors of Null 7 -/)/()
are given by

o
22 2J

o.z
as computed in Step 2.5 of the RTLS algorithm. These are the only basis vectors
of Null (7 /)/(2) if n ml. If n > ml, then n m extra basis vectors of
Null (i?-/)/(), corresponding to trivial restricted singular values, can be computed
from the RQ factorization of T I ), as follows:

,)2 0[RT,,’0]
QvT
QvT2 21 0 =R(2 m_ R(Q72).

Hence, the nl m extra basis vectors are given by [QTT2; 0] r, as computed in Step 2.5.
We then have

IZ1] n )QI2)Q4)Null -DEC) R Z <=> Null T- DISC) R(Z) with Z QI
Z2d

Since 3 satisfies (13) and the problem has a unique solution, it follows that the d-
dimensional solution space R([JT;- i]r) R(Z) Null T- DE’C). Since the problem
is solvable, Z2 is nonsingular and then -ZZ follows immediately (as computed
in Step 3.2). E3

If ffn-ml-n2 O’n-ml--n2+ 1, the solution is not unique. In this case, the dimen-
sion of Null T D/C) > d and r < n m n2 with r the largest value such that
fir > O’r+ This implies that any /11 = 7ii)T with fii - R([Ur+ 1, b/s]),
ar+ =< bi =< as and i R([Vr+ , Vn3+d]), S min {m3, n3 4- d}, will have
minimal IlElll2 ’n--ml-n (but no longer minimal [I/llllF if d > and the d smallest
RSVs of([A" B] D, C) are not equal, i.e., II/ll[lF > ;’i=, m, 2 + a/2" 1/2) The weighted
minimum norm RTLS solution, computed in Step 3, is obtained as follows. From
any basis

G2 d

ofa d-dimensional subspace in R zz2]), a RTLS solution= -G1G can be computed.
We have to find that 2 such that I1F1G1GIF2 IIF is minimized, i.e., find a basis

of a d-dimensional subspace in

R([ F1 Z1
f-1 Z2] )
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with minimal 1[1111F. As proven in [29], this minimum is found by performing
orthogonal transformations Q onto an orthonormal basis Qz (computed in Step 3.1 of
the considered range such that Qz is reduced to [v rr]" If the problem is solvable, then
F is nonsingular and (0 YF-1 has minimal ][(0- [[r-- liFlf[F2]iF. Hence,
F)F2 YF- or " F]-1 YF- F as computed in Step 3.2.

5;. Conclusions. Consider an overdetermined set of linear equations AX B, in
which the data [A; B] are assumed to be perturbed by errors of the form E* DEC, D
and C are known matrices, and E is an arbitrary but bounded matrix. The problem of
finding an estimate/ of E with minimal [[/ [[F such that ([A; B] D/C)[_x/] 0 is
solvable, is referred to as the restricted total least squares (RTLS) problem. Ifthe solution
of the RTLS problem is not unique, a weighted minimum norm solution is singled out.
By choosing D and C appropriately, the RTLS problem formulation can handle any
weighted least squares (LS), generalized LS, TLS and generalized TLS problem. Also,
equality constraints can be imposed. Moreover, RTLS allows to declare any column or
row of [A; B] to be error-flee and allows for correlations between the errors in the
remaining data provided the corresponding error covariance matrices are known, up to
a factor of proportionality. The RTLS algorithm, which solves the RTLS problem, is
based on the restricted singular value decomposition (SVD), a generalization ofthe SVD
for triple matrix products. This restricted SVD allows [A; B], D, and C to be rank-
deficient and avoids to invert or multiply the matrices explicitly. This guarantees the
better numerical performance of the RTLS algorithm with respect to the explicit trans-
formation procedures. Moreover, by first performing orthogonal transformations, the
RTLS algorithm only needs to compute the implicit three-product SVD of a smaller
submatrix, hereby improving its computational efficiency. Whenever the elements of E
have zero mean and equal variance, i.e., #(ETE) I, consistency of the solution of
RTLS problems where C [0; C2], C2 and D square and nonsingular, can be proven
under mild conditions. More general consistency results are not yet proven and need to
be further analyzed.
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ON THE INVERSE M-MATRIX PROBLEM FOR REAL SYMMETRIC
POSITIVE-DEFINITE TOEPLITZ MATRICES*

I. KOLTRACHT" AND M. NEUMANN"

Abstract. Necessary and sufficient conditions are obtained for a real symmetric positive-definite Toeplitz
matrix R to be an inverse ofan M-matrix in terms of its Schur coefficients. Related problems are also considered,
such as when such a matrix R can be extended to a higher-dimensional real symmetric positive-definite Toeplitz
matrix whose inverse is an M-matrix or, under less restrictive conditions on R, when only its Cholesky factors
are inverses of M-matrices. The proofs are constructive and allow the generation of such R’s with the various
aforementioned properties.

Key words. Toeplitz matrices, M-matrices, inverse M-matrix problem, reflection coefficients
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1. Introduction. Real symmetric positive-definite (RSPD) Toeplitz matrices, M-
matrices, and inverse M-matrices appear in a large variety ofapplications (see, for example,
Bunch [B], Willoughby [W], Berman and Plemmons [BP], Varga [V], and Young
[Y]). In this paper we consider the question of when an RSPD Toeplitz matrix is an
inverse M-matrix. In the study of RSPD Toeplitz matrices, certain parameters, often
called the reflection or Schur coefficients, appear in a natural way. These coefficients turn
out not only to have a physical meaning which we shall explain later, but to also be
useful in characterizing sign properties ofthe entries ofinverses ofRSPD Toeplitz matrices.

An RSPD Toeplitz matrix has the form R { rli_jl ) ,j=0, where, without any loss
of generality, it is assumed that ro 1. The corresponding Schur coefficients c, c2,

CN can be obtained, for example, via the Levinson recursion procedure as follows
(see [L] ).

LEVINSON ALGORITHM.
1. Set

(1) g0(0): 1.

(2)

2. For k 1, 2, Ncompute

and compute

(3)

k-1

Ck: , r+ gk- (j)
j=0

0 gk-(.k-- 1)

gk

gk-1 (k- 0

The vectors g, k 0, ..., N are the last columns of the inverses of R
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{ rli_jl }/k,j= 0 and yield the UDUT factorization ofR with

(4)

and with

g,(O)/g,(1) gN(O)/gv(N)

U=
0 6 ":" gw(W- i)/gN(W)
0 0

D=diag (go(0),g,(1), ,gN(N)).

As we are assuming that R is positive definite, clearly all the diagonal entries of D must
be positive.

Recall now that an n n real matrix A is a nonsingular M-matrix if A has
the representation

A =sI-B,

where B is an n n matrix whose entries are nonnegative numbers and s > 0(B) with
0(" denoting the spectral radius of a matrix. Of the many characterizations that can be
found in the literature (e.g., see BP], FP], V for a real n n matrix A with nonpositive
off-diagonal entries to be a nonsingular M-matrix, two characterizations are important
for our work here. The first is that A be monotone, that is, it must possess an inverse
whose entries are all nonnegative. The second characterization is that A possess an LU-
factorization with both triangular factors being nonsingular M-matrices themselves.

The inverse M-matrix problem can be stated as follows: Characterize those n n
nonsingular nonnegative matrices whose inverses are M-matrices. For several subclasses
ofthe nonsingular nonnegative matrices the inverse M-matrix problem has been partially
or completely solved. Willoughby [W] has given tight sufficient conditions on 0 < y <
x < such that if all the off-diagonal elements of a unit diagonal positive matrix lie in
(y, x), then the matrix is an inverse M-matrix. Markham [Ma] has characterized the
totally nonnegative matrices whose inverses are M-matrices. Lewin and Neumann LN
have determined a graph-theoretic characterization for those (0, )-matrices which are
inverses ofM-matrices. Finally, we mention that in Johnson J an overview and a survey
of the inverse M-matrix problem is given.

Returning to our present problem, namely, the characterization ofthe RSPD Toeplitz
matrices which are inverses of M-matrices, we see from (3) and (5) that a necessary
condition for R to be an inverse ofan M-matrix is that U is an M-matrix or, equivalently,
thatgk(i)=<0forallk= 1,..-,Nandi=0, 1,...,k- 1.

In 2 (cf. Theorem we give necessary and sufficient conditions for U to be an
M-matrix in terms ofthe Schur coefficients. The proof is constructive and allows efficient
recursive generation ofall RSPD Toeplitz matrices R whose Cholesky factor is an inverse
of an M-matrix.

For N _-< 3 (i.e., for matrices of size at most 4 4) the conditions of Theorem
also turn out to be necessary and sufficient for R itself to be an inverse of an M-matrix.
For N > 3 these conditions are no longer sufficient as a 5 5 example at the beginning
of 3 illustrates. We go on in this section (cf. Theorem 2) and give necessary and
sufficient conditions, again in terms of Schur coefficients, for an RSPD Toeplitz matrix
R to be an inverse of an M-matrix. The manner of our proof is recursive and thus is
typical of many other algorithms for Toeplitz matrices. It shows when a k k RSPD
Toeplitz matrix whose inverse is an M-matrix can be embedded as a leading k k
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principal submatrix of a (k + X (k + RSPD Toeplitz matrix whose inverse is an
M-matrix. This then gives us tools of extending, when possible, RSPD matrices which
are inverses of M-matrices to matrices with same properties, but of higher dimensions.

In 4 we consider a method (cf. Theorem 4) oftransforming a given RSPD Toeplitz
matrix whose Cholesky factors are inverses of M-matrices into an RSPD Toeplitz matrix
whose inverse is an M-matrix. The method is based on an observation that if Rk is an
RSPD Toeplitz matrix whose Cholesky factor is an inverse of an M-matrix and gk is the
last column of its inverse, then the vector gk,d [gk(0), g(k ), dgk(k)] r is the
last column of the inverse of a unique RSPD Toeplitz matrix R(d) whose Cholesky
factor is an inverse of an M-matrix. If, in addition, g(k (i -j)) is strictly less than
zero for those indices k/2 > > j > 0 for which (R i,9 are positive, then there exists
a minimal d, call it dmin, such that for any d >_- dmin the matrix R(d) is RSPD Toeplitz
whose inverse is an M-matrix. In a sense then it is shown how to construct an RSPD
Toeplitz matrix which is an inverse to an M-matrix and which is nearest to a given
nonnegative Toeplitz matrix.

The proof of Theorem 4 is, similar to the proofs of previous theorems, constructive
and leads to an algorithm for the generation of various RSPD Toeplitz matrices whose
inverse is an M-matrix of increasing sizes.

Finally, some consequences and possible applications of our results here are as
follows: (i) Due to a well-known relation between the last columns of inverses of RSPD
Toeplitz matrices and monic polynomials whose roots all lie in the interior of the unit
disk (see Theorem 3 and preceding references), Algorithm shows how to generate all
polynomials whose coefficients (other than the leading one) are nonpositive. Such poly-
nomials can be useful in the analysis ofstationary time series (see, for example, Robinson
[R and Makhoul [M]), as they correspond to monotonic time series. (ii) In Propositions
and 2 and Theorem we show that a necessary condition for an RSPD Toeplitz matrix

to be an inverse of an M-matrix is that the reflection coefficients are all nonpositive but
bounded away from -1. RSPD Toeplitz matrices play a role in the pressure wave prop-
agation in layered media (see, for example, JR] and Koltracht and Lancaster [KL2]),
and in the electromagnetic wave propagation in transmission lines (see, for example,
Kuznetsov and Stratonovich [KS ]), where the reflection coefficient between two layers
characterizes the change of wave velocity in adjacent layers. The fact that all reflection
coefficients are nonpositive corresponds to a situation where the velocity increases with
depth monotonically. The boundedness away from -1 characterizes media which allow
higher energy transmission into deeper layers. The important problem of the design of
layered media with prescribed properties at the boundaries which maximize transmitted
energy (solved for the continuous media in [KS, Chap. 4]) is an open problem for the
discrete case. Since the optimal medium has to be monotone, our results indicate that
the solution to this problem in the discrete case must be found among RSPD Toeplitz
matrices whose Cholesky factor is an inverse M-matrix.

2. RSPD Toeplitz matrices whose Cholesky factor is an inverse of an M-matrix. In
this section we characterize all RSPD Toeplitz matrices R { rli_jl } j =0 whose factor
G in the Cholesky factorization R GG is an inverse of an M-matrix. For this purpose
we mention that it is well known that R is RSPD if and only if the Schur coefficients
cl, CN computed via the Levinson recursion )-(3) are less than one in absolute
value. Using this recursion it is also possible to generate RSPD Toeplitz matrices by
choosing appropriate coefficients ck (see Koltracht and Lancaster KL as follows.
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Given r0 r rk- such that Rk { rli_jl } k-i,j o is RSPD and gk- which
satisfies Rk- gk- [0, 0, 7", choose any ckl < and set

i(6) rk Ck[- E rj+ lgk- l(j) gk- l(k-- 1).
j=0

Then Rk rli-jl )/k.j=0 is also RSPD. The vector gk can be computed via (3) and the
iteration can be repeated.

PROPOSITION 1. If R is an RSPD Toeplitz matrix and for k 1, 2,..., N,
gk(j) <- O,j O, 1, k 1, then rk >= O for all k 1, 2, N. If, in addition,
r > O, then rk > Ofor k 2, N.

Proof. Since c -r it follows that Cl =< 0. Suppose that for k > r >= 0,
rk-l >- 0. From (3), gk(0) (ck/( c))gk(k). But then, as gk(0) =< 0 and gk(k) > O,
it follows that Ck <= O. Thus rk >= O.

Assume now that r > 0 and, by induction, suppose that r2 > 0, rk- > 0. This
together with Rk- gk- ek- imply that gk- (i) < 0 for some < k 1. From (6) we
obtain now that rk > 0. This proves the proposition.

PROPOSITION 2. Let R be an RSPD Toeplitz matrix. Then gk(j) <= 0 for all k 1,
2, N andj O, 1, k ifand only if

(7) Bk<=Ck<=O, k= 1,2,-.. ,N,

where

(8) Bk max [_ gk-l(j--1) _gk-l(k--j--1)}j= 1, ,k-1 gk- l(k-j- 1)’ gk- i-( 1)

over all gk- (j :/: 0 or gk- k j 4: O.
Proof. It follows from the Levinson recursion algorithm, in particular (3), that

gk(O) [ck/(1 c)]gk(k) and hence ck -< 0. Forj 1, k we know that

gk( k--j) C Ck Ck)(gk-l(j--1) )gk-l(k-j- 1)

Thus the proposition holds if and only if the conditions ck --< 0 and the conditions

(9) gk-l(j-- 1)+Ckgk-l(k--j-- 1)=<0

and

(10) gk- (k-j- )+ Ckgk- l(j-- )0

hold for all j 1, k 1. Finally, conditions (9) and (10) are equivalent to (8).
The proposition is thus proved.

We remark that in the definition ofBl the set ofindices is empty which is interpreted
as Bl -c. Proposition 2 can be restated as follows.

THEOREM 1. Let R be an RSPD Toeplitz matrix. Then the Choleskyfactor ofR is
an inverse ofan M-matrix ifand only iffor k 1, 2, N, (7) and (8) hold.

The constructive proof of Proposition 2 shows how we can generate RSPD Toeplitz
matrices whose Cholesky factor is an inverse of an M-matrix from such matrices of a
smaller size.



314 I. KOLTRACHT AND M. NEUMANN

ALGORITHM 1.
1. Start with ro= and g0(0)= 1. Choose any -1 <Cl <-0. Set rl=--Cl

and compute

gl c2
2. For k 2,--., Ncompute

( gk- l(j--1) gk- l(k--j--1)}Bk max
j=,,...,k-, gk- ,(k--j--1) gk-iij--

over all gk-(j 4:0 or gk-l(k -j 4: O. Choose any Ck such that Bk <= Ck <= 0
and- < Ck. Set

rK=- c+ , rj+lgk-(j) g-l(k-1)
j=o

and compute

0 gk-l(k--1)
gk- (0) + Cgk= C-----k gk-

gk- l(’k-- 1) 0

3. RSPD Toeplitz rnatriees whose inverses are M-matrices. A well-known result
due to Fiedler and P{ak [FP] tells us that a necessary and sufficient condition for a real
matrix with nonpositive off-diagonal entries to be a nonsingular M-matrix is that it has
an LU-factorization with both triangular factors being nonsingular M-matrices. Thus the
conditions of Theorem are obviously necessary for the matrix R itself to be an inverse
of an M-matrix. For N =< 3, that is, for RSPD matrices whose order does not exceed
four, these conditions are also sufficient. For N < 3 this immediately follows from the
fact that any real symmetric Toeplitz matrix satisfies the equality

(11) JRJ=R,

where

0..-0 0

i ll

0 0

For N 3 the only entry to check is x (R1)2,1. Indeed

g3(3) g3(2) g3(1) g3(O)

RI= g3(2) Y x g3(
g3(1) X Y g3(2)
g3(O) g3(1) g3(2) g3(3)

Now x can be represented in terms ofthe g3(j)’s only by the use ofthe Trench recursion
(see Trench IT]) or its matrix equivalent, the Gohberg-Semencul formula (Gohberg
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and Feldman [GF]), which for the 4 4 case is given by

g3(3)

(12)

g3(3) 0 0 0 g3(3) g3(2) g3(
g3(2) g3(3) 0 0 0 g3(3) g3(2)
g3(1) g3(2) g3(3) 0 0 0 g3(3)
g3(0) g3(1) g3(2) g3(3) 0 0 0

0 0 0 0 0 g3(0) g3(1) g3(2)
g3(0) 0 0 0 0 0 g3(0) g3(
g3(1) g3(O) 0 0 ) 0 0 g3(O)
g3(2) g3(1) g3(0) 0 0 0 0

It now follows that

g3(O)
g3(1)
g3(2)
g3(3)

x g3 )gg(2)+g3(2)g3(3)-g3( )g3 (0).

Since g3 )g3 (0) >= 0 it will follow that x =< 0 if we can show that g3 3 >= g3 I. But
this follows from the equality

rlg3(O) + lg3( )+ rig3(2) + r2g3(3) O,

in which the first three terms are nonpositive, the last term is nonnegative, and 0 =<
r2 < 1. In fact, for any N we immediately deduce the following proposition.

PROPOSITION 3. Under the conditions of Theorem 1, g(k) > [g(j)[ for j O,
1, ,k- andk 1,2,...,N.

We remark that the Proposition 3 does not hold for general RSPD Toeplitz matrices.
For N> 3 the conditions ofTheorem do not necessarily imply that R is an inverse

ofan M-matrix. ForN 4 we can see this from the following example which we calculated
using MATLAB on the SUN-3/50 Workstation and which we generated by Algorithm 1.
The 4 4 Toeplitz matrix is defined by r0 1, r =0.21131896972656, r2
0.12334449623931, r3 0.34758334703019, and r4 0.13265249942545. Then

1.0000 0 0 0 0
-0.2162 1.0231 0 0 0
-0.0846 -0.1991 1.0266 0 0
-0.3501 -0.0215 -0.1815 1.0846 0
-0.0049 -0.3493 -0.0214 -0.1799 1.0847

while

1.1765 -0.1951 -0.0232 -0.3788 -0.0053\
-0.1951 1.2088 -0.1930 -0.3788--
-0.0232 -0.1930 1.0873 -0.1930 -0.0232|,
-0.3788 [0103961-0.1930 1.2088 -0.1951]
-0.0053 -0.3788 -0.0232 -0.1951 1.1765/

where the entries of matrices are rounded to four decimal places for easier visualization
which does not affect the signs of the entries.

Consider now the case N >- 4. Here we easily see that if a nonboundary entry of
R{l is positive, then the entry of R{ with the same indices is also positive. Indeed,



316 I. KOLTRACHT AND M. NEUMANN

recall that if Rk-l and Rk are real symmetric and invertible, then

+ ")/’k’)/’ ")/k

(13) R-l= gk( k)
T

3’k gk(k)

where ff [gk(0), gk(k )]. Thus if the i,jth entry of R[1 becomes positive,
then (R-l)i,j (R- 1_ 1)i,j + 1/gk(k))gk(i)gk(j) is also positive.

Using (13) we can, however, formulate necessary and sufficient conditions for
R to be an inverse of an M-matrix in terms of entries of R

_
l, R

THEOREM 2. An RSPD Toeplitz matrix R is an inverse ofan M-matrix ifand only
iffor k 1, N,

[k/21 i>j 0

where A ko Bk, 0] with Bk defined as in Proposition 2 and where
(2)(15) o,, l,

with o, o, being the roots ofthe quadratic

[gk- l(k-- i-- 1)gk_ l(k-j- 1)--gk_ l(k- 1)(R[ l)i,j]x2

(16) +[gk-l(i-- 1)gk-l(k--j--1)+gk-(j--1)gk-l(k--i--1)]X

+ gk- l(k- 1)(R[ 1)i,j+ gk- (i-- 1)gk_ (j-- 1)=0,

provided they are real and where A ifthe roots ofthe quadratic are complex.
Pro@ Observe that the condition Ck e A is necessa and sucient for gk(j) 0,

j 0, 1, k 1. It now follows from (13) that R1 is an M-matrix if and only if for
alli,j 1,...,k- 1,

R[ gk( i)gk(j)
O.)’+ g(k)

Using the Levinson recursion procedure (in paicular, see (3)), this is equivalent to

c)gk-(k- )(R[ 1),;

+[gk-(i-- 1)+Ckgk-(k--i-- 1)][gk-(j-- 1)+Ckgk-(k--j-- 1)] N0,

which is equivalent to having the left-hand side of (16) less than or equal to zero when
x Ck. Since the leading term of 16 is nonnegative this will happen if and only if (16)

(,) < (2) and o, N Ck 02.has real roots p, O ,j

Since R Rr and JR RIj we must test only those indices i, j for which
[k/2] > > j > 0 and the proof is concluded.

We remark that the verification of the conditions of Theorem 2 is quite compli-
cated and ceainly is not much simpler than just inveing the matrix Rk. However,
Theorem 2 shows how to obtain all existing extensions of a given RSPD Toeplitz ma-
tri Rk-, which is an inverse M-matrix, to Rk with the same propeies as by choosing
arbitra Ck Ak. We fuher comment that if for some index i, Bk --gk-( )/
gk-l(k- ), then the choice of Ck Bk implies that (R), (RL 1)i,, which is
the best possible in the sense that any other choice of Ck will make (R1 )i,j closer to zero
(which can be seen from (9) and (13)). On the other hand, for the bounda entries of
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R-1 we have that

gg(i)= _c(gg_ l(i- 1)+cggg_ (k- i- 1))

and hence the choice of

gk-l(i-- 1)
g,_ (k- i-1)

implies that g(i) 0, and hence B/ 0, which leaves only the choice c/ 0, and
so also ck / m 0 for m 1, 2, .... Thus if for some m, A/m does not contain zero,
then no continuation ofR is possible.

The remarks indicate the unlikelihood for an RSPD Toeplitz matrix, which is an
inverse of an M-matrix, to have high-dimensional extensions with the same properties.
This observation is supported by a large number of numerical experiments which we
have carried out with randomly generated RSPD Toeplitz matrices. It is also consistent
with the observation in Willoughby [W] that the likelihood for a nonnegative matrix to
be an inverse of an M-matrix decreases as the dimension grows. Large RSPD Toeplitz
matrices whose inverse is an inverse of an M-matrix do exist, of course, as the following
example illustrates. Let

a aN

R a aN-

aN a

be the Kac-Murdock matrix with 0 < a < 1. Then

-a 0

R_ -a + a2- a 0
--a2

0 a

Note that this example does not satisfy the sufficient condition in [W].

4. Construction of M-inverse RSPD Toeplitz matrices of increasing size. In this
section we consider the question ofhow to modify a given RSPD Toeplitz matrix whose
Cholesky factor is an inverse of an M-matrix into an RSPD Toeplitz matrix which is
an inverse of an M-matrix and which is related in some sense to R. If rj > 0, j
0, N, then it follows from a result of Johnson [J that one way to do this is to add
to R a scalar matrix dI with d > 0 sufficiently large. An interesting open question now
is: what is the minimal dfor which it is so? We suggest here a different sort of modification.
For that purpose we first introduce the following fact, known in the signal processing
literature as the Schur-Kohn criterion (see Robinson [R] and references there), which
is also a consequence of a more general result of Krein ([K]) concerning Hermitian
Toeplitz matrices.

THEOREM 3. Let R be an rspd Toeplitz matrix and let the vector g
[gk(0),-.-, g(k- 1), g(k)] be the last column of its inverse. Then the polynomial
g(k)z + + gk( )z + g(O) has all its zeros inside the unit circle. Conversely, if
bz + + blz + bo is a polynomial with real coefficients and all its zeros inside
the unit circle, then there exists a unique rspd Toeplitz matrix R such that the vector
[bo, bk_ , b is the last column ofR-
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We shall also require the following fact.
PROPOSITION 4. Let the polynomial p(z)= zk + ak_z- + + ao have

the nonpositive coefficients a_ ,..., ao and suppose that all its roots lie in the
interior of the unit disc. Then for any 0 <= c <= 1, the polynomial p(z) z +
a[a_ zk- + + ao] also has all its zeros inside the unit circle.

Proof. The zeros ofp,(z) coincide with eigenvalues of its companion matrix

0 0

A= ( 0"
cao cal ca_

Note that entrywise 0 =< A =< A A. Therefore, by a well-known result (see [BP],
for example),

p(A,)<=p(A),

where p(A) denotes the spectral radius ofA. The proposition is proved.
Note that the above proof does not generalize in a straightforward way for the case

when the coefficients have different signs. (It seems plausible, however, that Proposition
4 holds under more general conditions.) Combining Theorem 3 and Proposition 4 we
get the following corollary.

COROLLARY. Let R be an RSPD Toeplitz whose Choleskyfactor is an inverse of
an M-matrix and let g [g(0), gk(k)] r be the last column of its inverse. Then
for any d >= there exists a unique RSPD Toeplitz matrix R(d) whose Choleskyfactor
is an inverse ofan M-matrix such that the vector g,d [g(0), g(k- ), dgk(k)]
is the last column ofR-(d).

The natural question to address now is the following. Given an RSPD Toeplitz
matrix R whose Cholesky factor is an inverse of an M-matrix, is there a d >= such that
R(d) is an RSPD Toeplitz matrix which is an inverse of an M-matrix? If yes, then
characterize all such d’s.

THEORZM 4. Let R be an RSPD Toeplitz whose Cholesky factor is an inverse of
an M-matrix. Let

f=I(i,J) I]> i>j>O and (R-l),>O}
Then there exists a d >- such that R(d) is an RSPD Toeplitz matrix which is an inverse
to an M-matrix ifand only ifgk( k -j) < O for all i,j) f. In this case R(d) is
an RSPD Toeplitz whose inverse is an M-matrix ifand only if

(17) d>=max {1, g(k-(i-j))g(k)

Proof. The proof is based on the Gohberg-Semencul formula for R [GF], which
is similar to (12) (with k instead of 3 and in which entries of R are expressed in terms
of entries of g. In the symmetric case we have for > j,

(Rl);, [gk(k-i)g(k-j)+... +g(k-(i-j)- 1)g(k- 1)]
(18)

+g(k- i-j))gk( k) [g( i)g(j) + +g(i-j)g(O ].

If (R{)/.,j > 0 and gk(k (i j)) 0 for some > j then, clearly, (R-(d))i,
(R-)i, > 0 for any d. Suppose now that g(k- (i -j)) < 0 whenever (R{)i,9 > 0. It
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follows from 18 that

(R-l(d))i,j=(d )gk(k-(i-j))gk(k)+(R-)i,j.
Thus Rl(d) has nonpositive off-diagonal entries if and only if

(d- 1)g:(k-(i-j))gk(k)<-(R-)i,
for all > j such that (R-)i, > 0. Since JkR-l(d) R-(d)J it follows that only the
indices (i, j) f have to be tested. Vq

The result of Theorem 4 in conjunction with Algorithm can be used to generate
various M-inverse rspd Toeplitz matrices of increasing size. Indeed, the condition
g(j) > 0, j 0, 1, k can be easily incorporated in Algorithm 1. We obtain the
following procedure.

ALGORITHM 2. Let R_ be an RSPD Toeplitz matrix which is an inverse of an
M-matrix.

1. Compute g_ using the Levinson algorithm.
2. Compute B via (8) and choose arbitrary c such that B < ck < 0 and -1 < c.
3. Compute g using Levinson recursion procedure (see (3)). Thus g(k) > 0 and

g(j) < O forj O, 1, k- 1.
4. For [k/2] > > j > 0 compute R-(i,j) using the Gohberg-Semencul formula

18 and find

dmin max
(R: )i,j

u g(k-----(-i--)Sg(k)
5. Choose any d >_- drain and define gk,a [g(0), g(k ), dg(k)]. Then

R(d) is an RSPD Toeplitz M-inverse matrix and the vector gk,a is the last column
of its inverse.

We remark that Algorithm 2 is efficient and its computational complexity is of
order O(k2). Indeed, the Levinson algorithm for computing g_ and g is of order
O(k) while the computation of entries of R can be done recursively by the use of
(18), namely,

R- i, j) R- 1,j- 1) + g(k- i)g(k-j) g( i)g(j),

which also can be done in O(k2) operations. Finally, the inversion of R(d), ifnecessary,
is similarly of order O(k2) since the inverse of a Toeplitz matrix belongs to the class of
close to Toeplitz matrices for which O(k2) algorithms are well known (see Gohberg,
Kailath, and Koltracht GKK and references there).

Acknowledgment. We thank Dr. A. Bruckstein for useful discussions.
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Abstract. A new proof is presented of the existence of commuting tridiagonal matrices for a particular
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1. Introduction. Let M denote an N N real symmetric Toeplitz matrix, that is, a
matrix with entries given by

M(i, j) rli_jl, rk real, =< =<j =< N.
Such matrices occur in many applications. As a consequence, efforts have been

made to take advantage of their special structure in the study of their linear algebraic
properties. For example, fast algorithms for solving matrix systems of the .form Mx b
exist GY ], K].

In G and G2 ], Griinbaum addresses the eigenvalue problem My Xv for Toeplitz
matrices. His approach is as follows. Suppose M has the property that M commutes with
some symmetric tridiagonal matrix D which has simple spectrum (we will call such
tridiagonal matrices nontrivial). This implies that the eigenvectors of D are shared by
M. This reduces the problem to finding eigenvectors for symmetric tridiagonal D, a
problem which has been studied extensively and for which there exists an efficient tech-
nology Pa ], WR].

The difficulty, ofcourse, is finding the commuting matrix D. Not all Toeplitz matrices
M have such an associated D. In fact, in [G2 ], Grtinbaum classifies all such Toeplitz
matrices: up to an addition of some scalar multiple of the identity and multiplication by
an overall constant, they are of the form

sin a)(i-j)
(1) M(i’J)= rli-Jl sin ()(i-j)’

where a,/3 are free parameters. The associated nontrivial commuting tridiagonal matrix
D D(a,/3) is also given explicitly in [G2].

Let us remark on the form of the matrices given by ). Upon multiplication by
/3, then letting/3 -- 0, we obtain Toeplitz matrices M(i, j) sin (a)(i -j)/(i -j).
Thus M looks to be a discrete analogue of the finite convolution operator with kernel
K(x, y) sin (a)(x y)/(x y) studied by Slepian and Landau and Pollak in IS ]-
$5 ]. The analysis ofthis operator is facilitated by the existence ofa commuting second-

order differential operator.
In fact, the general matrix given by can be seen to be a discrete analogue of the

finite convolution kernel sin c(x y)/sinh b(x y) characterized in [G6] and [M] as
having a commuting second-order differential operator.
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This idea of finding a commuting operator to facilitate the spectral analysis of a
given operator seems to be a fruitful one and has been extended to many other contexts
(see, for example, [G3]-[G5], [P1], [P2], [Pel], [Pe2], [DS]).

In the process of trying to better understand the commutativity property of the
matrices given by ), we discovered a remarkable feature from which we can derive the
commutativity property described above, in a manner which we find conceptually simpler
than the calculations in G2 ]. Consider the semi-infinite matrices Mgiven by ). Then
the following result is true.

THEOREM. There exist two linearly independent, nontrivial symmetric tridiagonal
(semi-infinite) matrices A and B commuting with M.

The details appear below. But let us immediately describe how this theorem allows
us to prove the desired commutativity result forfinite Toeplitz matrices. Let PN denote
the semi-infinite diagonal matrix with PN( i, i) 1, <= <= N, zero otherwise. Then

MN PNMPN is a semi-infinite matrix whose only nonzero entries lie in the upper N
N block; and this is exactly the finite form of the matrices given in ).

Now consider matrices of the form aA + bB, a, b scalars. Nonzero aN, bN can
certainly be chosen so that

(aNA 4- bNB)(N,N+ )=(aNA 4- bNB)(N+ 1,N) O.

The resulting matrix has the form shown below.

Thus DN aNA + blvB commutes with Pu. By linearity ofcommutators, it also commutes
with M, hence with MN PNMPN. From the commutativity of MN and DN, it follows
that their upper N N blocks commute, giving the desired finite commutativity result.
We remark that the idea of "cutting off" a tridiagonal matrix into blocks by removing
corner elements has been used by us before in a similar context (see [Pe 1]).

After some preliminaries on properties of Chebyshev polynomials, we give explicit
formulas for the matrices A, B and aN, bN. In Lemmas 3 and 4 we demonstrate the
commutativity ofM with A and B, respectively.

2. Chebyshev polynomials. We will be considering the Chebyshev polynomials Tn
and Un of the first and second kind. A useful reference for their properties is MOS ].
We recall the following facts:

(I) To(X) 1, T(X) X; Uo(X) 1, U(X) 2X; and both Tn and U satisfy
the three-term recursion relation

2XPn(X)=Pn+(X)+Pn_l(X), n>= 1.
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(II) IfX cos 0, then Tj. and Uj. can be written as

Tj(X)=cos(jO), Uj(X)
sin (j + )0

sin 0

We will consider Toeplitz matrices of the form M(i, j) rti_jl, rt Ut_ (KX)/
Ut_ (X), K some real parameter (r0 0). Note that r can be rewritten as

Ut_ (K cos 0) U_ (cos 4) sin 0 sin (lO)
rt UI- (cos 0) UI_ (cos 0) sin sin (10)’

where cos h KX.
Thus these matrices are indeed of the form given by ).
We will need two lemmas about Chebyshev polynomials.
LEMMA 1. Define

[ Ut+z(KX) KUt+ _(KX)]c,- ?:;-+-;g2i-

Then

Ut(KX) KU+ _(KX)]D U(X) U+ (X)

tD+ Cl tD}- C}
(2)

where is an indeterminant, and

tCl + Dz tCf Df

D= U+z(X), Cf= U(X).

Proof. The desired identity follows from the single statement

CD+ CD O

and this, in turn, can be derived using the three-term recursion relation for Chebyshev
polynomials.

LEMMA 2. Define

[ KU+ _(KX) U+ 2(KX)]El-- U, +1 (X) fi7i

[ UI(KX) KUI+ (KX)]Gl=
U(X) U+ (X)

Then

t2Gl + tFt + Et tF-E
2El + tF+ Gl tE- F’

F’ Ul+ 2 (X), E Uz(X), and is an indeterminant.
The proof follows from the two identities GIE- EIF 0 and Et + F + G 0.
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3. The commuting matrices. We can now prove Lemma 3.
LEMMA 3. Let A be the semi-infinite symmetric tridiagonal matrix with entries

A (j, j) 2KTzj(X) 2,

A(j,j+ 1)=A(j+ 1,j)
Tzj+ l(X)+ 1.
X

Then A commutes with M, M(i,j) rli_jl Ui-j- (KX)/ Ui-- l(X).
Proof. Let Z - [A, M] AM MA. Then Z is obviously skew symmetric. Consider

Z(i, j), j > i. We have

Z(i,j) A(i,i- 1)M(i- 1,j)+A(i,i)M(i,j)+A(i,i+ 1)M(i+ 1,j)

m(i,j- 1)A(j- 1,j)-m(i,j)A(j,j)-M(i,j+ )A(j+ 1,j),

which equals, after rearrangement,

Uj-i-2(KX)[_];___ --- T2i+xl(X) Tzj ((X)]
Uj-i- I(KX)
U_ i- (X)

2KT2i(X 2KT2j(X)

U._(KX) + ,(X)

_
,(X) 1+ x Yc

We want to show that this expression is equal to zero. Using the recursion relation
2XT(X) T+ I(X) + T;_ l(X) we obtain (after rearrangement and introducing the
new index j 2)

UI+2(KX) KU1+ !(KX)]XZ( i, j) T2i+2l+5 ;’-i Ol+ (X)

[ Sl(gX) gSl+l(gX)]+ T2i+ 21+3 Ul(X--- Ul+ ii--
KUl + KX U1(KX ]-t- T2i+l
Ul+ 1(x) Ul(X----

KUI+ _(KX)"- T2i-1
Ul + l(X)

cIr2i+ 21+ -[- Dlr2i+ 2/+ 3-Dlr2i+ 1- C/T2i-1 --(* ),

where C, D are defined in Lemma 1.
We require (.) to be zero. Observe that for fixed K, l, X, this is a linear constant

coefficient difference equation, with characteristic polynomial

ClS2i + 2l + _[.. DlS2i + 2l + OlS2i + ClS2i 0

or, letting S2,
1+ 2[ tC+ DI] [tDl+ Cl] O,
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thus

tl + 2 tDl+ Cl) tD- C)
tCl + Dr) tC)- D))

by Lemma 1. Hence the characteristic polynomial can be rewritten:

tt+-[tC-D]+[tD)-C]=C[tl+3- 1]+D[t-tl+2]=O.
Multiplying by sin 0, where X cos 0, and using the trigonometric formula for Chebyshev
polynomials finally results in

(tl+3_ 1)sin (l+ 1)0+(t-tl+2) sin (1+3)0=0.

It is easy to check that e2i is a solution. Thus S ei; so y eij is a solution to
the recurrence equation (,) 0. Also, since the coefficients in (,) are real, Re ()
cos (jO) Tj. is also a solution. This proves Z(i, j) 0.

LEMMA 4. Let B be the symmetric tridiagonal matrix given by

B(j, j) K[ T2- 2 T2],

B(j,j+ 1)=B(j+ 1,j)=(T2a+,- T2_)/2x.

Then B commutes with M.
The proof parallels that of Lemma 3; we just record the relevant computations,

which appear:
(i) By multiplying through by 2X, it suffices to look at [B’, M], B’ given by

B’(j, j) K[ T2j- T2j + ],

B’(j,j+ 1)=B’(j+ 1,j)= Tzj+ - T2j-,;

(ii) The commutativity condition Z( i, j) B’, M] (i, j) 0 is equivalent to the
following recursion relation for Chebyshev polynomials (again, j 2):

T2l + 2i + El -k- T21+ zi + 3Fl + T2l + Zi + Gl + T2i + Gl + T2i- Fl + T2i- 3El= O,

where Et, Ft, Gt are defined in Lemma 2;
(iii) The recursion relation has characteristic polynomial

s2l + 4[ S4El-t- SZFl + Gl] -k- S4GI-t SZFl-t El] =0.

Letting S2, and using Lemma 2, this is seen to be equivalent to

+ 2[ tE}- F}] + tF}- E}] 0,

an equation for which e2i is a solution. The desired commutativity result is thus
obtained.

LEMMA 5. Let aN TN(X), bN UN(X). Then (aNA + bNB)(N, N + O.
Proof. We simply must show that

T2N+ l(X) q_ TN(X)+ UN(X)--O.x
But by using the trigonometric form of the Chebyshev polynomials, this reduces to a
trigonometric identity that is easy to verify directly.

COROLLARY. D(N) aNA 4- bNB commutes with MN PNMPN. Ilq fact, as the
reader can verify, the upper N N block ofD(N) is exactly the matrix given in [G2,
p. 301.
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UPDATING AND DOWNDATING OF ORTHOGONAL POLYNOMIALS
WITH DATA FITTING APPLICATIONS*

SYLVAN ELHAYf, GENE H. GOLUB:I:, AND JAROSLAV KAUTSKY

Abstract. New methods for updating and downdating least squares polynomial fits to discrete data are
derived and assessed using polynomials orthogonal on all the data points being used. Rather than fixing on one
basis throughout, the methods adaptively update and downdate both the least squares fit and the polynomial
basis. This is achieved by performing similarity transformations on the tridiagonal Jacobi matrices representing
the basis. Although downdating is potentially unstable, experimental results show that the methods give satisfactory
results for low degree fits. Details of new algorithms implementing the methods are given, the most economical
of which needs 14n + O( flops and 2n square roots to update a fit of order n.

Key words, updating, downdating, least squares, polynomial fits, discrete inner products, orthogonal poly-
nomials, Jacobi matrices

AMS(MOS) subject classifications, primary: 65D10, 65F30; secondary: 65D30, 65D32

1. Introduction. Updating and downdating are commonly applied to the decom-
position of an m n matrix X QR, m > n into orthogonal factor Q and upper
triangular factor R, when new rows of X are added or old ones removed. While the
original factoring requires O(mn2) operations, the updates need only O(n 2) operations.
In some applications the m m factor Q need not be stored but if it is needed it can be
saved in product form using O(mn) locations; Q and R therefore represent a powerful
data compression device. The up/downdating thus leads to savings in both computer
operations and storage.

Updating is usually done by perfectly stable orthogonal rotations. Downdating a
row ofX can be achieved by rotations if we know the corresponding row of Q (see 7 ).
Downdating can also be done by hyperbolic rotations 6 ], the condition ofwhich depends
on the data. Hyperbolic rotations (called hyper-rotations here) and the stability ofdown-
dating have attracted some attention in the literature [1], [14], [2], and [11].

In the context of polynomial least squares data fitting, the techniques mentioned
above apply if we use a fixed polynomial basis to represent the required fits. The matrix
X is then a Vandermonde-like matrix of the values of the basis polynomials at the data
points.

The choice of the polynomial basis strongly influences the stability of the compu-
tation. Thus a basis chosen to suit some given input data may be inappropriate once
more data points are added or existing data points are removed. For every data set there
is, however, a natural polynomial basis--the polynomials orthogonal on that data. This
then leads to the problem ofadaptively up!downdating the orthogonal polynomial basis
together with the coefficients of the least squares fit. The solution of this problem, rather
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than the up/downdating of the QR factorization, is the central task of our paper, which
is organised as follows.

In 2 we define the problem in detail and in 3 we derive some well-known properties
of orthogonal polynomials expressed in matrix notation. The presentation is essentially
self-contained: we find it easier--and possibly instructivemto prove the properties in
question rather than to quote the facts and to translate them. The inspiration for this
approach stems from the works of Wilf [15] and Golub and Welsch [8] and has been
already used by the authors extensively (see, e.g., [10] for further references). Some
preliminary work in this area was also done by Parker [16].

Section 4 deals with updating methods. We begin with the details of the updating
and downdating problems in terms of the chosen representation.

Theorem 4.1 in 4.2 gives a constructive characterization of the solution based on
orthogonal similarity. This is a special case of the technique, widely used in numerical
linear algebra, which transforms a symmetric matrix into a similar tridiagonal matrix.
In this instance the transformation is achieved more economically by rotations than by
elementary Householder matrices because of the structure of the problem. This idea is
due to Rutishauser [13] and more recently has been treated by Gragg and Harrod [9]
and Boley and Golub [3].

In 4.3 we present methods which bear the same relation to those in 4.2 as the
LR factorization does to the QR factorization, i.e., the orthogonal similarity is replaced
by a triangular similarity. We call the methods Lanczos-type methods because the con-
struction of the similarity follows the same lines as the Lanczos method. Two special
Lanczos-type methods are derived in 4.4 and 4.5. The first, based on determinantal
relations of Rutishauser 12 ], is the most computationally economical algorithm for
updating the basis but is not well suited to updating the least squares fit. The second,
based on the special structure of the similarity matrix observed in 5 ], leads to the most
economical of all the algorithms here.

All the methods mentioned so far produce a representation of the least squares
polynomials of all possible degrees, including the maximal degree polynomial fit that
interpolates the given data. Limiting the calculation to produce all fits up to some pre-
scribed lower degree introduces new aspects ofthe problem which are dealt with in 4.6.
For example, updating by a data point which is new to the full data set may be equivalent
to updating by a point which already belongs to the (different) data set associated with
the currently held representation. Effectively this means changing the weight ofan existing
data point. Theorem 4.2 in 4.7 characterizes the existence ofthe solution to the updating
problem for this situation.

Section 5.1 defines the downdating problem and 5.2 introduces downdating meth-
ods which are closely related to the updating methods of 4. In addition we give in
Theorem 5.1 of 5.3 a downdating which is based on the reversal of the orthogonal
rotations method. This leads naturally in Theorem 5.2 of 5.4 to conditions for the
existence of the downdate. Essentially, downdating is possible if the weight involved is
sufficiently small; for larger weights it may be necessary to reduce the degree of the
polynomial fit.

Algorithmic implementations of the up- and downdates by the four methods are
given in 6 together with their computational complexity. In addition a version of one
ofthe algorithms, scaled to avoid overflow when adding a data point outside the current
data, is given in 6.3.2.

Finally, 7 demonstrates the methods by computing a moving least squares poly-
nomial fit to noisy data. Both the computed least squares polynomial and its represen-
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tation, as generated by the different methods, are briefly examined and compared with
accurately computed results. These limited tests indicate the following:

(a) Although the accuracy deteriorates as the degree ofthe fit increases, the methods
are satisfactory for low degree polynomials.

(b) Computational complexity and convenience, rather than other considerations,
are the main determinants in choosing between the four methods.

2. The problem.
PROBLEM (weighted least squares data fitting). Given the discrete data

find polynomial q of degree n such that
N

(2.1) E w(yj-q(xj)) 2

j=l

is minimised.
Suppose YN+I is obtained from YN by augmenting a new triplet of data. Solving

Problem for YN+ assuming the knowledge of its solution q for YN is called updating
the least squares fit. Conversely, solving Problem for YN assuming the knowledge of
its solution for YN+I is called downdating. In other words, updating and downdating
means modifying the solutions of Problem when one data set (triple) is added to or
removed from the data.

The importance of updating and downdating is threefold:
Problem can be solved by updating, starting from the trivial solution for N

(taking into account obvious restrictions on discreteness of xj’s and relations between
n and N).

Using downdating and updating we can calculate "sliding" least squares fits--
include new measurements and discard old ones or even change the weights of selected
data sets.

Using suitable representation of the solutions we do not have to storewor refer
to--data already used.

The key word here is representation. We choose to represent the least squares fit q
by the coefficients of its expansion in terms ofthe polynomials orthonormal with respect
to the discrete inner product

(2.2)
N

[f,g]w Z
j=l

where we have denoted WN Xj, Wj )jN= 1. We need therefore to consider also the following
problem.

PROBLEM 2 (discrete orthonormal polynomials). Given the discrete data WN find
polynomials Pk of exact degree k, k 0, 1, ..-, n such that

(2.3) [Pi, Pk] WN iSiS, i, k 0, 1, n

where 4: k implies ik 0 and ii 1.
Here we choose to represent the orthonormal polynomials by the coefficients of the

three-term relation which they satisfy. This representation has several advantages, say in
comparison with standard powers expansions:
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It allows for stable evaluation of the values of the polynomials and other manip-
ulations with them.

It is concise--for Problem 2 we have 2n values representing 1/2 n 2 power coefficients
of p0, Pl, Pn. For Problem it appears generous to use 3n values to represent one
polynomial but these 3n values give all least squares fits up to degree n.

Using matrix notation the Problems and 2 can be re-formulated, in the terms
of the chosen representation, as problems in numerical linear algebra. This gives a new
insight into the existing methods and leads to simple derivation of both old and new
algorithms.

We note that the comments on the importance of updating and downdating made
above with reference to Problem apply equally to the Problem 2.

3. Matrix notation and basic relations. For any vector of functions u
(b/l, Un T (1)1, /)m) T and scalar product [., ], discrete as in (2.2) or a
continuous one, we denote by u, v ] the constant n X rn matrix with elements ui, v].
Some obvious rules apply--for example, if A and B are constant matrices of suitable
sizes then

[Au,vrB]=A[u,vr]B,
which we shall use freely. Furthermore, we denote by I1" the Euclidean vector 2-norm.

For any polynomials pj. of exact degree j, j 0, 1, n, there exists a unique,
constant, lower Hessenberg matrix J and scalar /n such that, for any t,

(3.1) tp,(t) JPn(t)+ nPn(t)en

where we have denoted Pn (P0, Pl, Pn- r. Here, as elsewhere, ej is thejth column
of an identity matrix with appropriate dimension. The matrix J is unreduced, i.e., its
superdiagonal elements/. el+ 1Je,j 1, n 1, together with n, do not vanish.

Given an unreduced lower Hessenberg matrix J and nonzero scalars P0 and fin, the
polynomials Pl, P2, Pn can be determined recursively from (3.1). We call J the
recurrence matrix for polynomials Pn, Pn; because of the one-to-one correspondence it
can be used to represent the polynomials.

The polynomials Pn, Pn will be orthonormal with respect to a scalar product [.,
(such as, for example, the scalar product [., "]WN in (2.2) corresponding to the data
WN) if

(3.2) [pn, PT] In, [Pn,Pn] 0, [p,pn] 1.

Combining (3.2) and (3.1) we now have

[tPn, PnT] [JPn, PnT] + nen[Pn, PnT] J,

from which it follows that, the matrix on the left being symmetric, the recurrence matrix
J for orthonormal polynomials must also be symmetric and thus tridiagonal.

The Jacobi (symmetric, tridiagonal, unreduced) matrix

0 0
0/2 /2 0

3 i’" 0

( 0 an

has real distinct eigenvalues, say 1, Xn. From (3.1) it is immediate that all eigenvalues
), are roots of Pn and pn(X) are the corresponding eigenvectors. So denoting P
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(Pn(XI), Pn(X)) and A diag (X1, X.), we have

JP PA.

As J is symmetric, P has orthogonal columns (PTPA ApTp implies PTP is diagonal).
Denoting D diag (vl, v2, u.) where

l)j--(pn(kj)Tpn(j)) -1/2 j= 1,2, ,n

we have

(3.3) prp= D-2.

Thus PD is orthogonal and

(3.4) pD2Pr= I.

This shows that the polynomials Pn, orthonormal with respect to some scalar product
(such as the one in (2.2)), are also orthonormal with respect to the discrete scalar product
[’, "]w, given by the data W, { Xj, uj } 1. Finally we note that

(3.5) e(PD=(u, ,’,,)Po,

which allows for the recovery (apart from signs, which are not relevant) of the scaled
weights u9 from any set of normalised eigenvectors of J.

Turn now to the least squares fit Problem with data YN. Define YN :=
(Yl, YN)T. Let PN be polynomials orthonormal with respect to the inner product
(2.2) and denote by JN, PN, DN the matrices J, P, and D above. For any polynomial
q IINTdN with coefficients dN (do, dN-1)T the quantity (2.1) to be minimised
is (we note that for XN (Xl, XN) we have q(Xu) pNTd)

(3.6)

[Y-q,y-q]wu [[DN(YN--q(XN))[I 2

ON(YN-- Pvd )]l 2

PuO uYs-- dll 2,

the last equality being a consequence of the above observation that PNDN is orthogonal.
Now choosing du PNDZNyN gives the solution to the interpolating problem for the data
YN as the expansion in the polynomials orthonormal on WN (the weights are not important
in that case). However, from (3.6) it follows that for any n < N, ]n (d0, dn_ 1,

0, 0, 0) gives the solution to the least squares fit problem by polynomials of degree
less than n. The shortened vector d (d0, d_ is now given by

(3.7) dn Pn,ND2NYN

where Pn,N is the matrix comprising the first n rows of PN.
The solution to the Problem 2 is now given by the first n diagonal elements a l,

an and n off-diagonal elements/31, ,/3,_ of the matrix Ju (we may denote the
submatrix J,) which together with the zeroth moment #0 v-- w 1, w,, represent
the first n orthonormal polynomials pn. The solution to the Problem is then given by

T
#o, Jn, and d n, for which q d p,.

The evaluation of q(t) can conveniently be done in two ways. Denote by

(3.8) K(t)p.(t) po(t)el



332 S. ELHAY, G. H. GOLUB, AND J. KAUTSKY

the system of equations defined by the first n rows of the n + equations in

(Jn tI)
P"(t)=

Given the vector dn, the approximating polynomial q(t) can be evaluated at a point by
a forward-substitution on (3.8) for Pn and then an inner product with d

A second more direct way is the Clenshaw recursion in which we have

q( t) poe y

where y is the solution obtained by a back-substitution on the system

K(t)Vy d..

4. Updating methods.
4.1. A reformulation of the updating problem. The problem of updating is now,

with respect to the representation of the solutions introduced in 3, as follows.
Given
(a) uo > 0,
(b) J, a Jacobi matrix of size n,
(c) a vector d,,
(d) an integer ri n or n + 1, and
(e) a triplet { x, w, y }

((a), (b), and (c) representing the solution of Problem for some data set YN), find
0, a, and a representing the solution for the data set YN { X, W, y }.

We have formulated the updating problem only for Problem lthe corresponding
version for Problem 2 is obtained by omitting the coefficients d and the function values.

As we shall see, the data set YN does not enter into the calculations; it is of course
important for the formulation of the problem and for the following brief discussion of
the existence and meaningfulness of the solutions.

The solution of the updating problem always exists for t7 n. Requiting that with
an update we can increase our matrix size to n + implies that N n, that is that
the points x of YN are the eigenvalues j. of J,. The increase is then possible if and only
if x is not one of the Xj’s.

Finally, as the solution for the one-point set Y { x, w, y } is trivially

u0 w2, J (x), do Yl wl,

we can indeed use updating (with ri n + to build up the solution to Problems and
2 for any values of n and N without storing the data set YNaS long as we increase n
only in the beginning of the process.

4.2. Rotation method. To describe the solution of the updating problem, we will
temporarily deal with the case n Nand i N+ 1. We denote here WN (W, WN)
the vector of weights and AN diag (x, XN) the diagonal matrix of the points of
our data set. We also introduce

fiN /i!0(u) (W21 -’’" -- WV)1/2 IlwulI.

The following theorem now gives the solution of the updating problem.
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THEOREM 4.1. Given ru, Ju, and du for the data YN and also the triple
the solution for Yv/ Y { x, w, y } is

(4.1) JN+ Q
0r

Q

(4.2) bN+ = (a+ w) /2,

(4.3) ,N+I Q(dN),wy
where the orthogonal similarity matrix Q is uniquely determined by requiring u+ tO be
tridiagonal and Q to satisfy

(4.4) Q(NI + WN+ N+ 1"

Proof. Denoting QN PNDN of 3, we have JN QNANQ and, from (3.5),

 Ne QN=W .
Similarly, L+, ON+, AN+0+ and U+ eOu+, W+. Noting that AN+,
diag(AN, x) and w+ (w, w) (A and w escalate), we see that substituting for
Q with

(4.5 

verifies (4.1) and (4.4). The norm-preserving propey of (4.4) leads to (4.2), which is
consistent with the definition of.

Turning to the Fourier coecients we have from (3.7) that

QD and + ON+ N+ IN+ 1,

where again DN+I diag(+l) diag(D, w) and + (Yl, Y, Y)
(, y) escalate. Thus

(4.6) tiN+ = ON+ ON+ Q
wy wy wy

proving (4.3). It is well known that the ohogonal similarity Q transforming the given
matrix in (4.1) into an upper Hessenberg matrix Ju+ is fully determined by its first row
Qre 1/N+I(ffNI + WN+I), as specified in (4.4).

For algorithmic implementation Q is constructed as

(4.7) Q=RNRN-I "RI
where Rj is a rotation between the jth and (N + )st rows, j 1, 2, N. The first
rotation R achieves (4.4) which, by definition, will not be affected by the subsequent
rotations; these are determined so that in the intermediate matrices

Kn RnRn- RaR r

the first n elements of the last (i.e., (N + )st) row vanish. An inspection shows that
K is tfidiagonal up to the last row and column which has nonzero elements only in nth,
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(n + )st, and (N+ )st positions (so that JN+ KN is indeed tridiagonal). Furthermore,
the step Kn + Rn + 1KnR nT+l involves, besides the last row and column, only:

The nth off-diagonal element of Kn to determine the rotation R+ and its new
value in Kn+,

The (n + )st diagonal and off-diagonal elements to determine their new values.
These observations lead to the following corollary.
COROLLARY 4.1. The size n leading submatrix OfN+ is the leading submatrix

ofK and only the size n leading submatrix J, OfJN and the triple { x, w, y } are needed
to determine rotations R, Rn and. Similarly, only thefirst n elements oftiN and
the rotations R, R, are sufficient to obtain thefirst n elements OfdN+.

4.3. Lanczos-type methods. The method we wish to describe now is a modification
of the Lanczos method where the orthogonal matrix Q is essentially replaced by a lower
triangular matrix (it has been described and called LTLmthe lower triangular Lanczos
methodmin 10 ). We shall describe it here again for two reasons. First, unlike the case
in [10 ], we deal here with polynomials orthogonal with respect to afinite discrete scalar
product. Second, we use it as a starting point from which to derive two new methods.

Let us assume, as before, that the polynomials Pn, Pn, orthonormal with respect to
[’, "]vN, satisfy the three-term relation

(4.8) tPN( t) JNPN( t) + NeNPN( t).

We note that Pn cannot be normalised by the scalar product (recall from above that
Xl, xn are eigenvalues ofJN and thus roots ofPN) because [Pn, f]WN 0 for any f.
The fiN can be chosen in such a way that PN is, say, monic. This is not necessarily a good
choice for numerical calculation (which is in fact independent of fiN) but is convenient
for the present discussion. We are now seeking the Jacobi matrix JN+ for the polynomials
N+ 1, PN+I orthonormal with respect to [., ]WN+IO They must satisfy

(4.9) t}u+ l(t) aU+ lU+ (t)+ fiN+ eu+ 1/SU+ (t).

Obviously (3N+ being again chosen to make/u+ monic),

fiN+ (t)=(t--XN+ )PN(t),

SO that by denoting pu+ (pu, PN) we obtain

(4.10)

where

tPN+ (t) Ju+ PN+ (/)+ eN+ 1/N+ (t)

JN flNeN )JN+ oT XN+

There exists a constant nonsingular lower triangular matrix L such that

(4.11 PN+ LN+ 1.

By substituting (4.11 into (4.10) and comparing it with (4.9), premultiplied by L, we
obtain immediately

(4.12) Ju+ 1L=LN+ , du+ leNT+ 1Leu+ ,= 1.

Denoting the elements ofaN+ similarly as in Ju and v;. Lej the columns ofL, we have
from (4.12 the recurrence

(4.13) (1--j,N+I)Vj+I+jVj+’-IVj-I(1--jl)--JN+IVj, j= 1,2, ,N+ 1.



UP/DOWNDATING ORTHOGONAL POLYNOMIALS AND DATA FITS 335

As discussed in detail in 10 ], JN+ can be explicitly constructed by evaluating alternatively
its elements and the columns ofL using the fact that evj 0 for k <j (clearly analogous
to the Lanczos method) and from the knowledge of v l.

It remains to show how to find v Lel for this particular case. We have

(4.14) MN+ 1"-- [PN+ 1,Pv+ 1]W+ 1--" LLr
so that, with Pl erLel e lTVl, we have

(4.15) PlVl LLTel [PN+ 1,PO]WN+

(4.16) =el +PoW2N+ IIIN+ I(XN+ 1),

which determines v explicitly.
We remark that this LTL method, described and devised here in matrix notation,

is equivalent to the modified Chebyshev’s algorithm discussed in [4, p. 295 and suffers
the instabilities mentioned there, particularly when the knots xj- are uniformly spaced.
As the rotations method provides stable answers, it is not likely, however, that the un-
derlying map itself is ill conditioned (as suggested in [4]) but only the LTL method is
then unsuitable. We note that the elements rkl of (2.12) in [4] are indeed those of
L r as

LT-[N+ 1, NT+ llwN+ LT-- [N+ 1, pNT+ llwN+ 1"

We will now show that we can proceed with the recurrence constructing IN+ using
the diagonal and subdiagonal elements of L only.

Denoting

v.= (0, ..-,0,o,r., ...)r
j-1

we obtain, for tridiagonal JN/ 1, from (4.13 taken elementwise,

(4.17) ._,O_,=ef_lN+lV=t39_lO, j=2,3, ,N+ 1,

(4.18) JPJ+J-lrj-l-efJN+lVJ--{ ajpj’4-fljT"j’xON+
1,

j=I-<j<=N’N+ 1,

N+ lION+

the last equation coming from (4.12).
Unfortunately, we cannot generate the o and rj using (4.13) without calculating

the other elements of L, too. In the next two sections we present two other ways to
determine o, r without using (4.13 ).

Turning now to the updating of the Fourier coefficients d, we have

(dN+ W2yIN(X))(4.19) L]N+ 1"-" wZypN(X
by a calculation which parallels (4.6). The updated coefficients can be found by a forward
substitution.

4.4. Solution by determinants. In this section we derive formulae (see 12]) for
the p and ry from subdeterminants of the Gram matrix of modified moments Mn/
of(4.14).
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and

so that

Let us denote (Choleski decomposition escalates)

=LkLkMk [IIk, P]WN/, m #k

We have, generally,

Lk-I O)Lk r Pk

det (Mk) det (Lk)2= p21p."

(4.20) Ok (det (Mk)/det (Mk-1)) 1/2, k 2,3,

while

01 MI/2.
We now derive an explicit expression for r. Defining two k k + selec-

tion matrices

S=(Ik O) =(Ik-1 0 O)0 T 0

we have

and

JIlk Mk+ ST= ( Mk- lm[+ ink)

Lk+ 1L+ sT (Lk-
tk+ Ok+ r Ok 0

in which, the last columns not contributing, the right-hand side is a product of two
triangular matrices. Taking determinants, we have

det (2Qk) o2o "o]-lOkr,

from which

(4.21) rk det (2Ok) det Mk det Mk 2.

So far we worked with general Mk, that is the Gram matrix ofthe "old" polynomials
p with respect to the inner product determining the "new" orthogonal polynomials. In
this sense, the above formulae could be used to improve the LTL method of 0 whenever
the above determinants are obtainable. This is the case in the present situation as

[f, g] wN+ ,= [f, g] wu + WZN+ if( XN+I )g(XN+l

so that

(4.22) Mk Ik + UkUk
T

where Uk WN+ lPk(XN+ 1)-Denoting ffj WN+ lPj-I(XN+ 1), the jth element of Uk,
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j =< k and independent of k, we have also

mk CkUk-
and

#k--l+p

=(IWUk-lU-I TMk
k+ lUk

By a well-known formula

det
C

so that we now have

lkUk )-1

DB ) det D det (A BD-lC)

(4.23) det(2rk)=ffkffk+l det I-k Uk_ ll_ kUk_ k. U T_ /k/k. kk+

Of course, the other determinant follows easily from (4.22)"

(4.24) det (Mk) +u[ug +ff21+ff+.--+ff].
To update the Fourier coefficients we need to solve (4.19). The fight-hand side is

known because w:yps+ l(x) wyus+ 1. By transposing (4.12), one can derive a recur-
rence for the rows of L which is similar to that in (4.13) for the columns of L but with
J and J interchanged. The forward substitution can thus be performed as the elements
of] are obtained (see algorithm TLD in 6.3.1 for details).

4.5. Solution using the special form of L. Although the calculation of the new
Jacobi matrix by the method in the previous section is convenient, the computation of
the rows of the L matrix requires O(n:) operations while other methods need O(n). As
pointed out in 5 ], the matrix L, being the Cholesky factor of a rank-one update to a
diagonal matrix, has a special form. We exploit this property to calculate the updated
Fourier coefficients more efficiently. In fact, the special form ofL leads to a new method
which we now describe.

From (4.14) and from (4.22), we have
T(4.25) LLr=MN+ =diag (IN, O)nUUN+ IlIN+ 1"

The form referred to in [5 is special in that the subdiagonal elements of the factor L
are the elements of the strictly lower triangular part of a rank-one matrix. Comparing
the elements of (4.25) we have for j < k

e[Lej qj,

where the diagonal elements pj of L and qj must satisfy

(4.26) 2 2
p2 j,N+1 -- (q + q2 +... qj-1 )),

(4.27) PJqJ= 9(1 _(q2 + q + + q_
We can therefore evaluate oj and rj alternatively and this is sufficient to proceed with the
recurrence in (4.17) and (4.18 for which we need oj and the ratio

/+ 1/(1-(q2 +q2+ +q]-l))
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The forward substitution for the Fourier coefficients now simplifies significantly to

=1

where the sum is accumulated through the process. In the algorithmic implementation
shown later, we save some operations by rearranging the recurrences in (4.26) and (4.27)
to compute zj. (q2 + q22 + + q]_ ) rather than qj.

4.6. Updating a partial matrix. The four methods in 4.2-4.5 were described for
the case when n N (see the formulation in 4.1 ). For practical purposes we are mostly
interested in the situation where n (( N. We have already pointed out in Corollary 4.1
( 4.2) that when updating by the rotations method it is sufficient to store and use the
submatrix Jn of JN (corresponding to WN) of size n < N to calculate the submatrix Jn of
aN+ (corresponding to WN+ WN L) XN+ 1, WN+ ). The same observation applies
to the other three methods of 4.3-4.5 because of their forward recurrence character.

It is worth noting that, once a restriction to some size n has been adopted, further
increase is not meaningfully possible, i.e., to represent the full data set YN. In fact the
partial solution of size n < N may be visualized as representing a class of data sets, the
smallest ofwhich is the Gauss quadrature corresponding to the matrix J, (its eigenvalues
as knots, etc.) and the function values ofthe least squares fit polynomial at the quadrature
knots. Any increase in the size of J. (i.e., any increase in the degree of the least squares
polynomial fit) then corresponds to augmenting the new data points to this minimal
data set.

4.7. Changing the weight of an existing data point. Theorem 4.1 was derived
under the assumption that the knots xj in YN+ were distinct. We now discuss what
happens when x is equal to one of the knots in YN, say x XN. Let us consider (as
in Theorem 4.1 the size N solution JN, N for the data YN+ { Xj, Wj, yj JV=+ll where
{Xu+ 1, Wu+ l, YN+I } {Xu, W, y} for some w and y. The limit of such a change will
correspond to the solution for the data set YN { Xj, j, }= where

(4.28)
j wy, j yy, j 1, N- 1,

N W2N -" W2,
(4.29) fiu=(wZuYu+ wZy)/(wZN+ W2).
To see this note that (4.28) is obvious from the definition of ’U and implies that the
limiting au corresponds to Iu xy, j }jU= independently of. Denoting (as in (3.7)
for YN+ 1)

we now have

PN,N+ P PN(XN) PN(XN+ ),

dN-- PN,N+ 1Dv+ lYN+

pD2N lYN-1 -- W2NYNPN(XN) "ql- W2N+ lYN+ lPN(XN+

so that in the limit,

]N’-- pD2N lYN-1 -( W2NYN" w2y)PN(NN),

from which (4.29) follows directly.
We thus have a situation similar to the case discussed in 4.2.
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THEOREM 4.2. Given fiN, JN, and tiN for the data YN and also { x, w, y }, where
x XN, the solution for u is

JN QJNQ T,

(4.30) ’N ffV qt_ W2 112,

IN-- Q(dN AI- 12N ;N-- WNYN)qN),

where the orthogonal similarity matrix Q is uniquely determined by requiring Ju to be
tridiagonal and

Q( O’Nel at- ;N-- WN)qN) TNel
Here [IN is the eigenvector ofJu corresponding to XN, scaled to have norm one and a
positivefirst element.

Proof. Denoting again Ju QNANQ with aNQce WN we require that Ju
ONANOI with NOVel N-- WN -at- (]U- WN)eN. Thus JN-- QJNQT with Q
ONQ so that

NQTel QNVN O’Nel + N-- WN)QNeN,

as required. The normalization of the eigenvector qN QNeN must be such as to force
’N > fiN for VN > WN. For the Fourier coefficients we then have (ON diag (VN)
ON q- 1/?N WN)eNeV)

QQN(DN+ ffeN-- WN)eNeC)(YNq- (if-- yN)eN),

which gives (4.30) after cancellation.
This theorem shows that it is possible to modify the weight of a chosen knot by

orthogonal similarity as in 4.2. However, the eigenvector [IN would then have to be
evaluated. On the other hand, the four updating methods discussed so far can be applied
to the present situation--the only difference is that the resulting matrix au+ cannot then
be unreduced because it has two equal eigenvalues. It is then a consequence of Theorem
4.2 that u 0.

We note that the proofofTheorem 4.1 depends on the matrix aU+ having a uniquely
determined set of eigenvectors. Here this is not the case as the two equal eigenvalues
have a two-dimensional invariant subspace. In fact, condition (4.4) determining the first
row of Q is based on one choice of eigenvectors in this subspace while the required
modification ofthe weight in the resulting matrix corresponds to another choice ofthese
eigenvectors.

5. Downdating methods.
5.1. A reformulation of the downdating problem. The problem of downdating is

now, with respect to the representation of the solutions introduced in 3, as follows:
Given
(a) 0 > 0,
(b) Jn, a Jacobi matrix of size n,
(c) a vector d n,

(d) a triple { x, w, y }, and
(e) {x, w, y} YN+

((a), (b), and (c) representing the solution of Problem for some data set YN), find
0, , and L representing the solution for the data set IN YN+ \ { X, W, y } where
is the largest integer for which a solution exists.
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As before, we have formulated the downdating problem only for Problem lthe
corresponding version for Problem 2 is obtained by omitting the coefficients d and val-
ues y.

The problem as formulated here always has a solution with min { n, N}. In
practical cases the set YN/ may have been discarded and so one would not know if the
given triple belonged to the set. We are thus interested in solving the problem without
assuming (e) above, in which case a may decrease further.

The rest of this section is therefore set out as follows. We first derive downdating
methods closely related to the four updating methods of 4 for the case n N + 1, i.e.,
when the solution (of size r N) is known to exist. Next we derive another downdating
method based on reversing the rotations method. We then turn to the problem of down-
dating a partial matrix (n < N + and characterize the existence of the solution in that
casethe downdating may, in general, decrease the size ofthe solution or the solUtion
may not exist at all. This leads to stopping criteria for all the methods discussed.

5.2. Methods based on a complex weight. As formulated, Theorem 4.2 describes
only an increase of the weight of the data triple { XN, WN, YN}, i.e., w2 > 0 implies N >
WN. However, replacing w in Theorem 4.2 by -w2 (note that only w2 is used there, not
w) leads to a solution JN (with VN < WN) which remains real and unreduced of size N as
long as w < Wv. In the limit, when VN 0, we will have /N- 0, &N XN and the
size N submatrix ofaN will be the result ofthe downdating problem of 5.1 (although
for n N rather than N + ).

We have pointed out in 4.7 that the modification of a weight can be achieved by
any of the three methods for updating. For downdating this simply means replacing w2

by -w2 and thus, if necessary, w by iw, :z -1.
Inspection of each of these methods shows that, throughout the calculation, the

N N submatrix which is required remains real and those elements of the calculations
which are complex quantities remain pure imaginary. Thus the whole calculation can
be done very conveniently in real arithmetic (see the algorithms in 6 for details).

In the case of the rotation method the updating similarity matrices are products of
(orthogonal) plane rotations: a (5 s), C2 _].. S 2 matrix imbedded in an identity. The
similarity matrices here are products of elementary matrices which are of the form

c is 2 2(-is ), c s imbedded in an identity. These matrices, which may be called hyper-
rotations because the sines and cosines are replaced by hyperbolic sines and cosines, are
(complex) orthogonal but not unitary. While plane rotations always have condition
unity the condition ofa hyper-rotation is c + Is[ / c [sl which can be arbitrarily
large. The inherent instability of downdating is manifest here in the possible ill-condi-
tioning of these hyper-rotation matrices.

5.3. An eigenveetor method for downdating. The downdating problem in 5.1 is a
converse of the updating problem as formulated in 4.1 (up to exchanging J and a,
etc.). We can therefore attempt to solve it by reversing one ofthe methods for updating
this is particularly suitable for the rotations method. The analogue of Theorem 4.1 now
is Theorem 5.1.

THEOREM 5.1. Given O"u+ l, JN+ 1, and du+ for the data YN+ YN (-J { x, w, y }
the solution for YN is

o T QJN+

5. ’N O’2N W2

(]N)=QdN+’Wy
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where the (real) orthogonal similarity matrix Q is uniquely determined by requiring Ju
tO be tridiagonal and

Q( aN+ e wq) Nel
where q is the eigenvector ofJN+I corresponding to x, scaled to have norm one and a
positivefirst element.

The similarity Q is now the product of the same rotations as in (4.7)" Qr
RNRN-I" "R. In fact these can again be calculated implicitly after finding RN first and
applying it to JN+I. For RN, only the ratio of the last two elements of the eigenvector q
is required, so q need not even be scaled. These unscaled last two elements could, in
theory, be obtained by one step of the back-substitution on JN+I xI; however, as we
shall see in the next section, this is not practical.

5.4. Downdating a partial matrix and the existence of the solution. When we have
available only a submatrix Jn of the whole matrix JN+I, n < N + and the triple to be
downdated { x, w, y }, the question of the existence of the downdating solution is equiv-
alent to the existence of some matrix J, > n with the following properties:

The given Jn is a submatrix of J.
x is an eigenvalue of J with the weight w scaled to the current zeroth mo-

ment ff 2N+ .
The smallest matrix with these properties will have dimension n + and will be of
the form

where a and 3 are to be chosen so that J has eigenvalue x with weight w. Denoting the
corresponding normalized eigenvector (), this leads to equations

e’(q= w/trN+ l,

5.2 (Jn xI)q rten,

Beq + art xrt.

The first n of these n + 2 equations form a lower triangular system for q (independent
of a and/3) which can thus be determined uniquely. The solution q is proportional to
w, so for w not too large we have Ilqll < and a real rt q rq) 1/2 exists. Otherwise,
for larger w, we might need to decrease the size ofthe solution to ri < n so that the norm
of the shorter vector q is less than wthis will imply the existence of the solution of the
downdating problem for that size submatrix J. The unknown a and are now easily
obtained from the last two equations of (5.2); the sign of rt may be chosen so that/3 is
positive. The solution of the downdating problem can now be obtained as discussed in
5.3 from the last two elements of the eigenvector (q rt). We note here that, contrary

to the case discussed in 5.3, the complete forward substitution is indeed necessary as
we do not know the whole matrix JN+I needed in order to do only one step of back-
substitution as suggested there.

We have thus established the following result.
THEOREM 5.2. Given O’N+ and J,, n <= N, the solution for some YN+I and

the downdating pair { x, w }, denote q the solution ofjust the first n equations of
(Jn xI)q 0 satisfying e q w aN+ 1. Let be the largest integer such that 11 <
where 1 is the vector ofthefirst elements ofq. Then is the largest size ofthe leading
submatrix Ja OfJn for which it is possible to downdate by the pair { x, w }.
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Obviously, if w >= O"N+ then 0 and no downdating is possible. Furthermore, all
three downdating methods in 5.2 must produce a solution of size ri; suitable criteria
for recognizing this critical size are given in the algorithms. They correspond to identifying
the depletion of the total mass, i.e., the current zeroth moment, during the process.

The constructive nature of Theorem 5.2, for downdating a Jacobi matrix, means
that a practical method can be based on it. The vector da of given Fourier coefficients
has also to be extended by an unknown element, say da + 1, so that after the transformation
(5.1) the last element ofthe left-hand side is wy. We achieve this by the following method.
Note first that elements erda + are known for the rangej 1, 2, and wy is known.
We may rewrite (5.1) as

(5.3)
0

+wyee+l=Q + 3"Qee+ l,

for some scalar 3’. As the Ra, R_ , R1 become available we apply them to the
known aa and ea+. After all rotations have been applied we use the last row of (5.3) to
solve for 3". The fight-hand side of (5.3) then gives the solution.

The elementary matrices used are real (orthogonal) rotations. So the stability of the
process depends on the accuracy with which the first rotation used (Rn) is determined.
This again is limited by the condition of the forward substitution phase of the process
and the size of ft. This must be taken into account when applying the above-mentioned
stopping criterion.

6. The algorithms. The algorithms here avoid complex arithmetic by exploiting
the fact, mentioned in 5.2, that whenever some computed quantities are complex, they
are pure imaginary. Thus in most cases, the updating and downdating algorithms for the
same method have been combined into a single version in which the upper sign of a
or -T- pair is to be read for updates and the lower sign for downdates. Consequently, a
test such as "if a2 + w2 < 0. ." is not necessary if only the + sign is used.

The algorithms have the following input and output.
Input:

n >= the size of the current solution
the Jacobi matrix Jn in the form oftwo vectors { al, a2, On } and 31,/2,

the current zeroth moment a

coefficients d, d2, ,dn of the least squares fit polynomial
a triple { x, w, y }

Output:
the size of the solution

the new zeroth moment
the Jacobi matrix ae, in the form oftwo vectors { al, 0/2, O/r } and { 1, /2,

fie_ }, which ovefite J
coefficients d, d2, de ofthe up/down dated least squares fit polynomial, which

ovefite the dg’s
The new size will satisfy

or n if J has been updated,

if J has been downdated.

Of course if a downdate is attempted which it is impossible to perform ri 0 will result
and no solution will be returned.
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These algorithms can be used to build up a solution of any required size start-
ing with the solution to the problem for Y1 { x, w, y } which, as was pointed out in
{} 4.1, is

=x, = Iwl, dl
We use comments (marked by #) to connect the variables in the algorithms to their

derivation in the text of the previous sections. The calculations related to the up/down-
dating of the Fourier coefficients di are identified by indentation. These steps can be
omitted if only is required.

Symbols in bold type represent vector quantities.

6.1. RHR--up/downdating algorithm using rotations/hyper-rotations. This al-
gorithm is an implementation ofthe update method described in 4.2 and its downdating
variant based on {} 5.2. In the case of the updating version of this algorithm, the first two
tests are trivially false and the fourth will be true whenever x is an eigenvalue of J,.

=n+l
if 0

-2 -t-- W2 0 then set g 0 and exit. endif:

" V0-2W----W2
c= /
s= w/rr
0-= gr

O cs(x-
02 --S[Jl
Olff C2X --t- $20ll
Ol C20g! q-S2X
if n > then set/31 c/3 endif:

d cwy-
d cd +_ swy

for/= 2,3,...,fi-
if B/2_ + 02 =< 0 then set ff and exit. endif:
V_ ,_+ 0

C-- i-I/
s= 01
i-

c2oli nt- 2cs02 +__ sZcea
r c2 -7- 2cs02 + s2i
ozi

01 CS(olff oli) 4r- 02(C2 -- S2)
02 -sBi

cS
t= di
d= ct + s&
& c&-st

endfor i:
if downdate or 01 0 then

set ri n and exit.
else

d sign (01) da
endif:

# set up (hyper)rotation for implicit step

01, 02 are nonzero elements-
#introduced by the implicit step

# apply (hyper)rotation

# chase matrix back to tridiagonal form

# set up (hyper) rotation

# adjustment for larger J



344 S. ELHAY, G. H. GOLUB, AND J. KAUTSKY

6.2. REVrotations eigenvector downdate method. This is an implementation of
the method derived in 5.4, which is a reversal of the update method by rotations.

U OId 0
U W/ff
Unew (X-- Oll)U/
if a 2 w2 < 0 then set g 0 and exit. endif:

a w
2m=l-u

if m Uew < 0 then set and goto label l" endif:
m m- Uew
forj 2, 3, #foard substitution for the eigenvector

old new
Unew ((X- j)U- j_ lUold)/j
if m Uew < 0 then set g j and goto label 1" endif:
m m Uew

endfor j"
old H new
label 1"
new

((X )U -1Uold)/Unew
a+ X-- fl U/ Une
C Unew/Uew+ U2

S --U/VUew @ H2

for/= 1,2,...,
qi 0 #Qe+ of (5.3)

endfor i:
tmp +
p -stir_
r CS(tmp a + (C2 S2)fl
fi+l C2tmp @ S2fi 2csfl
n c2a + 2csn + S2tmp
_

c

_
& 0

&+ -s&

qa =s
qa+ c

forj=- 1,-2
s r + r’
C flj/flyWr2

tmp +
g+l C2tmp + S2j-- 2csp= c + sr
r cs(atmp- ) + (c s)p

caa + 2csp + S2tmp
ifj > then-

#new a and/3

#get rotation for implicit step

#chase non-zeros from bottom to top
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endif:
dtmp cd + sda +
dr+l -sd +
dj dtmp
qtmp C Qj -JI- sqq +
qr+l --sqj + cqa+
q1 qtm

endfor j:
for/= 1,2,...,g
di di + (wy de+ 1)qi/q,+
endfor i"

#add the correction term of (5.3)

6.3. The Lanczos-type algorithms for up- and downdating. All of the algorithms in
this section are variations on the LTL method referred to in 4.3 and are based on
recurrences which come from (4.17 and (4.18 ). For clarity we restate these here in the
way that they are used below.

al O/1 + /I(T1/Pl)
forj 2, 3, ,N

Olj Olj -t- j( Tj/ pj j Tj / Dj
j--1--- j-- Oj/ Oj--1

endfor j:
OlN+ X- N(TN/ON)
N NON+ /ON

It was pointed out in 4.4 that these recurrences are applicable when just the diagonal
and subdiagonal, p/and r/, elements of the L matrix are available. Note that for this
calculation the term fiN is needed at start to advance the algorithm. However, JN+ is
independent of the input value of fiN as can be seen by inspection of the complete al-
gorithms in this section. We therefore always set fiN on input rather than normalizing
the root polynomial by setting fin + /ON+ at output.

Another feature common to the algorithms in this section is that they all require
the calculation of the elements Cj- wpj_ l(X), j 1, 2, of an eigenvector u by the
forward substitution

jj+ (X-- Olj) j-- j- j-

When x lies inside the interval containing the eigenvalues of J,, the values of the j._
are bounded by a reasonably small constant and may even vanish. For x outside this
interval however, the

_
will never vanish and indeed will grow rapidly withj, possibly

causing overflow. To avoid this possibility we present a second version of one of the
algorithms which uses the ratios /j_ 1. This scaled version should not be used when
x is inside the interval referred to because some ratio may become infinite.

6.3.1. TLDTriangular Lanczos method using determinants: Unscaled version.
This is an implementation of the update method of 4.4 and its downdating variant
based on 5.2. In the case of the updating version of this algorithm, the first two tests
are trivially false and the third will be false whenever x is an eigenvalue of J.
g=n+l

q= w/o" # tPo
p (x- oz)q/ #
if O"2 + W2 <- 0 then set 0 and exit. endif:



346 S. ELHAY, G. H. GOLUB, AND J. KAUTSKY- ]/0-2 --I-- W2

2t=l+_q
r /el
q otlr
d (d +__ wyq) / ft

0 pq/t

q (cr q)/

for/= 2,3,...,g-
tnew p2
if t,ew(t -T- q2) =< 0 then set and exit. endif:
,ew i-t /t,ew(t-T- q2) /

 /tn w t
tnew

r=q
q=p
p ((x- ai)q- i-r)/

d, di +- wyq dq)/
efq p
v=q
q aiq q- fli-tr
r--v

Ol Ol -- Oi_0 pq/t
Ol O q’- 0i
/i-I-- /new

q (&r
endfor i"
if downdate or P (t q) -< 0 then

set g n and exit.
else

aa x-
n B.lpl ft-q2/t

da (ywp
endif:

# needed for last polynomial

# part of t

# &i completed
#/i-

# Ji is the updated part of Jn

# adjustment for larger J

6.3.2. TLDS--Triangular Lanczos method using determinants: Scaled version. This
is an implementation of the method of the previous section scaled to avoid overflow.
The operations for up/downdating the vector d n have been omitted. In the case of the
updating version of this algorithm, the first two tests are trivially false and the third will
be false whenever x is an eigenvalue of Jn.
ti=n+
q= w/0-
p (X- 0/1)//
if 0-2 ___+ W2 0 then set ti 0 and exit. endif:
/+ wz

ll/qz

0 =p/t
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/n
for/= 2,3,...,-

/new t/p2

if tnew(t -Y- _--< 0 then set ff and exit. endif:
/3new fl O]/tnew -T-

/new
q=p
p ((x- ai)- i-1/q)/i

0 =p/t

/i-1-- /new
endfor i"
if downdate or pl(t =< 0 then

set r n and exit.
else

ae x-, [plVt- 1/t
endif:

6.3.3. TLSTriangular Lanczos method using the special form of L: Unscaled
version. This is an implementation of the update method described in 4.5 and its
downdate variant of 5.2. In the case of the updating version of this algorithm, the first
two tests are trivially false and the third will be false whenever x is an eigenvalue of J.
ff=n+l
q= w/a
p (x- al)q/
if 0

"2 -+- W2 <- 0 then set 0 and exit. endif:
l/a- _+ w2

t= l+__q2

z -T- qZ/t
di + wyq

d, d/{t
0 pq/t
a +_ 0

sf dq/
d =d2+p(wy-sy)

n
for/- 2,3,...,-

tnew= _p2z
if tnew <- 0 then set r and exit. endif:
/new i-i rOn,wit

tnew
r=q
q=p
p ((X- oi)q- t3i-r)lBi

d, dlt
s.s= ss+ dqz/t
d (1 6.i)di+ +-p(wy- sy)

#

# rllpl

# sum for forward substitution

# part of &i
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0 pqz/t
z= z/t
Ol Ol -+- Oi
i-I-- /new

endfor i:
if downdate or PlZ/t <= 0 then

set n and exit.
else

o x 0/n_
/3n /, P Vz/

da d/(Ipl z)
endif:

# 7"i/Pi

completed

# adjustment for larger J

6.4. Computational complexity of the algorithms. We indicate here the complexity
of each algorithm as a number offlops (essentially the number of or + operations)
per up/downdate showing only the term with the highest power of n:

Complexity

Method

RHR
REV
TLD
TLDS
TLS

Up/downdate Jn
Flops

15n
23n
10n
10n
lln

Up/downdate dn
/- Flops

4n
lln
n
3n

7. Numerical tests. We wish to demonstrate the methods in this paper by computing
a moving least squares polynomial fit to noisy data. The methods tested are:

RHRmrotations update, hyper-rotations downdate,
REVmrotations update, eigenvector/ rotations downdate,
TLD--triangular Lanczos method using determinants,
TLStriangular Lanczos method using the special form of L.
We define

xj.=-1 +2(j- 1)/(N- 1)+6,

w= /v+ ,
yj.= 1.5 +sin (4x) + 6,

where 6 is a uniformly distributed random variable with 161 < 10 -4. Furthermore, we

+4-, k= 1,2,...,N-M+ 1.set Y {x., w, yj.}
In the test we start by computing J,, d, and the least squares polynomial fits q0,

q, q, _, each qg of degree j, for the data Y using only the update method of 6.1.
For k 2, , N-M+ 1, we then compute the solution to the data Yby first updating
with the triple {x+t, w+t, yk+t} and then downdating with the triple {xg_ l, w_ 1,

Y- }. After every ns steps we compare the solution at this stage with a reference solution
computed again using the update method of 6.1. Thus the th stage corresponds to the
solution on Yns +

The figures show the number of correct decimal digits (-log error[ in the repre-
sentation of the polynomials, i.e., we plot the accuracy of the a and of J, and of the
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RHR Method N=50, M=10, ns=5, n=5,
relative errors.

9 |’’
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Stages
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ql
:- q2
;,- q3

--.....m--- q4

FIG.

coefficients d against the stage number. We are also interested in how accurately the
least squares polynomial qj. is computed: we therefore calculate the relative difference

e2:= Z w](qrief(xj)-qi(xj))2/Y, i=0, 1, ,n-1
J

at each stage.
Figures 1, 2 (a), and 2 (b) show the errors for method RHR with N 50, a window

size ofM 10, the order of the polynomial (and therefore the size of the matrix) n 5
staged every ns 5 steps. We observe that the accuracy decays as we slide the window

RHR Method N=50, M=10, ns=5, n=5
absolute errors

14

12

10

0 2 4 6 8
Stages

FIG. 2(a)

--.----.e---- alpha

beta

d

10
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RHR Method N=50, M=I 0, ns=5, n=5
relative errors

2 4 6 8 10
Stages

FIG. 2(b)

alpha

beta

d

along the data set and also as we increase the degree of qj. The relative errors of the
diagonal elements of J and the d vector, shown in Fig. 2 (b), become unduly large at the
fourth stage where because of symmetry we are trying to compute zero quantities. Figure
2(a) shows the corresponding absolute errors.

Recall that to produce qj_ for the data set Yk+l requires the application of kj
rotations and kj hyper-rotations. While the condition of the rotations is always one it
follows from the discussion in 5.2 that the condition of the product of hyper-rotations

16

o 12

O

10

8

6
0

RHR Method N=50, M=10, ns=5, n=5
relative errors

2 4 6
Stages

beta

beta 2

beta 3

beta 4

FIG. 3
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RHR Method N=50, M=20, ns=5, n=5,
relative errors.
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-----E---- qO
; ql

q2
; q3

= q4

FIG. 4

involved is bounded by

fi cizl + s.I
i=1 c.I s.l’

2C2il Sil 1, il and s; being the c and s of the downdating RHR algorithm in 6.1. The
decay in accuracy observed in Figs. and 2 is consistent with the structure ofthis bound:
for lower degree polynomials the condition of the transformation in each step is quite
close to one and the accuracy decreases only slowly as the window slides on.

17-

16

15

_.o 13

12

10

TLS Method N=50, M=10, ns=5, n=5,
relative errors.

0 2 4 6 8 10
Stages

FIG. 5

qo
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q2
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The propagation of roundoff introduced by the downdating from one stage to the
next is similar to the propagation of roundoff in shooting type methods. Thus in this
context the test is quite severe.

Figure 3 shows the relative errors of ill, 2, n-l at each stage. From Figs. 3
and 2 we infer that the decay in the accuracy of the polynomial fits mirrors that of their
representation.

Figure 4, displaying the case of the RHR method as in Fig. but with M 20,
shows an insignificant decrease in accuracy for this larger point set. We suggest that this
decrease is due to the different location of the points being added and discarded.

Turning now to the other methods, Fig. 5 shows -log el for the TLS method, and
Table lists the differences between -log el for these two methods. There is no observable
pattern to the differences, the maxima of which occur at a few isolated places. Indeed
we observed the same behaviour for the difference in accuracy between all the methods
tested. The fact that the maxima are isolated and nowhere exceed 1.8 decimals leads us
to not present the figures for the methods REV and TLD.

The numerical behaviour ofthe methods developed here and their relation to existing
methods is not at all clear and warrants further investigation. The test described above
reflects one sort of application that occurs in many real situations. In particular we refer
to the use of polynomials limited to low degree. In our experience the updating methods
not based on rotations and all downdating methods may suffer from instability if the
degree of the fitted polynomial approaches the degree of the interpolating polynomial.
This has also been observed elsewhere [4], [1].

In our other exploratory tests the TLS and RHR methods behave quite similarly.
Applied to the updating problem with point distributions that come from some classical
Gauss quadratures for finite intervals, the TLS and RHR methods agree to within about
0.5 decimals and lose fewer than about three decimal places accuracy for as many as
1,000 points. On the other hand, applied to updating with equally spaced points, both
methods lose about three decimals after about 500 points. But the TLS method on this
type of data, even though it is a little more accurate than the RHR, can suffer from
extreme exponent growth (even though there is no associated loss of precision) and can
fail unless extra care is taken. Ofcourse the RHR method is immune from this problem.

In the case of downdating, it only takes 40 classical Gaussian quadrature points for
the TLS and RHR methods to lose three digits of accuracy and both methods lose 16
digits of accuracy on 40 equally spaced points. In both these cases the top part of the
resulting Jacobi matrix is still determined to almost full accuracy.

TABLE
RHR and TLS methods.

M= 50, N=50, ns=5, n=5

Stage qo ql q2 q3 q4

-0.2 -0.3 0.2 -0.6 -0.1
-0.5 0.1 0.1 0.7 -0.1
-0.6 -0.1 -1.3 0.8 -0.5
-0.3 -0.2 0.0 0.5 1.3
0.0 -1.1 0.5 0.2 1.0

-0.1 0.2 0.9 -0.5 0.7
0.0 0.4 -0.1 -0.3 0.9
0.1 0.3 0.5 0.1 -0.4

Differences between -log el)
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Thus there remain interesting questions about the effect on the accuracy of the
process that the point distribution has and perhaps the order in which the points are
added to the inner product.
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ON GROWTH IN GAUSSIAN ELIMINATION
WITH COMPLETE PIVOTING*

NICK GOULD,"

Abstract. It has been conjectured that when Gaussian elimination with complete pivoting is applied to a
real n-by-n matrix, the maximum possible growth is n. In this note, a 13-by-13 matrix is given, for which the
growth is 13.0205. The matrix was constructed by solving a large nonlinear programming problem. Growth
larger than n has also been observed for matrices of orders 14, 15, and 16.

Key words. Gaussian elimination, growth, complete pivoting, nonlinear programming methods

AMS(MOS) subject classifications. 65F05, 65G05

1. Introduction. Let A be an n-by-n real matrix, let A() A, and let A(k+ ), for
k 1, n 1, be the n k-by-n k matrix derived from A by elimination operations.
That is, if we partition Ak) as

(1.1) A)= (a)a) A(k)

(where the scalar a () is known as the pivot at the kth stage of the elimination), then

(1.2) A+ )=Atn)-a)[a(k)]-a(c).
Alternatively, A (g + l) is the Schur complement of the first k-by-k block ofA in the ma-
trix A.

IfGaussian elimination, with complete or partial pivoting, is used to solve the system
of linear equations Ax b, Wilkinson 9 showed that the computed solution 2 satisfies
the perturbed equations

(1.3) (A +E) b,

where the error matrix E satisfies the normwise bound

(1.4) E[I -< up(n)g,(A)IIA[I

Here u is the unit roundoff, p(n) is a cubic polynomial of n, and
()(1.5) gn(A) max I(PAQ) o [/ max [(PAQ)ij[,

<=i,j_n-k+ 1, <=i,j<=n
l<=k<-_n

where P and Q represent the pivoting permutations applied to A during the elimination.
As the other contributions to the bound (1.4) are beyond our control, it is of interest to
know precisely how large the growth factor gn(A) can be.

We say that A is a complete elimination matrix if, at each stage of the elimination,
the modulus of each entry in A(g) is no larger than that of the pivot. Such matrices arise
when complete pivoting is used to permute the rows and columns of a general matrix
during Gaussian elimination (see Wilkinson [11]). The permutation matrices P and Q
in (1.5) are both the identity matrix if A is a complete elimination matrix. Moreover,

Received by the editors September 7, 1990; accepted for publication (in revised form) November 7,
1990.

"f Central Computing Department, Rutherford Appleton Laboratory, Chilton, Oxfordshire, OXI1 0QX,
England (nimg@ib.rl.ac.uk).
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the growth factor is now the ratio of the moduli of the largest pivot to the first. For such
matrices, Wilkinson 9 showed that

(1.6) gn supgn(A) < n
A

/2(23 /24 /3... n/n )1/2

and he noted that there were no known examples of matrices for which g,,(A) > n
(Wilkinson, [10, p. 97] and [11, p. 213 ]). Indeed, Cryer [3] hypothesized that gn < n
for all n with equality if and only if there is a Hadamard matrix, that is a matrix with
entries + and orthogonal rows and columns, ofdimension n. Higham and Higham [6
give a class of matrices for which g,,(A) >= (n + )/2, while simulations by Trefethen
and Schreiber [8] on random matrices indicate average growths on random matrices of
approximately n/2.

One way oftrying to generate large growth factors for complete elimination matrices
is to attempt to solve the optimization problem of maximizing the modulus of the nth
pivot. (It is always possible to arrange that the maximum growth occurs at this pivot.
For, suppose the kth pivot is largest in magnitude. Then the matrix formed by replacing
the last k-by-k block of the n-by-n identity matrix, scaled by a, with the first k-by-k
block ofA is also a complete elimination matrix with the same growth factor but with
the maximum growth now occurring at the nth pivot.) This approach has been considered
by Day and Peterson [4 and is also the approach taken in this note. Day and Peterson
give lower bounds on the growth for =< n =< 8. Here we extend the range to -< n =<
16. The major result we obtain is that there are a number of 13-by-13 matrices for which
g3 is larger than 13, and thus that Cryer’s conjecture is false. Examples of growth larger
than n have also been observed for matrices of order 14, 15, and 16.

In 2, we describe the nonlinear programming approach we have taken to this
problem. In 3, the results of our numerical experiments are presented. We give an
example where g3 > 13 in the Appendix.

2. Method. We may formulate the maximum pivot growth problem as a nonlinear
optimization problem as follows:

Starting with an n-by-n real matrix X) A, we let Xk) be the matrix

(2.1) XCk)=(0 0 )0 A ()

where A(k) is the kth elimination matrix 1.1 ). Let xi,j, be the (i, j)th entry ofX(k). We
thus wish to maximize x,,,n,,, subject to the restrictions that the matrices X() and X(+ )

are related to each other by elimination operations, that the largest element inX() occurs
in position (k, k), and that the initial matrix X() is scaled so that the largest entry in
magnitude is 1. This leads to the problem

(2.2) maximize x,,,n
subject to the elimination constraints:

(2.3)
for

Xi,j,k + Xi,j,k - Xi,k,kXk,j,k/ Xk,k,k O,

k<i,j<=n and k=l,...,n-1;

constraints which make the signs of the pivots unique:

(2.4) x,,k>=0 for k=l,...,n;

a normalizing constraint, Xl,1,1 1; and complete pivoting constraints:

(2.5) -1 -’-Xi,j, for <=i,j<=n



356 NICK GOULD

and

(2.6) --Xk,k,k <= Xi,j,k <= Xk,k,k for k <= i,j <= n and k 2, n 1.

This formulation involves roughly n 3/3 variables, but is a very sparse optimization
problem. We chose to solve this problem using our large-scale nonlinear programming
package, LANCELOT (Conn, Gould, and Toint [2 ]), since the package is designed to
handle such nonlinear sparsity as appears in problem (2.2)-(2.6) above.

By contrast, Day and Peterson 4 formulate the problem entirely in terms of the
n 2 variables X), treating all of the remaining variables XCk), k 2, ..., n as implicit
functions ofX). This leads to a problem that is significantly more nonlinear and makes
the calculation of analytic derivatives considerably harder. Nonetheless, Day and Peterson
report considerable success with the nonlinear programming package NPSOL (Gill,
Murray, Saunders, and Wright [5]).

Of course, neither nonlinear programming method is designed to find anything
stronger than local solutions to a problem. The problem (2.2)-(2.6) has many local
solutions and most of them are highly degenerate. The problem is thus challenging for
a nonlinear programming algorithm and the values given in the next section are the
result ofmany runs from different starting points in an attempt to find the global solution
to the problem.

3. Results. In Table 3.1, we give the results obtained by running LANGELOT on
the problem posed in 2. LANCELOT is written in standard Fortran 77, compiled in
double precision with the SUN Fortran 1.3 compiler; the problems were solved on a
SUN SPARCstation 1. Each problem has many local solutions; we cannot, of course,
guarantee that the values reported are the largest growths that can be obtained, merely
that they are the largest values we encountered.

Of particular interest are the values obtained for n 13, 14, 15, and 16, for here
we see growth of more than n. We also observe that for n 16, where a complete
elimination Hadamard matrix exists and gives rise to growth of 16, other complete elim-
ination matrices give larger growth. Thus Cryer’s 3] conjecture is false.

TAnLE 3.1
Maximum growth factors encountered.

1.0 trivial
2 2.0 trivial
3 2.25 optimal (see Cohen, [1 ])
4 4.0 Hadamard matrix, optimal (see Cryer [3])
5 4.1325 agrees with Day and Peterson [4]
6 5.0 agrees with Day and Peterson [4]
7 6.0 agrees with Day and Peterson [4]
8 8.0 Hadamard matrix
9 8.4305
10 9.5294
11 10.4627
12 12.0 Hadamard matrix
13 13.0205
14 14.5949
15 16.1078
16 18.0596 not a Hadamard matrix

n Growth size Comments
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The matrices that give rise to the growth factors reported in Table 3.1 are often
extremely sensitive to small perturbations in their entries in that tiny perturbations to a
complete elimination matrix rarely results in another such matrix. This phenomenon
was observed by Day and Peterson [4 and may explain why examples of large growth
have proved elusive in previous attempts to find them. It also makes it rather difficult to
specify matrices which give rise to large growth. Indeed, we had to solve the optimization
problem of 2 to very high accuracy, requiting the residuals ofthe nonlinear constraints
(2.3) to be of the order of the unit roundoff. In some cases, this meant that we had to
take the best solution that we obtained on the SUN as a starting point for a further run
in extended precision on the CRAY X-MP/416 at Rutherford to reduce the residuals to
the desired level. Even then, the mere fact of rounding the CRAY values to 16 decimal
places frequently prevented the computed matrix from being a complete elimination
matrix when the operations 1.2) were performed in double precision on the SUN. The
values obtained had to be adjusted by eye to obtain a suitable floating-point complete
elimination matrix.

We specify a 13-by-13 matrix that gives rise to growth ofslightly more than 13.0205,
in IEEE double precision arithmetic on a SUN SPARCstation l, in the Appendix to this
paper. The values must be read in Fortran 1P,D24.16 format. It is not known whether
there are matrices with simple fractional entries that give rise to such large growth. Other
13-by- 13 matrices that give rise to growth of larger than 13 were encountered.

The results of applying the elimination operations (1.2) to this matrix are given in
Table 3.2. The size of the pivot and the largest nonpivot in absolute value at each stage
ofthe elimination are shown. Note that the pivots are far from monotonic and that there
is a "surge" ofgrowth in the last few stages. Such a surge has been observed for Hadamard
matrices by other authors 3 ], 4 ]. Indeed, values for the last six pivots for such matrices
are known 4, Prop. 5.5]. Also observe how close the largest nonpivot at each stage is
to the pivot and thus how tiny perturbations to the matrix elements may completely
alter the pivot sequence.

4. Conclusions. We have shown that growth of larger than n is possible when
Gaussian elimination with complete pivoting is performed on real n-by-n matrices by
exhibiting a 13-by- 13 matrix for which this is true. IfA is an n-by-n complete elimination

TABLE 3.2
Details ofthe elimination.

1.0000000000000000 1.0000000000000000
2 2.0000000000000000 2.0000000000000000
3 2.0000000000000000 2.0000000000000000
4 2.5964300000000002 2.5964300000000002
5 2.3776999999999999 2.3776999543751263
6 2.3038700000000003 2.3038700000000003
7 2.9587400000000001 2.9587398634283884
8 3.5890399999999998 3.5890399999999998
9 4.1163800000000004 4.1163800000000004
10 3.3550400000000007 3.3550399999999998
11 6.5102699999999984 6.5102698773166514
12 6.5102700000000011 6.5102699999999567
13 13.0205000013724188

Largest modulus of
Pivot Pivot size nonpivot entry
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matrix with growth g(A), and P is the matrix which permutes the first 2n integers to
{1, n + 1, 2, n + 2, n, 2n}, then (see [7] and [4, Prop. 5.12])

(4.1) PT( AA -AA)P
is also a complete elimination matrix with growth 2g(A). Thus there are an infinite
number of matrices, of dimensions 13.2 k for nonnegative k, which give rise to growth
larger than their dimension. We suspect that there are examples oflarge growth for many
other dimensionswe have encountered such examples for n 14, 15, and 16
and that

lim sup g,,/n
n

is unbounded. It is not known if there are matrices of dimension smaller than 13 for
which growth larger than n is possible, nor is it known quite how close the growth factors
given in this paper are to gn.

We have observed that examples of large growth in complete elimination are very
unstable in that very small perturbations to the matrix entries give rise to radically different
pivot sequences. We suspect that this is why such examples have not been observed in
practice. We also realize that the examples given here are extremely unlikely to--nor
indeed should they--discourage people from using Gaussian elimination with pivoting.
The potentially less stable partial and threshold pivoting strategies are used with impunity,
and considerable success, throughout the scientific world.

Appendix. Here we give a 13-by-13 complete elimination matrix for which the
growth is slightly over 13.0205 when the elimination operations (1.2) are performed in
IEEE double precision arithmetic on a SUN SPARCstation 1. The values should be read
in Fortran 1P,D24.16 format.

row 1

1.0000000000000000D+00 -I.0000000000000000D+00 -I.0000000000000000D+00

6. 6084891857885364D-01 3.5076867724029653D-01 I .3913093634808771D-01

1.0000000000000000D+00 -1.0000000000000000D+00 9.4546309508853699D-01

-6. 4358761317393848D-02 -4. 72590565392 6077 6D-02 9. 8144752878695718D-01

1. 0000000000000000D+00

row 2

1.0000000000000000D+00 1.0000000000000000D+00 -I.0000000000000000D+00

-1.0000000000000000D+00 -8. 8262544148845457D-01 -7.9349789219584022D-01

-1.0000000000000000D+00 -7.0049633754068708D-01 1.0000000000000000D+00

1. 0000000000000000D+O0 -1. 0000000000000000D+00 I. 0000000000000000D+00
-6. 5149858941930272D-01

row 3

1 0000000000000000D+00 4. 9321847997082674D-01 1. 0000000000000000D+00

5.2321986889464023D-01 1.0000000000000000D+00 9.3147802581501915D-01
-1.0000000000000000D+00 -1.0000000000000000D+00 -1.0000000000000000D+00

9.0634017140409751D-01 1.0000000000000000D+00 1.9635994245021532D-01
5. 2020043801610605D-01
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row 4

-8. 5237723616654504D-01

1 0000000000000000D+00

-1. 0000000000000000D+00

1 0000000000000000D+00

1 0000000000000000D+00

1.0000000000000000D+00 -7.9959593728640932D-01

-6.1395029873598805D-01 -1.0000000000000000D+00

1.0000000000000000D+00 1.0000000000000000D+00

1. 0000000000000000D+00 -1. 0000000000000000D+00

row 5

-6.4197976615948327D-01 1.0000000000000000D+00 -8.2347773920951672D-01

-1.0000000000000000D+00 1.0000000000000000D+00 -1.0000000000000000D+00

-1.0000000000000000D+00 1.0000000000000000D+00 -1.0000000000000000D+00

-1.0000000000000000D+00 -9.8047514562210913D-01 1.0000000000000000D+00
1. 0000000000000000D+00

row 6

-7.5746114421052313D-01 8.7625388681860783D-01 -I.0000000000000000D+00

-1.0000000000000000D+00 -8.1410469390205387D-01 1.0000000000000000D+00

1. 0000000000000000D+00 -1. 0000000000000000D+00 -1. 0000000000000000D+00
1. 0000000000000000D+00 -1. 0000000000000000D+00 -1. 0000000000000000D+00

1. 0000000000000000D+00

row 7

1. 0000000000000000D+00 I. 0000000000000000D+00

5.8822529846976079D-01 1.0000000000000000D+00

1.1780693451504934D-01 -I.0000000000000000D+00

-I.0000000000000000D+00 -I.0000000000000000D+00

1. 0000000000000000D+00

1. 0000000000000000D+00

-i. 0000000000000000D+00

1. 0000000000000000D+00

-1. 0000000000000000D/00

row 8

1. 0000000000000000D+00 1.0000000000000000D+00

-1.0000000000000000D+00 -1.0000000000000000D+00

1. 0000000000000000D+00 I. 0000000000000000D+00

-1. 0000000000000000D+00 I. 0000000000000000D+00

1. 0000000000000000D+00

-1.2365439895441106D-01

1. 0000000000000000D+00

1.0000000000000000D+00

1. 0000000000000000D+00

row 9

-1.0000000000000000D+O0 1.6728019890561854D-01 -1.0000000000000000D+00

-1.0000000000000000D+00 1.0000000000000000D+00 6. 7037707945403946D-01

-1. 0000000000000000D+00 -1. 0000000000000000D+00 1. 0000000000000000D+00

-1. 0000000000000000D+00 1. 0000000000000000D+00 -1. 0000000000000000D+00

-1. 0000000000000000D+00
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row 10

-I. 0000000000000000D+00 1.0000000000000000D+00

7.7420992278979484D-01 1.0000000000000000D+00

1. 0000000000000000D+00 1. 0000000000000000D+00

1.0000000000000000D+00 -1.0000000000000000D+00

-1. 0000000000000000D+00

7. 3451234413636224D-01

1. 0000000000000000D+00

1.0000000000000000D+00

1. 0000000000000000D+00

row 11

-1.0000000000000000D+00 -3.2294803009723511D-01 1.0000000000000000D+00

-1.0000000000000000D+00 5.9471427088948606D-02 -1.0000000000000000D+00

1.0000000000000000D+00 -7.7305121515367092D-01 1.0000000000000000D+00

1 0000000000000000D+00 1 0000000000000000D+00 1 0000000000000000D+00

1 0000000000000000D+00

row 12

-1.0000000000000000D+00 -1.7007857952327707D-01

1.0000000000000000D+00 -1.0000000000000000D+00

-1.0000000000000000D+00 -1.0000000000000000D+00

-1.0000000000000000D+00 -1.0000000000000000D+00

I. 0000000000000000D+00

1 0000000000000000D+00

1 0000000000000000D+00

9 1898031012251935D-01

2. 5049340232649964D-01

row 13

9. 6143110935926346D-01 -I. 0000000000000000D+00 7. 2409299018425932D-01

-1.0000000000000000D+00 1.0000000000000000D+00 1.0000000000000000D+00

-1.0000000000000000D+00 1.0000000000000000D+00 1.0000000000000000D+00

1.0000000000000000D+00 -I.0000000000000000D+00 -I.0000000000000000D+00

i. 0000000000000000D+00
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REDUCTION OF A GENERAL MATRIX TO TRIDIAGONAL FORM*

GEORGE A. GEISTt

Abstract. An algorithm for reducing a nonsymmetric matrix to tridiagonal form as a first step
toward finding its eigenvalues is described. The algorithm uses a variation of threshold pivoting,
where at each step, the pivot is chosen to minimize the maximum entry in the transformation matrix
that reduces the next column and row of the matrix. Situations are given where the tridiagonalization
process breaks down, and two recovery methods are presented for these situations. Although no
existing tridiagonalization algorithm is guaranteed to succeed, this algorithm is found to be very
robust and fast in practice. A gradual loss of similarity is also observed as the order of the matrix
increases.

Key words, tridiagonalization, nonsymmetric, eigenvalues

AMS(MOS) subject class|flcation. 15

1. Introduction. The standard method for computing all of the eigenvalues of
a dense matrix is based on the QR iteration scheme [5]. In this scheme, orthog-
onal similarity transformations are successively applied to the matrix to reduce it
to quasi-triangular form, so that the eigenvalues appear on the diagonal. Repeated
application of these transformations to a general matrix is prohibitively expensive,
however, so that in practice the original matrix is first reduced to a simpler form that
can be preserved during the subsequent iterative phase. For a general matrix, the
initial reduction is usually to upper Hessenberg form (upper triangular except for one
additional subdiagonal) by elementary or orthogonal similarity transformations. The
initial reduction to Hessenberg form requires O(n3) operations, where n is the order
of the matrix. Computation of the eigenvalues of the reduced matrix usually requires
only a few QR iterations per eigenvalue, totaling another O(n3) operations. Both the
initial and iterative phases are costly, but less costly than iterating directly with the
original matrix. This two-phase approach is implemented in the standard EISPACK
software for the general eigenvalue problem [16].

If the original matrix is symmetric, then that symmetry can be preserved by
using orthogonal transformations in the initial reduction, so that the result is in fact
tridiagonal. Although the reduction to tridiagonal form costs O(n3) operations, the
subsequent iterations preserve the tridiagonal form and are much less expensive, so
that the total cost of the iterative phase is reduced to O(n2) operations. Again,
standard software is available in EISPACK implementing this two-phase approach for
the symmetric case [16].

The attractively low operation count of iterating with a tridiagonal matrix sug-
gests that the tridiagonal form would be extremely beneficial in the nonsymmetric
case as well. There are two difficulties with such an approach: First, QR iteration
does not preserve the structure of a nonsymmetric tridiagonal matrix. This problem
can be overcome by using LR iteration [15] instead, which preserves the tridiagonal
form. Second, it is difficult to reduce a nonsymmetric matrix to tridiagonal form by
similarity transformations in a numerically stable manner. This second problem is
the primary focus of this paper.

Received by the editors April 17, 1989; accepted for publication (in revised form) May 3, 1990.
This research was supported by the Applied Mathematical Sciences Research Program, Office of
Energy Research, U.S. Department of Energy, under contract DE-AC05-84OR21400 with Martin
Marietta Energy Systems, Inc.

Mathematical Sciences Section, Oak Ridge National Laboratory, P.O. Box 2009, Oak Ridge,
Tennessee 37831-8083.
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The following notational conventions will be used throughout this paper. Lower
case Greek letters will denote scalars; lower case Latin letters will denote vectors.
Components of vectors are denoted by subscripts. Upper case Latin letters will denote
square matrices and a single subscript, when present, denotes the matrix dimension.
Throughout this paper, N is used to represent a matrix that applies a rank one change
to another matrix. Special cases of N include Nc and Nr, which zero out the next
column and row of a matrix, respectively.

In the early 1960’s there was a great amount of interest and research devoted
to finding a stable way to reduce a general matrix via similarity transformations to
tridiagonal form [12], [14], [17]. The problem is addressed in some detail by Wilkinson
[21], and several algorithms are given, but the overall conclusion was that no general
purpose algorithm existed. Because of the success and numerical stability of the QR
iteration scheme, little research was directed at the problem of reduction to tridiagonal
form for nearly 15 years.

One reason for renewed interest in tridiagonalization is the relatively poor per-
formance of the QR iteration on advanced computers. Algorithms for vector su-
percomputers [10] and parallel architectures [7] have been developed for reducing
nonsymmetric matrices to tridiagonal form.

In 1981 Dax and Kaniel published a paper [2] that inspired most of the recent
interest in the problem. They describe experiments with reduction from upper Hes-
senberg form to tridiagonal form using elementary similarity transformations. During
the reduction, they monitor the size of the multipliers as follows. They define a con-
trol parameter for the reduction of row k as mk max>k+l{IH,/H,+ll}. Ifm is
greater than a specified value, #, then breakdown is said to have occurred, and their
algorithm aborts. They observe that for 100 random test matrices of order 50 50
the number of breakdowns as a function of the specified value it is:

it-2r r= 16 12 10 8 7
breakdowns 0 1 5 20 41

Dax and Kaniel refer to Wilkinson’s detailed error analysis in [21] and conclude
that with judicious use of double precision there is a low probability of having large
errors in eigenvalues computed with the tridiagonal matrix, even when using control
parameters as large as 216

Wachspress [18] and Watkins [19] focus on the fact that in [2] Dax and Kaniel
did not address possible ways to recover from breakdown during the reduction to
tridiagonal form. Wilkinson states [21, p. 404] that

If breakdown occurs in the rth step of the reduction of a Hessenberg matrix

to tridiagonal form we must return to the beginning and compute NAN-1

for some N in the hope that failure will be avoided in this matrix.
This recovery method is actually too restrictive. Wachspress and Watkins both de-
scribe efficient methods for finding matrices similar to A without returning to the
beginning and wasting work already performed on the matrix. Hare and Tang [11]
describe a combination of recovery methods and also investigate the effects of inter-
leaving orthogonal and elementary similarity transformations during the tridiagonal-
ization to reduce the number of multipliers that are greater than one.

In the next section we describe the inherent problems of tridiagonalizing nonsym-
metric matrices. In 3 we present a reduction algorithm that incorporates a pivoting
scheme designed to produce better conditioned transformation matrices than previous
algorithms. We describe two recovery algorithms in 4 that significantly improve the
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robustness of the reduction algorithm. Section 5 presents empirical results showing
the accuracy and performance of the new algorithm. While no finite stable tridiago-
nalization algorithm is known [13], the new algorithm significantly broadens the class
of matrices that can be successfully reduced.

2. Tridiagonalization. The direct reduction of a general matrix to tridiagonal
form is difficult because the elementary similarity transformations, which must be
used at some point in the reduction, may have large multipliers. This phenomenon is
illustrated by the following example. First note that computations of the form

1 a wT 1 a wTG-1

G,-k v Bn-k G- Gv GBG-
preserve the inner product of the kth row and column, since wTG-Gv wTv. The
tridiagonalization algorithms in [2], [6], [10], [11], [12], [17], [19] are all affected by this
property.

Let the partially reduced matrix have the form shown in Fig. 1. Let wTv 0

o wT
v Bn-k

FIG. 1. Partially reduced matrix.

and Gv, where G is designed to eliminate all but the first element of v. Let
T wTG- and partition T (T). Since wTv Vl, 0. After all but
the first entry of v have been eliminated, the matrix has the form

Bn-k

Any attempt to avoid the use of the zero as the pivot now destroys the existing
tridiagonal form. This zero pivot will occur regardless of the pivot selection in v or
whether orthogonal transformations are used to eliminate v.

Algorithms that include a stable reduction to upper Hessenberg form as an initial
step to tridiagonal form will likely encounter small pivots during the reduction of the
rows. Stable reduction of the columns tend to make large. For example, stable
elementary transformations choose max(v), and orthogonal transformations
make 1 Ilvl12. Let be the first entry in wTG-. Since the product of and, the eventual pivot for the row, is fixed, 1 tends to be small, which can lead to
breakdown when reducing the rows.

If wTv O, then a breakdown condition will occur no matter what transformation
is used. In this case, the algorithm must abort or apply some recovery method.

3. A tridiagonali.ation algorithm. In this section we present an algorithm
that reduces the matrix directly to tridiagonal form by eliminating columns and rows
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using elementary similarity transformations so that the matrix always has the form
shown in Fig. 1. This matrix structure allows us the freedom to pivot at each step
to improve the overall stability of the algorithm. For example, the pivot could be
chosen to minimize the maximum multiplier in the column and row reduction, or
the pivot could be chosen to minimize the condition number of the transformation
matrices. While these pivoting heuristics work well, the heuristic we found that works
at least as well and sometimes better is to choose the pivot that minimizes the norm
of the transformation matrix that reduces both the column and row. If C denotes this
transformation matrix, then the norm used is n{maxlCijl:i,j 1, 2,..., n} because
it can be computed in constant time for each possible permutation.

A2TRI( a, n, tol

label:

maxtol tol
cnt 0
m=l
for k 1 to n- 2

Check number of recovery attempts
if(cnt > 2) then

maxtol 10 maxtol, print warning of increase.
cnt 0
if(maxtol > 10. tol) return and execute NEWSTART

end if
Find suitable pivot
PIVOT(a, n, k, piv, maxmult, err)
Check for deflation
if( err= l m k + l, next k
Interchange row(piv) and row(k)
Interchange column(piv) and column(k)
Check maximum multiplier against tolerance
if( err 2 or maxmult > maxtol then

FIXUP( a, k, m, n
cnt cnt + 1, print warning
go to label:

endif
Zero out column k
for k + 2 to n

for j k + 1 to n

=tJn- ac+lj * aik/ak+ik
for ja k

ak+. a+ + ai * ai/a+
Zero out row
for k + 2 to n

for j k + 1 to n
ak+lj ak+lj aij * aki/akk+l

for j k + I to n
aji aji + ajk+l $ aki/akk+l

end for

FIG. 2. Algorithm for reducing an n n matrix A to tridiagonal form while trying to bound all
multipliers below tol.

At step k of the algorithm shown in Fig. 2, the matrix has the form shown in
Fig. 1. If v or w 0, then the matrix has been deflated, and step k can be skipped.



366 G.A. GEIST

Otherwise the algorithm finds the permutation that minimizes the maximum element
in N-Nc, where N and N are elementary matrices such that NcAN[ reduces
column k and N- (NcAN[)Nr reduces row k.

This minimization can be done efficiently because of the special structure of
N-1Nc, which is

/ UT

X In-k-1
The vector x contains the multipliers used in reducing column k, and u contains the
negatives of the multipliers used in reducing row k. The pivoting algorithm shown in
Fig. 3 finds the permutation at step k that minimizes the maximum multiplier used
in the column and row reduction and "),. The term /equals 1- uTx, which can be
simplified to wlv/wTv.

PIVOT(a, n, k, piv, maxmult, err

err 0
maxmult x
Find maximum and next-to-maximum entries in row k and column k

+ 1 to
pivc index of maxcol
nmxcol next-to-max( lakl li k + 1 to n)
rnaxrow max( lakil li k + 1 to n)
pivr index of rnaxrow
nrnxrow next-to-max( ]ai i k + 1 to n)
inprod ni=k+l aki * aik

Check if maximum element in row or column is zero
if( maxcol 0 or maxrow 0 err 1, return
Check if inner product is zero
if( inprod 0 then

piv index of max(maxcol, maxrow)
err 2
return

endif
Calculate maximum entry of (NrNc) over all permutations
fori-k+lton

if( i= pivc maxnc Inmxcol/aikl
else maxnc Imaxcol/aik
if( pivr maxnr la * nrnxrow/inprodl
else rnaxnr laik rnaxrow/inprod
maxdiag laik aki/inprod
ternp max(rnaxnr, maxnc, maxdiag)
if( temp < maxmult then

rnaxrnult temp
piv

endif
end for

FIG. 3. Algorithm for finding the pivot that minimizes the maximum element in N-1Nc, where
N-INcAN- Nr reduces column k and then row k of the n n matrix A.

If wTv 0, then the minimization problem has no solution. In this case
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max(Ivl, Iwl) is permuted into the pivot location before calling the recovery rou-
tine, FIXUP (see Fig. 4). The recovery routine is also called when the maximum

FIXUP( a, k, m, n

Apply a random shift
r random()
atom atom - r. am+lm
a..+ a+ + r (a.+.+ a..)
atom+2 r $ am+lm+l

Chase bulge down to row k- 1
for m + l tok-1

m ai-li+l/ai-li
ai-li+l 0
aii aii m ai+li
ai+l ai+ + m (a++ a)
aii+2 m ai+li+2
ai+li+l ai+li+l m ai+li

end for
Fill in row k- 1
if(k=m+l) m=r
for k + 2 to n- 1

ak-li m * aki
end for
Eliminate row k- 1
for i- k + l to n-1

rn ak-li/ak- lk
ak- li 0
for j k to n- 1

jakj akj + m aij
for =kton-1

aji aji m ajk
end for

FIG. 4. Recovery algorithm to apply an implicit single-shift LR iteration to rows m through k
of the partially reduced matrix.

element in N-Nc exceeds a bound set by the user. If the maximum element is less
than the bound, then the algorithm simply reduces column k followed by row k.

CLAIM. The minimization problem can be solved in O(n-k) time by observing that
for a given permutation, the maximum multipliers in column k and row k, respectively,
are:

Proof. Using Fig. 1 as a reference, given that column k is reduced first by an
elementary similarity transformation NcAN[1, the expression for mc is obvious. The
form of Nc is
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and after the transformation is applied, Gv and ?T wTG-1. Thus, ?_T
wTG-IGv wTv. Since 0 for > 1, wv wTv. Since Nc is elementary,

v so v wTv or wTv/v. Therefore,

For each possible choice of permutation only three terms must be evaluated: mc, mr,
and . At step k there are only n-k- 1 possible permutations. Thus the permutation
that minimizes the maximum element can be found in O(n- k) time, which totals
O(n2) for the entire reduction.

The complexity of the overall tridiagonalization algorithm given in Fig. 2 is
(4/3)n3 + O(n2) flops, where a flop is defined as a floating point operation of the form
a/ b.c. This complexity is based on the assumption that the recovery routines, which
we discuss in the next section, are called only a constant number of times.

An error analysis of tridiagonalization methods is given in [21]. Dax and Kaniel
[2] also give an error analysis that shows that the bound on the eigenvalue errors
depends on the spectral condition number of the tridiagonal matrix. The potential
for wTv to vanish means that no finite tridiagonalization algorithm can be guaranteed
to succeed. Even if the multipliers are all bounded below some modest value, say 10,
there is the potential for catastrophic roundoff error.

On the other hand, this large growth has not been observed in practice using our
algorithm. Instead, a gradual loss of similarity is observed as the matrix size increases.
This degradation is conjectured to be caused by accumulated roundoff from using
multipliers larger than one. Research continues into bounding the expected growth,
and a future report will describe the results.

4. Recovery methods. In this section we describe the two recovery algorithms
used in conjunction with the threshold pivoting algorithm. In most tridiagonalization
schemes breakdown is defined as the situation where a multiplier (in our case an
element in N-Nc) has exceeded some tolerance. When breakdown occurs, a number
of options are available to circumvent the problem. Sometimes a local transformation
can decrease the size of the multiplier so that the reduction can continue [11], but
local methods cannot be robust because the tridiagonal form MAM-1 is unique once
the first column and row of the transformation matrix M are fixed [13]. Thus, if
this unique form has a small pivot, breakdown cannot be avoided without changing
the first row or column. In [21], Wilkinson states that if a breakdown occurs, one
can go back to the beginning and apply the transformation NAN- in the hope
that breakdown will not occur again. No method of choosing N has been found that
guarantees that the breakdown condition found in A will not exist in NAN-. For
this reason, all proposed recovery methods choose another N and repeat the process
if the previous choice of N fails to eliminate the breakdown condition.

The two recovery methods we propose differ in their choice of N, the amount of
work they perform, and the matrix to which they are applied. In the first method,
which is a variant of recovery methods proposed by Wachspress [8] and Watkins [19], a
single random implicit single-shift LR iteration is applied to the matrix from the point
of the last deflation down to row k. Since the partially reduced matrix is tridiagonal
down to row k, one can start the iteration with either of the following forms of N:

0 1 0 r 1
0 I_ 0
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Our first recovery method applies these two starting matrices alternately and uses
a random value uniformly distributed on [0.1,1] for r. Figure 4 shows the FIXUP
algorithm, which uses the left starting matrix above. Assuming no deflations have
occurred, the first operations of the FIXUP algorithm introduce a nonzero in the a13
position. This "bulge" is then chased down the matrix with elementary similarity
transformations to the point of the previous breakdown. Given that the breakdown
occurs at row k, this chasing procedure fills in row k- 1, which then must be annihi-
lated to return the matrix to its prerecovery structure.

If breakdown occurs during the recovery or if the original breakdown condition
persists after the recovery step, the recovery method is repeated with the alternate
form of N. After three consecutive unsuccessful recovery attempts, the multiplier
tolerance is temporarily increased by a factor of 10. After three additional unsuccessful
attempts at this higher tolerance, the recovery attempts on the partially reduced
matrix stop, and our second recovery method, NEWSTART, is initiated.

A small number of consecutive failures of the first recovery method is usually
indicative of a matrix with a large number of small inner products. When this occurs,
a random orthogonal matrix Q is applied to the original matrix, and the reduction is
restarted with the modified matrix QAQT. The purpose of this operation is to reduce
the probability of small inner products occurring in the modified matrix. The algo-
rithm is simple and efficient to apply, requiring only O(n2) flops to execute, because
Q is chosen to be a Householder transformation Q (I-2wwT). This routine, which
we call NEWSTART, is initiated only as a last resort because it requires restarting
the reduction.

5. Results. We report on empirical studies of three aspects of the new algo-
rithm: its speed, robustness, and accuracy. All of the studies are based on finding
the eigenvalues of nonsymmetric matrices, which is the primary use of the tridiag-
onalization algorithm. All computations were performed in double precision on a
Sun 3/280.

To perform these studies we developed an algorithm, which we will refer to as
TLR, for finding the eigenvalues of nonsymmetric tridiagonal matrices. TLR initially
applies a diagonal similarity transformation to the tridiagonal matrix to scale the
superdiagonal to contain all ones. Wilkinson [21] suggests this transformation because
the superdiagonal is invariant under implicit LR iterations. Thus, the transformation
saves space and floating point operations. In fact, the storage and flops per iteration
are the same as for the symmetric tridiagonal case when using LR iteration. TLR
applies implicit double shift LR iterations to the scaled tridiagonal matrix until all
the eigenvalues are found. If the LR iteration breaks down due to encountering a
small pivot element (which can occur because pivoting is not performed) or it fails
to converge to an eigenvalue after 30 iterations, then an arbitrary shift is applied to
the matrix.

The potential dangers of using LR iteration are well documented [21], although
some recent research [20] has attempted to put the algorithm on firmer theoretical
ground. We chose LR iteration because it preserves nonsymmetric tridiagonal form.
Our experience with TLR has been positive, as it has never failed to converge. On the
other hand, we have seen tridiagonal matrices where the eigenvalues computed with
TLR are not as accurate as the results from the standard EISPACK routines. For the
interested reader, Dax and Kaniel [2] present more elaborate methods to improve the
stability of the LR iteration and to refine the eigenvalues of the tridiagonal matrix
iteratively.
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A second alternative, used in [10], is to transform the real nonsymmetric tridiag-
onal matrix into a complex symmetric tridiagonal matrix. This is done by scaling the
ith subdiagonal and superdiagonal entries to, where bi and ci are opposing sub-
diagonal and superdiagonal entries, respectively. Then a complex arithmetic version
of the QL iteration can be applied to finding all the eigenvalues. Details of the algo-
rithm can be found in [1] along with a discussion of complex symmetric tridiagonal
matrices and potential problems with finding their eigenvalues.

Table 1 compares the execution times in seconds of our algorithm with the EIS-
PACK routines ELMHES, ORTHES, and HQR, for a series of test matrices ranging
in size from 50 to 300. The matrices were random with entries distributed uniformly
over the interval [-1, 1]. ELMHES reduces A to Hessenberg form using stabilized ele-
mentary similarity transformations while ORTHES reduces A to Hessenberg form H
using Householder transformations. HQR finds the eigenvalues of H using an implicit
double shift QR iteration. Our algorithms are presented in the table as A2TRI and
TLR. A2TRI reduces A directly to tridiagonal form T as described in 3. TLR finds
the eigenvalues of T. The time for either ELMHES or ORTHES should be added to
the time for HQR and compared with the sum of the times for A2TRI and TLR.

TABLE 1
Execution times in seconds on a Sun 3/280 for our new

routines and the standard EISPACK routines.

n ELMHES
50 2.70
100 21.58
128 44.92
150 72.28
200 173.20
250 338.54
300 582.64

EISPACK
ORTHES

4.66
37.60
80.06

136.88
314.78
631.42
1136.34

HQR
12.92
92.08

208.62
334.56
667.78

1388.36
2305.14

NEW
A2TRI TLR

3.80 0.70
32.90 2.70
65.01 4.46

110.62 6.72
240.02 10.86
509.94 16.94
893.48 23.84

It is clear from the table that our method can find the eigenvalues of a dense non-
symmetric matrix much faster than the EISPACK routines. A complexity analysis,
where low order terms are ignored, shows that TLR requires 5n flops per iteration ver-
sus 4n2 flops for HQR. While the number of iterations varies between TLR and HQR,
they both require only a few, usually fewer than 5, iterations per eigenvalue. Further,
the arithmetic complexities of ELMHES and ORTHES are (5/6)n3 and (5/3)n3, re-
spectively, while the complexity of A2TRI is (4/3)n3 flops, assuming A2TRI needs to
apply FIXUP only a constant number of times. The results in Table 1 reflect speedups
greater than three for A2TRI/TLR over ELMHES/HQR, which are consistent with
the relative complexities of the routines.

Random matrices are not necessarily good choices for testing the robustness of the
tridiagonalization. Therefore, we input most of the nonsymmetric eigenvalue test ma-
trices contained in the book by Gregory and Karney [9] as well as the EISPACK test
suite of real general matrices into our algorithm. The test set included ill-conditioned,
defective, and derogatory matrices in sizes up to 20 x 20. All were reduced success-
fully, although several required calls to the routine FIXUP. One matrix, Wilkinson’s
notoriously ill-conditioned matrix, required a call to the routine NEWSTART before
it could be reduced. The eigenvalues calculated from the test matrices in Gregory and
Karney were accurate to the expected number of digits given the condition numbers of
the problems except for Wilkinson’s matrix where only three digits of accuracy were
obtained, instead of the expected eight digits. Table 2 gives the number of fixups
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executed by A2TRI and the largest relative error in any eigenvalue for each problem
in the EISPACK test suite. Whenever the error is greater than 10-13, the condition
number of the corresponding eigenvalue is also given. In four cases, no error is made
because A2TRI is able to permute the matrix into triangular form. In the two cases in
which the relative error is greater than 1, the tridiagonal matrix returned by A2TRI
is similar to the original matrix and all the error occurs in TLR. (This is not true
in general.) There are also four cases where a significant amount of work is avoided
because the problem deflates during the reduction to tridiagonal form. The apparent
bad behavior in problem 2 is deceptive, because this problem has eigenvalues (A)
spread over six orders of magnitude. Let A be the exact eigenvalues of A. Wilkinson
[21] gives a bound on the absolute error of the eigenvalues as

A A-I_ II A ,
where is machine precision and is the inner product of the normalized lef nd
right eigenvectors of A. For problem 2 [I A I1 10 nd 1. Assuming 10-,
the absolute error for the in problem 2 should be better thn l0- nd in fct we
see an absolute error of 10-s.

To determine the relative accuracy of the new algorithms, two comparisons were
performed on a range of problem sizes. In the first comparison, the eigenvalues of the
tridiagonal matrix were computed with HQR and compared with the corresponding
eigenvalues of the original matrix as computed with ORTHES/HQR. This measures
the loss of similarity caused by the reduction to tridiagonal form. The second com-
parison was between the eigenvalues computed by A2TRI/TLR and the eigenvalues
computed by ORTHES/HQR. Figure 5 presents the accuracy seen during these com-

relative
difference from
ORTHES/IIQI

parisons.

10-6

10-’
10-8
10-9
10-1o
10-11
10-12
10-13
10-14
10-15

FIG. 5.

R

A2TRI/HQR

50 100 150 200

Typical degradation of eigenvalue accuracy seen with A2TRI and TLR for random
orthogonal matrices.

The graph clearly shows that the accuracy decreases as the matrix size increases.
Similar results have been observed with other tridiagonalization methods [2], [11].
All calculations were performed in double precision. To avoid variations due to ill-
conditioned eigenvalues, random orthogonal matrices were used in these tests. The
overall error of the new algorithms on random nonorthogonal matrices was comparable
but showed a larger variation between problems.

The main advantage of a faster algorithm is the ability to solve larger problems,
but the results of our study indicate that the accuracy of the larger problems may be
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TABLE 2
Number offixups, maximum relative error in any eigenvalue, and com-

ments (1/si is the condition number of the corresponding eigenvalue) for
A2TRI/TLR on the EISPACK test suite.

Problem
number

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35

EISPACK Test Suite of Real General Matrices
Number
of fixups

Relative error
in Ai
10-1
10-11
10-6
10-15
10-15
10-13
10-9
0

10-6
10-14
10-15
2.5

10-14
10-15
10-15

0
0
0

10-7
10-16
10-16
10-14
10-13
10-9
10-16
10-16
107

10-16
10-16
10-13
10-12
10-3
10-16
10-16
i0-1

Comments
=condition number of Ai)

1/si- 1015
zero matrix
1/si i016

1/si 1015, Tridiagonal OK

permuted to triangular form
permuted to triangular form
permuted to triangular form
1/s 1012

1/s 1023

deflated during reduction
1/s{ oo, Tridiagonal OK

deflated during reduction

1/si 1013
1/8i 1011
deflated during reduction
deflated during reduction

1/s. 1014

poor. Methods exist for iteratively refining the accuracy of eigenvalues [4]. Presently,
we are investigating an algorithm that improves the accuracy of the eigenvalues de-
termined by TLR and avoids factorization of the original matrix by exploiting the
already reduced tridiagonal form T. The algorithm differs from the iterative refine-
ment in [2] in that the eigenvalues converge to the eigenvalues of the original matrix
rather than those of T. Details of this work can be found in [3].

We have presented an algorithm for reducing a general matrix directly to tridi-
agonal form. Pivots are chosen that minimize the maximum element in the transfor-
mation matrices. We have described situations where the condition number of the
transformation matrices can be large, and we have presented two recovery methods,
which work well in practice when such situations arise. The new algorithm is fast and
significantly broadens the class of matrices that can be successfully reduced.
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CHASING ALGORITHMS FOR THE EIGENVALUE PROBLEM*

D. S. WATKINSt AND L. ELSNEI:t:
Abstract. A generic chasing algorithm for the matrix eigenvalue problem is introduced and

studied. This algorithm includes, as special cases, the implicit, multiple-step QR and LR algorithms
and similar bulge-chasing algorithms for the standard eigenvalue problem. The scope of the generic
chasing algorithm is quite broad; it encompasses a number of chasing algorithms that cannot be
analyzed by the traditional (e.g., implicit Q theorem) approach. These include the LR algorithm
with partial pivoting and other chasing algorithms that employ pivoting for stability, as well as hybrid
algorithms that combine elements of the LR and QR algorithms. The main result is that each step
of the generic chasing algorithm amounts to one step of the generic GR algorithm. Therefore the
convergence theorems for GR algorithms that were proven in a previous work [D. $. Watkins and L.
Elsner, Linear Algebra Appl., 143 (1991), pp. 19-47] also apply to the generic chasing algorithm.

Key words, eigenvalue, QR algorithm, GR algorithm, chasing the bulge, subspace iteration
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1. Introduction. Two of the best known algorithms for calculating eigenvalues
and eigenvectors of matrices are the QR and LR algorithms [15], [12]. There are
other, not so well known, algorithms of the same type, e.g., the SR algorithm [8], [9],
[6] and the HR algorithm [5], [7], [6], which can be useful in special situations. In
[14] we developed a general convergence theory of GR algorithms that includes the
QR, LR, SR, HR, and similar algorithms as special cases. In this paper we consider
in general terms the question of how such algorithms can be implemented.

Algorithms in this class are usually implemented implicitly, as chasing algorithms:
The matrix whose eigenvalues we would like to know is first reduced to upper Hessen-
berg form. Then the chasing algorithm is set in motion by a similarity transformation
that introduces a bulge in the Hessenberg form near the upper left-hand corner of
the matrix. A sequence of similarity transformations then chases the bulge downward
and to the right, until the Hessenberg form is restored. At this point the first chasing
step is complete. Chasing steps are repeated until (hopefully) the matrix converges
to upper triangular or block triangular form, exposing the eigenvalues. There are a
number of types of similarity transformations that can be used to chase the bulge.
For example, certain unitary transformations can be used, in which case each step of
the chasing algorithm amounts to a step of the QR algorithm. If, on the other hand,
lower triangular transformation matrices are used, each step of the chasing algorithm
amounts to a step of the LR algorithm.

In this paper we introduce and study a generic chasing algorithm. After describing
the algorithm at the beginning of 2, we state and prove the main result, which
is that no matter what kind of transformations are used to chase the bulge, each
chasing step amounts to one step of the generic GR algorithm [14]. Consequently
all of the observations that we made in [14] concerning the generic GR algorithm
apply to the chasing algorithm as well. To wit, each step of the chasing algorithm
amounts to a step of nested subspace iteration combined with a change of coordinate
system. All of the convergence theorems of [14] apply. Roughly speaking, the chasing
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algorithm will converge, provided that (i) reasonable choices of shifts are made, and
(ii) the condition numbers of the transforming matrices are kept under control. If the
generalized Rayleigh quotient shifting strategy is used, quadratic, and in some cases
cubic, convergence can be achieved. We close 2 with a brief discussion of some of
the types of transformation that can be used to implement the chasing algorithm.

Our approach to chasing algorithms differs from the traditional one. For pur-
poses of illustration, let us consider the standard way of justifying the implicit QR
algorithm. A QR step consists of a similarity transformation B Q-1AQ, where
the transforming matrix Q is unitary. One can show that the unitary Q is more or
less uniquely determined by its first column. (This fact is known as the implicit Q
theorem; see, for example, [12, Thin. 7.4.2].) The implicit QR (chasing) algorithm
performs a different similarity transformation/ (-IA(, but Q is constructed in
such a way that its first column is proportional to the first column of Q. It follows
from the implicit Q theorem that Q and Q are essentially the same, and consequently
B and/ are essentially the same.

By contrast, our generic chasing algorithm performs repeated similarity trans-
formations B G-IAG, where the nature of G is left unspecified, except that it is
nonsingular and its first column is given. In this more general context, we cannot
assert that G is more or less uniquely determined. All we can say is that no matter
how the chasing step is carried out, it effects one step of the generic GR algorithm.
But this is all we need!

Our approach has the following advantages: (i) It covers implicit variants of the
QR, LR, SR, and HR algorithms all at once. (ii) It covers the implicit LR algorithm
with partial pivoting and other chasing algorithms that employ pivoting for stability,
none of which are covered by the traditional approach. (iii) It covers hybrid chasing
algorithms as well. For example, an algorithm that uses a mixture of unitary and
lower triangular transformations to chase the bulge is a QR-LR hybrid that cannot
be analyzed by the traditional approach. Thus our approach encompasses a much
broader class of chasing algorithms.

The theorems associated with the traditional approach (e.g., implicit Q theorem)
can be derived via our approach by considering the effect of restricting the types of
transformations that can be used to do the chasing. This is the main business of 3.
Here we restrict our attention, for clarity, to the nonsingular case. This is the generic
case, in which none of the shifts (defined in 2) are eigenvalues of A.

In 4 we consider what happens during a singular chasing step. We show that if
of the shifts are eigenvalues, a block can, in principle, be deflated from the

matrix after the chasing step. As far as the rest of the matrix is concerned, normal
progress is made during the chasing step. That is, a step of nested subspace iteration,
combined with a change of coordinate system, takes place. Also considered in 4 is
the connection between our approach and the traditional approach in the singular
case. Actually the results of 4 include those of 3 as a special case. We have chosen
to present the nonsingular case separately because (i) it is generic, and (ii) it is much
simpler.

Finally, we wish to emphasize that the theorems in this paper are not at all
difficult, nor are the tools used to prove them by any means novel. This paper’s main
contribution is a new, more flexible, way of looking at chasing algorithms that allows
for greater generality than has been attained previously.

2. The generic GR and chasing algorithms. We described the generic GR
algorithm in [14]. For completeness, we briefly repeat the description here. Each GR
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algorithm is based on a GR decomposition, which is a rule that specifies a unique
way of decomposing any matrix C in some large class of matrices ( into a product
C GR, where G is nonsingular, and R is upper triangular. Well-known examples of
GR decompositions are the QR and LR decompositions. Corresponding to each GR
decomposition is a GR algorithm, an iterative algorithm for finding the eigenvalues
of matrices. Given a matrix A (nn, whose eigenvalues we would like to know, the
GR algorithm produces a sequence of similar matrices that, hopefully, converges to
upper triangular or block triangular form. A GR step on A is performed as follows.
Choose a positive integer m, the multiplicity of the step. Choose m shifts a,..., am,
complex numbers that approximate eigenvalues of A. Let p(A) (A-a)... (A-am).
Find the GR decomposition of p(A): p(A) GR. Finally, replace A by the similar
matrix B G-AG.

The generic chasing algorithm. A matrix A (aij) E Tnn is said to be in
upper Hessenberg form if aij 0 for all > j + 1. It is in irreducible upper Hessenberg
form if it satisfies the additional condition aij 0 for all j + 1.

Let A E Tnn be in irreducible upper Hessenberg form, let m be a positive
integer, let al,’",am be approximations to eigenvalues of A, and let p(A)
(A- al)... (A- am). A step of the generic chasing algorithm of multiplicity m
replaces A by B G-AG, where B is upper Hessenberg, and the first column of G
is proportional to the first column of p(A).

The algorithm begins by computing the first column of p(A). This is given by
x p(A)e, where e [1, 0,..., 0]T. To avoid potential problems with overflow or
underflow, we actually compute z x/I x using any convenient norm. This can
be done efficiently, without actually forming p(A), by the recursion z (A- ai)z,
z z/llzll, 1,...,m, starting from z e. Because A is irreducible upper
Hessenberg and p has degree m, z satisfies Zm+ O, and zi 0 for > m / 1.
The next step is to determine a nonsingular matrix Go diag(o, In-m-}, with
(0 T(m+)(m+), whose first column is proportional to z. Obviously (0 is not
uniquely determined. Some common ways of constructing (0 will be discussed below.
Once we have Go, we use it to transform A to Ao GAGo. It is a simple matter
to check that A0 has the form

That is, it is almost in upper Hessenberg form, except that it has a triangular bulge
with height m rows, base m columns, and vertex at position (m + 2, 1). The rest
of the algorithm consists of returning Ao to upper Hessenberg form. The first step
in this direction is to transform Ao to AI G-AoG, where G has the following
form: G diag{1,,In-m-2}, (i ((m+l)x(m+l), and the first column of (i is
proportional to the vector y (m+ consisting of the (2, 1) through (m+2, 1) entries
of A0. It is clear that G1 is not uniquely determined and that any of the techniques
for constructing (0 can also be used to construct (. Since (-y ce for some
nonzero constant c, left multiplication of A0 by G-1 will create zeros in the first
column of the product, below the (2, 1) entry. The subsequent right multiplication of
GAo by G leaves the first column unaltered, but it does create new nonzero entries
in row m + 3, in positions (m + 3, 2) through (m + 3, m + 1). Thus A has the form
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The bulge has been "chased" one position down and to the right, so that its vertex
now lies at posit_ion (m-4-3,2)_. The next step produces A2 GIA1G2, where
G2 diag{1, 1, G2, I,-m-3}, G2 being defined analogously to G1. A2 has a bulge
that is down and to the right one position from that of A. After n- m- 2 such
steps, the bulge will have been chased to the lower right-hand corner of the matrix. An
additional m steps shrink the bulge until it disappears completely. Another viewpoint
is that the bulge is pushed off of the edge of the matrix. The similarity transformations
used in this phase have the form Gk diag{Ik,k}, where k E ((n-k)x(n-k),
k n-(m-+-l),...,n-2. After atotalofn-2 steps we are done; we let B
An-2 G-AG, where G GoGG2...G,-2. Each of the matrices G1,..., G,-2
has e as its first column, so the first column of G is the same as the first column of
Go, which is proportional to the first column of p(A).

In the past it has been customary to take m to be a small number, say one or two.
The advantage of taking larger values of m is that it improves the vectorizability of
the code. The main operations can be expressed as matrix-vector products, and level
2 BLAS [11] can be used. It is also possible to organize the algorithm so that several
columns are chased at a time, using tools such as the WY representation of reflectors
[4]. This allows the main operations to be expressed as matrix-matrix products, and
the algorithm can be coded using level 3 BLAS [10]. This increases the scope for
parallelization and efficient use of hierarchical memory. Bai and Demmel [3] have
implemented such a version of the QR algorithm and have experimented with values
of m as high as 20.

The main point of this paper is that the chasing algorithm effectively performs
step of the generic GR algorithm. The proof follows from three lemmas, whose proofs
are easy exercises. We begin with some terminology. Given x E T’ and A
the Krylov matrix K(A,x) nxn is defined by K(A,x) [x, Ax, A2x, An-lx].
Clearly K(A, fix) g(A,x) for every scalar

LEMMA 2.1. /fx p(A)el, then g(A,x) p(A)g(A,e).
LEMMA 2.2. For every nonsingularG e (nxn, G-1K(A,x) K(G-AG, G-x).
Lemmas 2.1 and 2.2 are closely related. In fact, Lemma 2.1 for nonsingular p(A)

is a special case of Lemma 2.2. However, Lemma 2.1 is valid regardless of whether or
not p(A) has an inverse, the key point being that p(A) commutes with A.

LEMMA 2.3. If A is upper Hessenberg, then K(A, e) is upper triangular. Fur-
thermore A is an irreducible upper Hessenberg matrix if and only if K(A, e) is upper
triangular and nonsingular.

We are now set to prove the main result.
THEOREM 2.4. Let A (nxn be an irreducible upper Hessenberg matrix, and let

p be a polynomial. Let G be a nonsingular matrix whose first column is proportional
to x p(A)e, such that B G-IAG is upper Hessenberg. Then there exists an
upper triangular matrix R such that p(A) GR.

Proof. By hypothesis, Ge ax for some nonzero a. Applying Lemmas 2.1 and
2.2 we find that G-lp(A)K(A,e) G-IK(A,x) a-IK(B, el). By Lemma 2.3,
K(A, e) is both nonsingular and upper triangular, and K(B, e) is upper triangular.
Therefore p(A) Ga-K(B,e)K(A,e)- GR, where R is the upper triangular
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matrix a-IK(B, el)K(A, el) -1. D
Theorem 2.4 shows that the generic chasing algorithm performs a generic GR

step implicitly. In this case the rule for calculating the GR decomposition (i.e., con-
structing G from p(A)) is given by the chasing algo_rithm itself.

There are numerous ways of const_ructing the G in the chasing algorithm. Each
( satisfies (el =/y, or equivalentl_y G-ly -1el, for some y. One way to do this,
which works if Yl 0, is to define G to be a Gauss transformation:

1

(1)
12 1

lm+l 1

where li Yi/Yl. If this choice is used, the chasing algorithm amounts to the LR
algorithm without pivoting_ (cf. Example L below). We can eliminate the requirement
that yl 0 by defining G PL, where P is either the identity matrix or a per-
mutation matrix, and L has the form (1). If lYll max{[yl[,..., lYre+l[}, we define
P to be the identity matrix. Otherwise we take P to be the transposition matrix
whose action on a column vector is to interchange its first and ith entries, where
is the first index for which lYI- max{lYll,"’, lYm+ll}. Defining a new vector z by
Py z, we then take L to have the form (1), where l z/zl. This choice yields the
LR algorithm with partial pivoting. It is also possible to take the ( to be unitary
matrices, for example, reflectors (Householder transformations) [12]. In this case the
chasing algorithm amounts to the QR algorithm (cf. Example Q below).

For some problems the choice of transformation type is dictated by the structure
of the matrix. For example, if A0 is normal, and we wish to preserve that property,
we should use only unitary transformations. If A0 is Hamiltonian, and we wish to
preserve that property, we should use symplectic transformations [6]. This gives the
SR algorithm (cf. Example S below).

Other problems have no special structure to exploit. For these problems the
transformation type is chosen on the basis of efficiency and stability. From [14] we
know that no matter how we choose the G, we are doing subspace iteration. The
theory developed in [14] suggests that our only consideration is to make the trans-
forming matrices as well conditioned as possible. We might then conclude that we
should use only unitary transformations, which are optimally conditioned; that is,
we should use the QR algorithm. This conclusion ignores the question of cost. A
chasing step using reflectors has about double the flop count of a chasing step using
Gauss transformations. Thus LR steps are about half as expensive as QR steps. Of
course, the use of Gauss transformations without pivoting is risky; matrices of the
form (1) can be made arbitrarily ill conditioned by making the mu_ltipliers i large.
On the other hand, Gauss transformations with partial pivoting, G PL, tend to
be well conditioned, as the multipliers never exceed one in modulus. Furthermore,
as the iterates approach triangular or block triangular form, the multipliers in the
transformations that are generated tend toward zero. As the multipliers approach
zero, the condition numbers approach one. Of course, this does not guarantee that
the condition numbers of products of many such transformations will remain small.
Another possibility, which we already mentioned in the Introduction, is to mix Gauss
transformations with unitary transformations. Our theory allows us to do this. All
that matters is that the condition numbers of the transforming matrices be kept under
control. A hybrid algorithm of this type might well possess a superior combination of
speed and robustness.
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3. Connection with the traditional approach. In this section we show how
our approach can be used to establish the implicit

Q theorem and other results associated with the traditional approach to chasing
algorithms. For clarity we restrict our attention to the nonsingular case. That is, we
assume that p(A) is nonsingular, which is the same as to say that none of the shifts
al,..., am are eigenvalues of A. We begin by noting that in this case, the matrix B
produced by the chasing algorithm is in irreducible upper Hessenberg form.

THEOREM 3.1. Let A E (nn be an irreducible upper Hessenberg matrix, and
let p be a polynomial for which p(A) is nonsingular. Let G be a nonsingular matrix
whose first column is proportional to x p(A)el, such that B G-IAG is upper
Hessenberg. Then B has irreducible upper Hessenberg form.

Proof. The hypotheses are the same as in Theorem 2.4, except that now we
are assuming that p(A) is nonsingular. As in the proof of Theorem 2.4, we have
g(B,e) aG-lp(A)g(A,e). Since G-, p(A) and g(A, el) are all nonsingular,
K(B, e) must also be nonsingular, in addition to being upper triangular. Therefore,
by Lemma 2.3, B has irreducible upper Hessenberg form.

As we have already mentioned in the Introduction, the transforming matrix G is
not uniquely determined by its first column. However, G does have some structure
that is specified uniquely, namely, its flag. This useful concept comes from geometry
[1], [2]. A flag in Tn is just a nested sequence of subspaces of dimensions 1, 2,..., n.
Given a nonsingular matrix S Tnn with columns s,..., sn, we define the flag of
S, denoted flag(S), to be the sequence {(s}, (s, s2}, (s, s2, 83},..’,
determined by the columns of S. It is a simple matter to prove the following lemma.

LEMMA 3.2. Two nonsingular matrices S, G e Tnn have the same flag i] and
only if there is a nonsingular upper triangular matrix R such that S GR.

Theorem 2.4 shows that p(A) GR for some upper triangular R. Since we
are now assuming that p(A) is nonsingular, R must also be nonsingular. Therefore
flag(G) flag(p(A)). This holds regardless of the type of transformations that are
used to build G. We did not use the term "flag" in [14]. However, the nested subspace
iterations that are effected by GR steps can be seen to be a consequence of this equality
of flags.

From Lemma 2.3 we know that K(A, e) is upper triangular and nonsingular.
Therefore, by Lemma 2.1, flag(p(A)) flag(g(A,x)). Consequently flag(G)
flag(K(A,x)). This is actually a special case of a known result that characterizes
transformations that reduce a matrix to upper Hessenberg form: Let A nn, and
suppose there is a vector x Tn for which K(A,x) is nonsingular. Let G be a non-
singular matrix whose first column is proportional to x. Then B G-AG is upper
Hessenberg if and only if flag(G) flag(K(A,x)). If B is upper Hessenberg, then it
is irreducible. See especially [6, Satz 4.4.1], but also [12, Thm. 7.4.3]. The case of
singular K(A,x) is also covered in [6], but we will give a more general formulation of
that case in 4. For now we will state a portion of this result as a lemma for immediate
use.

LEMMA 3.3. Let A nn and let G be a nonsingular matrix such that B
G-AG is in irreducible upper Hessenberg form. Let x n be a vector proportional
to the first column of G. Then g(A,x) is nonsingular, and flag(G) flag(g(A,x)).

Proof. By Lemma 2.2, K(A,x) Ga-K(B, el). Since B is irreducible up-
per Hessenberg, K(B,e) is upper triangular and nonsingular. Thus flag(G)
flag(g(A, x)).

The transforming matrices G utilized by GR algorithms always lie in GLn(T),
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the group of nonsingular matrices in nxn. Nothing more than that is said, in gen-
eral. However, certain GR algorithms (e.g., the QR algorithm) use only transforming
matrices that lie in some proper subgroup G (e.g., the unitary group). Similarly, one
may be able to implement the chasing algorithm in such a way that the transforming
matrices all lie in (e.g., implicit QR algorithm). The next theorem shows that in
such cases the transforming matrices produced by the two algorithms are the same
up to right multiplication by a matrix in a certain subgroup q’, which we call the
trivial group. If G is not too large, then :Y really is trivial, and we can conclude
that the chasing algorithm and the GR algorithm produce essentially the same result.
Examples are given below.

THEOREM 3.4. Let be a subgroup of GL,,(). Define the trivial group
associated with by :Y Abl, where bl denotes the subgroup of GLn() consisting
of upper triangular matrices. Let A E (nxn, let G, G have proportional first
columns, let B G-lAG and -lA, and suppose B and [ are both irreducible
upper Hessenberg. Then there exists T :Y such that GT and T-1BT.

Proof. By Lemma 3.3, flag(() flag(K(A,x)) flag(G), where x is a vector
proportional to the first columns of G and G. Therefore there exists T / such that

GT. But T G-(, so T 6 ;. Thus T 6 ; A L/= T. [3

Example Q. The m-step QR algorithm performs a similarity transformation/
(-A(, where ( is unitary and p(A) (/. Similarly, if the chasing algorithm is
carried out using unitary transformations exclusively, it performs a similarity trans-
formation B Q-AQ, where Q is unitary and p(A) QR. Since ( and Q must
have proportional first columns, Theorem 3.4 can be applied, with the role of played
by the unitary group. The group T associated with this choice of ; is thefiroup of
diagonal matrices whose main diagonal entries have unit modulus. Thus Q QD,
where D is diagonal with Idiil 1 for 1,..., n. This is the complex version of
the implicit Q theorem. Thus the chasing algorithm using unitary transformations
produces essentially the same result as the QR algorithm.

Example L. The m-step LR algorithm without pivoting performs a similarity
transformation /} ],-A, where , is unit lower triangular, and p(A)
Similarly, if the chasing algorithm is carried out using Gauss transformations (1)
exclusively, it performs a similarity transformation B L-AL, where L is unit
lower triangular, and p(A) LR. Thus Theorem 3.4 applies with ; taken to be the
group of unit lower triangular matrices. Then T {I}, so ( G and/ B. We
conclude that the chasing algorithm using Gauss transformations without pivoting
produces exactly the same result as the LR algorithm without pivoting.

Example S. Let n and m be even. The m-step SR algorithm performs a similarity
transformation by a symplectic matrix. Taking G to be the symplectic group (in
shuffled form (cf. [14])), we find that :Y is the group of all block diagonal matrices
T diag{Tl,... ,Tk} (where k n/2), for which each block has the form

Ti-[ ai bi 10 aV,

Thus the chasing algorithm using symplectic transformations produces a result that
differs from the output of the SR algorithm only by a similarity transformation of
this simple form.

Remark. In the case 6 GLn(), Theorem 3.4 reduces to part (iii) of [6,
Satz 4.4.1].
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4. The singular case. Before considering the singular case, we introduce some
new terminology and present some preliminary results. Given B 6 Cnn and j 6

{1,..., n- 1}, we will say that B is j-Hessenberg if its first j columns are in upper
Hessenberg form; that is, if B has the form

B B2 ]B2 B22

where Bll 6 CJJ is upper Hessenberg, and B21 6 ((n-j)xj consists entirely of zeros,
with the possible exception of the single entry bj+,j in the upper right-hand corner.
We will call B j-reducible j-Hessenberg if it is j-Hessenberg, BI is irreducible upper
Hessenberg, and B2 0. For the sake of completeness we also include the case
j n; the term n-reducible n-Hessenberg will be a synonym for irreducible upper
Hessenberg. The first lemma generalizes Lemma 2.3. Again, we leave the proof as an
exercise.

LEMMA 4.1. Let B 6 Cnxn and suppose K(B, e) has rank j. Then the following
four conditions are equivalent:

(i) K(B,e) is upper triangular.
(ii) K(B, e) has the form

(2) K(B,e)= [ SIO Sn]0
where S 6 (JJ is upper triangular and nonsingular.

(iii) B is j-Hessenberg.
(iv) B is j-reducible j-Hessenberg.
Extending the definition of the Krylov matrix K(A,x), we define the n x j

Krylov matrix K(A, x, j) by K(A, x, j) Ix, Ax, A2x, AJ-l.x]. We also need to
extend the definition of the flag of a matrix. Let S 6 Cn have linearly inde-
pendent columns s,..., sj. We define the flag of S to be the nested seqence of j
subspaces { (s), (s, s2), (s, s2, s3),’-., (s, s2,..., s} }. Generalizing Lemma 3.2, we
have Lemma 4.2.

LEMMA 4.2. Two full-rank matrices S, G 6 (nj have the same flag if and only
if there is a nonsingular upper triangular matrix R 6( such that S GR.

The next theorem extends parts (i) and (ii) of [6, Satz 4.4.1].
THEOREM 4.3. Let A 6 Cn, and x 6 (n, x # O, with rank(K(A,x)) j. Let

G 6 cnn be a nonsingular matrix whose first column is proportional to x, and let
nx3 nxLn 3)B G-IAG. Define submatrices G and G2 -" by G [G1,G2].

Then the following three conditions are equivalent:
(i) B is j-Hessenberg.
(ii) B is j-reducible j-Hessenberg.
(iii) flag(K(A,x,j)) flag(G).
Proof. Since x aGe for some nonzero a, we have

(3) K(A, x) aGK(B, e

by Lemma 2.2. Thus the hypothesis of Lemma 4.1, rank(K(B, e)) j, holds. There-
fore (i) and (ii) are equivalent. We now show that (iii) is equivalent to (i) and (ii).
Suppose B is j-Hessenberg. Then K(B,e) is upper triangular and has the special
form (2). Writing (3) in block form, we find that it implies K(A,x,j) G(aSI),
where aS is upper triangular and nonsingular. Thus flag(K(A,x,j)) flag(G).
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Conversely, suppose flag(K(A,x,j)) flag(G1). Then K(A,x,j) GIS, where
S is upper triangular and nonsingular. We find by inspection that AK(A,x,j)
K(A,x,j)C, where C E JJ is a companion matrix:

1 0

1

In particular, C is irreducible upper Hessenberg. Combining the equations AK(A, x, j)
K(A,x,j)C and K(A,x,j) GS, we find that AGeS GSC, or AG GIH,

where H SCS- is irreducible upper Hessenberg Define F E (Tnn by F* G-and make the partition F [F, F2], where F e (nj. Then FG I e( and

FGI 0 ((n-j)j. Also

B B2 B2. FAG FAG2

Thus B F{AGI FGH H and B2 F{AG F{G-,H O. Therefore B
has j-reducible j-Hessenberg form. []

We are now ready to consider a step of the chasing algorithm for which p(A) is
singular. Write p(A) in the factored form

p(A) (A al)(A a) (A am).

p(A) is singular if and only if at least one of the shifts ri is an eigenvalue of A. Let
denote the number of shifts that are equal to eigenvalues of A. Here we count a

repeated shift according to its multiplicity as a zero of p, except that the number
of times we count it must not exceed its multiplicity as a zero of the characteristic
polynomial of A (algebraic multiplicity).

LEMMA 4.4. The rank of p(A) is n- .
Proof. Since A has irreducible upper Hessenberg form, its eigenspaces are one-

dimensional. Thus A has just one Jordan block [13] associated with each eigenvalue;
that is, A is nonderogatory. Let J diag{J,..., Jk} be the Jordan canonical form
of A. Since the Jordan blocks correspond to distinct eigenvalues, each shift can be
an eigenvalue of at most one block. For 1,..., k, let Ai be the eigenvalue as-
sociated with the block Ji, and let ni be the dimension of the block. Let i be the
number of shifts that are equal to Ai, and let i min{i, ni}. Then i= i. For
each i, consider the factored form p(Ji) (Ji- a)...(Ji- tim). The factor
Ji-at is nonsingular if and only if at Ai. If rt Ai, then Ji-at N,
where N is the nilpotent matrix with ones on the superdiagonal and zeros elsewhere.
Since i of the factors are equal to N, p(Ji) has the form p(Ji) MN MN,
where M is nonsingular. The nullity of N* hence also of p(Ji), is i. The nullity of
p(J) is the sum of the nullities of the blocks, which is . Thus rank(p(A)) rank(p(J))
n- p. F1

THEOREM 4.5. Let B G-AG be the outcome of one step of the generic chasing
algorithm in which rank(p(A)) n- j. Then p(A) GR, where R is an upper
triangular matrix o.f the form

R= [ RIO R2]0
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with Rll 6 upper triangular and nonsingular. Furthermore B has j-reducible
j-Hessenberg form:

The eigenvalues of B22 6( are just the v shifts ai that are eigenvalues of A.
Proof. From the proof of Theorem 2.4 we know that p(A) GR, where R

c-g(B,e)g(A,e)-. Since R must have rank j, so must g(B,e). Therefore, by
Lemma 4.1, K(B, e) must have the form (2). It follows immediately that R has the
same form. The form of B also follows from Lemma 4.1.

It would appear to be an easy result that the eigenvalues of B22 are exactly the
shifts that are eigenvalues of A. Consider first the case in which the eigenvalues of A
are distinct. The eigenvalues of B are just those of A]t(p(A)). The range of p(A)
is exactly the invariant subspace of A associated with the eigenvalues that are not
among the shifts. The eigenvalues of B22 are the remaining eigenvalues of A, namely,
those that are shifts. If A has multiple eigenvalues, this argument is clouded by
the multiplicity question: it is possible that B and B22 have common eigenvalues.
However, a careful inspection of p(J), where J is the (nonderogatory) Jordan form
of A, reveals that the argument can be extended to the general situation: If Ai is an
eigenvalue of J of multiplicity ni and is used as a shift of multiplicity vi, with vi < ni,
then Ai is an eigenvalue of J]R(p(J)) (hence of BI) with multiplicity ni- vi. Therefore
Ai must be an eigenvalue of B22 of multiplicity vi.

Theorem 4.5 shows that singular p(A) are desirable, as they allow the problem
to be deflated after one step. Of course this result ignores the effect of roundoff
errors, which will cause by+,j to be nonzero in practice. Experience suggests that the
computed bj+l,j will usually be large enough to prevent deflation.

Our final task is to extend Theorem 3.4 and its corollaries (Examples Q, R, and
S). Let be a subgroup of GLn((), and for j 1,..., n, let j denote the subset
of GLj() consisting of all G E CJJ for which there exist X E Tj(n-j) and Y

(,-j) (n-j) such that a
0
x
y 6. It is easy to show that Gj is a subgroup of GLj().

Let b/j denote the upper triangular subgroup of GLj(), and let Tj Gj
Example Q ’. If is the unitary group, then Gj is the unitary group in

so Tj is the group of j x j diagonal matrices with main diagonal elements of unit
modulus.

Example L’. If G is the group of unit lower triangular matrices in GLn((T), then
j is the group of unit lower triangular matrices in GLj(), so Tj is the subgroup of
GLj() consisting of the single element I.

Example S ’. If G is the symplectic group, and j is even, then Gj is the symplectic
group in GLj(), so Tj is the group of block diagonal matrices in GLj((T) with 2 2
blocks of the form given in Example S.

THEOREM 4.6. Let x (n and A (nxn, with rank(K(A,x)) j. Let
be a subgroup of GLn(), and let G, e be matrices whose first columns are
proportional to x. Suppose B G-AG and [ -A both have j-Hessenberg
form. Then both are j-reducible, and there exists T Tj such that T-BIT.

Proof. By Theorem 4.3 we know that B and/} are both j-reducible. Furthermore,
fl_ag(G) flag(K(A, x, j)) flag((), where G is defined as in_ Theorem 4.3, and
G is defined analogously. Thus there is a T //j such that G GIT. We will
show that T Gj also, so that in fact T Tj. Obviously G-( E G. Defining
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F [F1,F2] by F* G-1

F FG1T O, so
as in Theorem 4.3, we have FI FGT T and

G_= [F F(2 I= [T F2
0

This proves that T 6 ;j, whence T 6 Tj. The equation B G-AG implies
AG GB. Since B is _j-r_educible,_this implies in turn that AGI GB. Similarly
A( (1/}. Thus GB AGI AGT GBT (T-BIT). Since (
has full rank, we can conclude that [ T-IBT. D
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IMPLICIT SHIFTING IN THE QR AND RELATED ALGORITHMS*
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Abstract. A new approach is suggested for deriving the theory of implicit shifting in the
QR algorithm applied to a Hessenberg matrix. This is less concise than Francis’ original approach
([Comput. J., 4(1961), pp. 265-271], [Comput. J., 4(1962), pp. 332-345]) but is more instructive,
and extends easily to more general cases. For example, it enables us to design implicitly shifted QR
algorithms for band and block Hessenberg matrices. It can also be applied to related algorithms such
as the LR algorithm, and to algorithms which do not produce triangular matrices in the factorization
step. The approach provides details that can be useful in designing numerically effective algorithms
in various areas.

In addition to the above, the standard theory describing the result of the QR algorithm with k
shifts on a Hessenberg matrix A is extended to the case where some of the shifts can be eigenvalues.
This has a practical value in special cases such as eigenvalue allocation. The extension is given for
both the explicitly and implicitly shifted QR algorithms, and shows to what extent the latter mimics
the former. The new approach to the theory again handles the implicit case simply and clearly.

Key words, matrix eigenproblem, implicit shift, QR algorithm, pole placement

AMS(MOS) subject classiflcat|ons. 65F15, 15A18, 15A21, 93B55

1. Introduction. Francis’ implicitly shifted QR algorithm [5], [6] is one of the
most effective computational tools in numerical linear algebra. It is based on the QR
factorization of a matrix, and was originally used for finding eigenvalues of matrices.
Its uses are wide, and continue to increase. The theory of implicit shifting given
in [5], [6] holds for Hessenberg matrices (upper Hessenberg matrices have all zeros
below the first subdiagonal) and has been sufficient for most applications to date, but
now algorithms for more general problems involving, for example, block Hessenberg
matrices appear to need a new approach.

Here we suggest an approach to implicit shift theory that is different from Francis’
approach and seems to be more general in that it can be applied to QR algorithms
for block Hessenberg matrices of any form, as well as to many algorithms which differ
from, but are in some ways like, the QR algorithm. In fact, the approach here does
not depend on orthogonality or the production of triangular structure, and could
contribute to many areas where implicit shifting is used, for example the LR and
Cholesky LLT algorithms [14], the QZ [13] and LZ [8] algorithms for the generalized
eigenvalue problem, the HR algorithm (see, for example, [2]), and algorithms taking
advantage of special structure (see, for example, [4], [3]), to mention just two of the
many recent algorithms in this area.

We present this new approach by only considering implicit shifting for the QR
algorithm and some variants of it. This should be sufficient for others to extend the
ideas to other related algorithms. We first apply the approach to show how to derive
the usual implicitly shifted QR algorithm for an upper Hessesnberg. matrix A, and
later indicate its generality by applying it to the novel case of block upper Hessenberg
A. The case of upper Hessenberg A allows a close comparison with the approach
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in [5], [6]. It will be seen that for this case the new approach is less concise, but
more instructive in that it gives a clearer derivation of the implicit shift algorithm,
and reveals useful details that are hidden by the approach in [5], [6]. To this end,
2 summarizes the necessary theory for the explicitly shifted QR algorithm, then
summarizes the standard theory for the implicitly shifted QR algorithm applied to
upper Hessenberg A, and discusses some of the advantages and limitations of the
standard approach. The new approach is outlined in 3, as well as a comparison with
the standard approach for the special case of upper Hessenberg A.

The theory for the shifted QR algorithm for finding eigenvalues is usually given
assuming that none of the shifts are eigenvalues. However, recently, a class of algo-
rithms based on some of the QR algorithm theory has provided direct (rather than
iterative) algorithms for allocating eigenvalues [11], and here the shifts are eigenvalues,
and we need to extend the usual results to show just what must be done to allocate
the required eigenvalues in different cases. For this reason we give in 4 the theory for
the QR algorithm with k shifts for general upper Hessenberg A with no restrictions at
all on the shifts. This parallels 2 in first giving the results for the explicitly shifted
algorithm, then using our new approach to show that the implicitly shifted algorithm
parallels the explicit one to the required extent.

Finally, in 5, it is shown how the approach to implicit shifting outlined in 3 can
be applied with shifts #1,"’, #k to matrices A that are not upper Hessenberg. Two
examples are given: A with several nonzero subdiagonals, and block upper Hessenberg
A. It is shown that unlike the upper Hessenberg case, more than one column of
N (A #1I)... (A #kI) must effectively be formed in order to carry through the
implicit shift algorithm, and it becomes clear just what parts of N are required.
Block Hessenberg matrices can arise when we want to introduce a significant amount
of parallelism in the computation of eigenvalues using the QR algorithm (see, for
example, [1], [15]). Also there are problems where we are unable to reduce the matrix
to Hessenberg form, for example in the multi-input pole placement problem. A method
suggested in [11] and [12] for this problem uses a QR-like approach (called the QS
algorithm) on a block Hessenberg form, which is not reduced to triangular, or even
Hessenberg, form at any stage. The approach to implicit shifting to be described
here was very successful for this problem; in fact it was the reason we developed this
approach--we could find no other way.

2. The QR algorithm with shifts. For a given n n matrix A1 A, k steps
of Francis’ QR algorithm [5], [6] with explicit shifts #,..., #k produce the following
relationships (see, for example, [16, p. 524]). For 1,..., k, unitary Qi is chosen to
give upper triangular Ri in

QH(Ai #iI) Ri,

A+ RQ + #I QAQ QH...QH AQ.. .Q.

Such unitary similarity transformations preserve eigenvalues, and in Francis’ algo-
rithm for finding eigenvalues, the shifts #i are chosen so that Ai+l should swiftly
converge to upper, or near upper, triangular form (see, for example, [7, Chap. 7]).

Three matrices that will appear regularly in this paper are

(2.2) N (A- #kI)... (A- #I), Q QI"’Qk, R Rk..’R,
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so that Q is unitary and R is upper triangular.
implicit shifting techniques are based are then

The two main relations on which

(2.3) Ak+l QHAQ,

This shows that Q in (2.1) and (2.2) always gives a QR factorization of N.
If none of the shifts is an eigenvalue of A, then N is nonsingular, and Q and R

in (2.4) are uniquely defined by the QR factorization of N if we insist the diagonal
elements of R are real and positive (see, for example, [16, p. 241]). Thus for nonsin-
gular N, the Q in the QR factorization of N is identical to Q in (2.2). This, as we
shall see, allows us to work directly with Q Q... Qk without forming or using the
individual Qi matrices.

The aim of implicit shifting is to produce Ak+. by applying unitary transforma-
tions directly to A, rather than to shifted matrices as in (2.1). Francis considered
the case where A is upper Hessenberg, the obvious computation in (2.1) ensuring
that Ak+l is also upper Hessenberg. The implicit shift computation for an unreduced
upper Hessenberg matrix A A when none of the shifts is an eigenvalue will now be
described. Unreduced means that there are no zero elements on the first subdiagonal.
This, with no shift being an eigenvalue, is the condition used in Francis’ proof that
implicit shifting works [6, Thm. 11]. This also ensures Ak+l is unreduced, which is
the condition for the proof in [16, p. 529; pp. 352-353]. Note that the single shift
method is obtained with k 1, and the double with k 2.

Let P be a unitary matrix chosen to zero all but the first element of the first
column of N (just as in the QR factorization (2.4))

(2.5) pHNel ep.

Form PAP, and choose unitary similarity transformations based, for example, on
Householder transformations P2,"’, Pn-, each having (1,1) element unity, to trans-
form PAPI back to upper Hessenberg form H, giving

(2.6) AP PH, P- P1P2"’" Pn-1.

Paralleling this, we have from (2.3)

(2.7) AQ=QAk+.

It can be shown that P QD and H DHA.+D, where D is a diagonal
matrix with elements of modulus unity, which we denote IDI I. So effectively
Ak+l has been found by applying unitary similarity transformations directly to A.
The usual approach to this proof can be outlined briefly as follows (see, for example,
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[16, pp. 528-537] for a more complete proof for the double step QR algorithm of
Francis). From (2.5) and the form of P in (2.6) we see Ne Pep Pep.
But from (2.4) Ne QRe, so the first columns of P and Q are identical up to
a scalar multiplier of modulus unity. This approach then uses the result that since

Ak+l is unreduced, Q and Ak+l in (2.7) are effectively uniquely determined by the
first column of Q. It follows from (2.6) that P corresponds to Q, and H corresponds
to Ak+. Computationally, the shifts are used to produce the first column of N from
which P is obtained, then H DHAk+ID is obtained from the unitary similarity
transformation of PAP back to upper Hessenberg form.

Note that in (2.1) we have k explicit steps, and in (2.5) and (2.6) we have n- 1
implicit steps. The ith explicit step corresponds to the design and application of Qi
in (2.1), while the ith implicit step corresponds to the design and application of Pi in
(2.5) or (2.6).

The bove pproach to implicit shifting is concise and reasonable to follow for
those well versed in the area; however it hs two drawbacks which the approach we
will present in 3 does not have. First it is restricted to A of Hessenberg form. A more
general theory was required in [11] and [12] where it was not possible to reduce A to
Hessenberg form in the algorithm used to allocate eigenvalues of A Ao-BF, Ao and
B given, by choosing F when the rank of B was greater than one. Second, by appealing
to the uniqueness result for (2.7), this approach hides some important relationships
that can be useful in designing numerical algorithms. As a simple example, it obscures
the fact that the P,..., Pn- in (2.6) are exactly those transformations required for
the QR factorization QHN R.

Relationships like these help in designing lgorithms such as eigenvalue allocation
algorithms [12], where it is crucial that the shift not be significantly degraded by
the presence of rounding errors. These are direct algorithms, and each shift (which
corresponds to an eigenvalue being allocated) has only one chanceif it is signifi-
cantly degraded, then an incorrect eigenvlue is allocated. In iterative algorithms
such degradation is not so important, as the worst n incorrect shift can do is upset
convergence.

These relationships could also be useful in designing some iterative algorithms:
for example, applying the QR algorithm to an A which is only defined implicitly, or
in other cases where it could be difficult to detect or make use of any splitting of the
matrix.

Another possible advantage of the approach we present is that it is straightforward
and motivates the implicit shift computation. It may be easier to follow for beginners,
and could be useful for teaching.

Following a presentation of this work [10], some ideas here have been used in a
block version of the QR algorithm for parallel computation [1].

3. A new approach to implicit shift theory. The usual description of im-
plicit shifting presents the algorithm (2.5) to (2.6), and then proves that it works. We
could do this with our approach too, but we can also derive the algorithm step by
step, and as this provides greater motivation and understanding, it is the course we
take here. The comments regarding nonsingular N re there to help understanding,
but it is in no way essential for N to be nonsingular for this theory.

We have seen that with shifts #,..., #k, k steps of the explicitly shifted QR
algorithm give Ak+ QHAQ, where with N (A- #kI)... (A- #I) this unitary
Q gives upper triangular R in

(3.1) QHN R.
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Thus consider the usual QR factorization of N giving upper triangular Nn
(3.2) PnH_ P2I-IpN Nn.
Here P1 is the same as in (2.5). If N is nonsingular, then from uniqueness of the
QR factorization, PI"’" Pn-1 QD, IDI I, Nn DHR, and we will prove that
P1,"’, Pn-1 are essentially those in (2.6), which is why we use the same symbols.

To develop the theory for implicit shifting we write N1 N, H1 A, and define
for 1,2,...,n- 1

(3.3) Ni+ pHNi PH pHN
to describe the intermediate steps of the QR factorization, and

(3.4) Hi+l pHHipi PiH PAP1. Pi

to describe the corresponding unitary similarity transformations of A.
Since N is a polynominal in A, we have the key relationship between Hi and

NiA= H.Pi-1 PNA
piI’I_l.., pHAN

(3.5) PiH_ pHAp1. Pi IPiH_ pHN
HiNi, i= 1,2,...,n.

Of course this also holds for any polynomial N in A and any sequence of unitary
P1, P2,’", and requires no restrictions on the form of n n A or the shifts #i.

This relationship between Hi and Ni will allow us to handle the most general
case of implicit shifting, but as an introduction we will parallel the usual approach
by assuming N is nonsingular and A is an unreduced upper Hessenberg matrix. The
case of singular N will be treated in 4. We already have for nonsingular N that
Hn P-I pHApI"’" Pn-1 DHQHAQD DHAk+ID, IDI I, so Hn is the
desired matrix. But since it is not computationally acceptable to form all of N and
compute the Pi from the QR factorization of N, we will use (3.5) to show that only
P1 need be computed by forming the first column of N, then for 2,..., n- 1, Pi
can be computed directly from Hi, and applied to give Hi+l. We illustrate this for
n 6 and a double shift, k 2, which gives N two subdiagonals. The structure of
(3.5) when the first two columns of N have been reduced is

(3.6)

Pl X X X X X X X X X X X

P2 X X X X al X X X X X
7"3 X X X 0/2 X X X X
G3 X X X X X X X
1]3 X X X X X X

X X X X X

N A

X X X X X X Pl X X X X X

1 X X X X X /92 X X X X

#. x x x x r x x x
")’2 X X X X 0"3 X X X

2 X X X X 3 X X X
X X X X X

H3 N3
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Since N is nonsingular, Pl and p2 will be nonzero, and the first column above
with A unreduced ensures that the first column of H3 is zero except for the first two
elements, and that 71 is nonzero. From the second column on each side we see

O/2[ T3 0"3 /23 ]--’P2[ 2 ’2 2 ], C2t02 0,

so any transformation that reduces IT3 a3 V3 to P3 0 0] will reduce
2 "2 52 ]to /2 0 0 and vice versa. It follows that P3 can be defined ei-

ther from N3 or H3. Designing P3 from H3 gives the usual implicit shift computation,
which is what we wanted to show. Thus after P is designed to give PI-INel elp,

for 2,..., n- i each Pi is designed so Hi+ PHiPi has its first i- 1 columns
in upper Hessenberg form, giving the required Hn DHAk+D, IDI I. This em-
phasizes that the Pi used to produce Hi+l from Hi is exactly the Pi used in the ith
step of the QR transformation of N, a result which is not immediately obvious from
the usual derivation of implicit shift techniques.

This last observation is more than a passing comment. The Pi can be designed
from either Hi or Ni, so, for example, if Pi was not well defined numerically by
as might be the case with very small[ 2 "2 52 above, then T3 a3 v3 could
perhaps be computed, and Pi computed from this. Such care can be important in
allocating eigenvalues.

The way P and P2 are chosen in (3.6) ensures that the (6,3) element of N3 will
be zero, and the (6,2), (6,3), and (6,4) elements of H3 will also be zero. However, all
that is required here is that N be reduced in n- 1 steps to upper triangular form,
so P and P2 could be more general. As a result our illustration covers the general
k shift case with unreduced upper Hessenberg A and nonsingular N. It is an easy
exercise to go through the above with k 1, and N A- #I an unreduced upper
Hessenberg matrix.

Later in this paper we will indicate how the approach taken here can be used to
produce other results, however it may help to summarize this comparison with the
standard approach for unreduced upper Hessenberg A when no shifts are eigenvalues,
since this is the setting the standard approach was designed for. The standard ap-
proach requires us first to prove that the Ak+l arising from explicit shifts in (2.1) is an
unreduced upper Hessenberg matrix, and then to use this to prove by uniqueness that
(2.6) and (2.7) essentially describe the same transformation of A, so H is effectively
Ak+ (see the material immediately following (2.7)). This use of uniqueness allows
the standard approach to omit most of the details of obtaining H from A, and in so
doing holds for any number k of shifts. The present approach uses (3.5) to show the
connection between the QR factorization (3.3) and the corresponding unitary simi-
larity transformation of A in (3.4), thus showing how Pi can be derived directly from
Hi instead of from Ni. However, (3.6) requires different details for different k (as
does the algorithm of course). These details lengthen the description, but add to our
understanding, and allow us to derive the implicit shift method constructively, rather
than just present it as the standard approach does.

Note that this new approach is not an unravelling of the theory of uniqueness of
(2.7). The standard approach proves the uniqueness of the columns of Q in (2.7) (see,
for example, [16, pp. 352-353]), whereas the key relation NiA HiNi used in this
new approach shows directly how to design the next Pi, and this is more germane to
the implicit shift computation than the columns of Q. In fact, this new approach still
requires a uniqueness result, the uniqueness of Q in the QR factorization, whereas
the standard approach just uses uniqueness of the first column of Q, and uniqueness
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of the rest of Q and Ak+l from (2.7). The new approach provides an alternative
which is both different from and more detailed than the standard approach. Both have
their uses.

4. Theory for the general upper Hessenberg case. This section includes
a rigorous treatment of a case not treated in 2 and 3, that of singular N. Readers
not interested in this theory can omit this section, as the remainder of the paper can
be understood without it.

In the previous sections we concentrated on the case where none of the QR
algorithm shifts #1,’", #k were eigenvalues of A. This ensured that N (A- #1I)

(A-#kI) was nonsingular, and considerably simplified the analysis. However, when
we use variants of the QR algorithm to allocate eigenvalues, our shifts are eigenvalues,
and we need the theory for this case in order to design correct algorithms. The case of
general singular N has not been given in the literature for explicit or implicit shifting
(for example, [5], [6] assume nonsingular N, while [16, p. 36] and [7, Tam. 7.5.1] only
consider a single step of the QR algorithm with an explicit shift of one eigenvalue).
We now consider what happens mathematically when some of the k QR algorithm
shifts are eigenvalues of unreduced upper Hessenberg A.

This section will parallel 2 in first giving in Theorem 4.1, and its corollaries, the
general result for the explicitly shifted QR algorithm. Then Theorem 4.4 will show
how the implicitly shifted QR algorithm mimics the explicit case. The theorems will
be given for unreduced upper Hessenberg A, and a comment at the end of the section
will show how the results apply to upper Hessenberg matrices with possible zeros on
the subdiagonal.

For completeness, the results here will be fully general for unreduced upper Hes-
senberg A in that there will be no restrictions at all on the shifts #,...,#k. All
statements about eigenvalues will take algebraic multiplicities into account. For ex-
ample, "s eigenvalues of A" means a collection of s values taken from the n eigenvalues
of n n A, and so can include repeats up to the multiplicity of the corresponding
eigenvalue. Thus if 1, 1, 2, 2, 3 are the eigenvalues of 5 5 A, then the collection of
values 1, 2, 2, 2} contains exactly three eigenvalues of A, and these are 1, 2, 2. Clearly
any eigenvalue of an unreduced upper Hessenberg matrix has geometric multiplicity
one [7, Thm. 7.4.4]. To simplify the wording, the term "unreduced upper Hessenberg
matrix" will be assumed to apply to a 1 1 matrix.

We first give the results corresponding to equations (2.1)-(2.4) for the explicitly
shifted QR algorithm. Since A A is an unreduced upper Hessenberg matrix here,
each Ai in (2.1) will be upper Hessenberg, but need not be unreduced. This may
occasionally allow an arbitrary rotation in the reduction of Ai #I to R. To define
the algorithm fully, assume the trivial rotation (the unit matrix) is used in all such
cases.

The full theorem is somewhat long, as we are trying to cover all the possibly
useful details. Basically it shows that if exactly s of the k shifts are eigenvalues of A
then the explicitly shifted QR algorithm gives Ak+ with its last s s block upper
triangular with these eigenvalues on the diagonal, and its leading n- s square block
unreduced upper Hessenberg. Also, QHN is upper triangular with its last s rows zero.

THEOI:tEM 4.1. Let A A be an n n unreduced upper Hessenberg matrix, and
let #1, #k be given complex scalars. For 1, k let Qi P() P(ni)__ with1,2 1,n

each P(i)
j,j+ a unitary rotation (trivial where possible) in the (j, j + 1) plane chosen so
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that

(4.1) QH(Ai #iI) Ri

is upper triangular. Define

(4.2) Ai+l RiQi + #iI,

which is necessarily upper Hessenberg by construction, and let

(4.3) N (A- #11)... (A- #kI), Q QI"’" Qk, R= Rk...R1.

Assume (#1,’", #k} contains exactly s eigenvalues ofA and denote these by 1,
with the ordering they had in #1,’", #k. Then (s can be zero)

b/8

(4.4) QHAQ=Ak+I= 0 A22 Q=
--8 8

8

with (n- s) x (n- s) All unreduced upper Hessenberg and s x s A22 upper triangular
with s,"" ,1 on the diagonal. If 1,’" ", is also a reordering of #1,’" ",#k then
none of ys+l," ..,Zk are eigenvalues o]All. The rows of Q(2)g span the left invariant
subspace of A corresponding to the s left principal vectors of lowest grades associated
with 1,’", ,. That is, if the value i appears with multiplicity ri in 1,’", ,, then
its left principal vectors of grades 1, 2,..., ri lie in this space, but none of higher grades
do. (See, for example, [16, pp. 42-43] for a description and properties of principal
vectors and their grades.)

For N, Q, and R in (4.3) we also have

R R ](4.5) QHN R 0 0
1--8 8

with (n- s) (n- s) Rll nonsingular and upper triangular, so that N has rank n- s

and its first n- s columns are linearly independent.
Proof. If n n Ai is an unreduced upper Hessenberg matrix then in the QR

factorization QH(Ai- #iI) Ri no rotations are trivial and the first n- 1 diagonal
elements of Ri are nonzero. If #i is an eigenvalue of Ai, then the (n,n) element
of Ri must be zero, so that Ai+I RiQi / #iI is unreduced upper Hessenberg in
its leading principal (n- 1) (n- 1) block, and has last row (0,...,0,1), where
1 #i. If #i is not an eigenvalue of Ai, then Ri has no zero diagonal element and
the leading unreduced upper Hessenberg block of Ai+l (Ai+l itself) does not have #i
as an eigenvalue. This gives the initial result for the following induction proof.

Now suppose {#1,"" ,i--1) contains exactly si eigenvalues 1,"" ,, of A, and

(4.6) A
0 ,(i) 0

with (n- si) x (n- si) ..(i) unreduced upper Hessenberg, si x si A upper trian-
gular wih diagonal elements u,,..., u, none of ghe remaining i- 1- i values in

{,, ,i-} are eigenvalues of (i), and (n- i) x (n- i) R is nonsingular and
upper riangular. This is clearly rue for i 0 or i 1 from ghe previous paragraph.
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Since () #I is already upper triangular it will not be altered in (4.1) and it fol-22
lows from the previous paragraph that A+I and R... R1 will also have their forms
described by (4.6), with s+l s if # is not an eigenvalue of ()11, or 8i+ 8i-- 1 if it

is. But # can be an eigenvalue of () only if it is an eigenvalue of A of multiplicity r"*11
say, and appears in Ul,..., Ps fewer than r times, in which case {#1,..., #} contains
exactly s + 1 eigenvalues of A and u8+1 #. In either case, none of the i- S+l

A (H-1)elem_entB o[ {#I.""" .#} leBB {Pl.""". u,+}
(4.4) holds if and only if {#1,"’, #k} contains exactly s eigenvalues u,"’,ul of A,
that these are the diagonal elements of A22, and that none of the remaining k- s
elements of {#1,’", #k} is an eigenvalue of All. Also, R Rk... R1 has the form in
(4.5) with (n- s) x (n- s) Rll nonsingular and upper triangular. We have shown the
form of R, but we have not shown that QHN gives this R. This follows from (2.2)
and (2.4), so (4.5) holds. It follows that N has rank n- s and its first n- s columns
are linearly independent.

From (4.4), Q(2)HA A22Q(2)H, so let X-1A22X J22 be the Jordan canonical
form of A22. Define yH X-1Q(2)H, so ygA J22YH. The rows of yH are then
seen to be the s left principal vectors of A of lowest grades associated with pl,’", u.
Of course the rows of Q(2)H span the same subspace as those of yH, which completes
the proof of Theorem 4.1. F]

For simplicity in presenting the proof, Theorem 4.1 assumed {#1,’" ,#k} con-
tained exactly s eigenvalues of A and showed what followed. But since s must take
just one of the values 0, 1,..., n, it follows that these are "if and only if" results, and
this is stated in the following two corollaries.

COROLLARY 4.2. Suppose A is an unreduced upper Hessenberg matrix, and (4.1)-
(4.3) are as in Theorem 4.1. If the ]orm (4.4) results with All an unreduced upper
Hessenberg matrix, then {#1,’", #k} contains exactly s eigenvalues of A, and all the
other results in Theorem 4.1 follow.

COROLLARY 4.3. Suppose A is an unreduced upper Hessenberg matrix, and N is

defined as in (4.3). If N has rank r, its first r columns are linearly independent (so
Nel 0 if and only i] N O) and exactly s n r of the #1,’", #k are eigenvalues
oiA.

The results in Theorem 4.1 and Corollary 4.2 are for Q obtained from the explicitly
shifted QR algorithm. We now want to see what happens in the implicit algorithm.
Our new approach reveals this with little effort. We see from Corollary 4.3 that the
leading columns of N (and so N in (3.3), (3.5), and (3.6)), are linearly independent.
This is not only a generally valuable result, it is the key to the theoretical behaviour
of the implicit algorithm.

THEOREM 4.4. Let A be an n x n unreduced upper Hessenberg matrix, let
1, k be given complex scalars, and N1 - N (A #11)... (A #kI). De-
fine the implicit shift algorithm with k shifts by

(4.7) pHNlel elPl, P1 unitary;

take H1 =- A, form H2 PIHH1P1, and design unitary Pi to give

(4.8) H+I PHP, Pel -el, i- 2,3,..., n- 1

with the leading 1 columns of Hi+I having upper Hessenberg form.
Then this implicit shift algorithm mimics the result of k steps of the explicitly

shifted QR algorithm in Theorem 4.1 in the following sense:
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If {#l,
we obtain

", #k} contains exactly s eigenvalues of A, after r n s implicit steps,

(4.9) P PI Pr [P,P] pHAP Hr+I
?"

with r x r H being unreduced upper Hessenberg, and

Hi1

(4.10) Nr+IpHN__pH[N(1) N(2)] [Nil N12 ]
with r x r Nil nonsingular and upper triangular. The algorithm in Theorem 4.1 splits
Ak+l in a similar way to Hr+l, and (4.9) and (4.10) parallel (4.4) and (4.5) in that

(4.11) p(1) Q(1)D, Hll DHA11D, [N11,N12]- DH[RII,R12]
with IDI I. The columns of p(2) span the same space as those of Q(2), the eigen-
values of H22 are the s shifts which are eigenvalues of A, and none of the remaining
elements of {#1,’", #k} are eigenvalues of Hll.

Proof. If s n, then r 0, N 0, and the theorem is true trivially. Now
assume s < n, so N has rank r n- s > 0, and its leading r columns are linearly
independent. For 1,..., r define Ni+l PNi. We will first show that Ni+l is
upper triangular in its first columns. Our choice of Pi ensures Ni+lel elPl, and
(3.5) holds for this Ni+l and Hi+l in (4.8), so we can use (3.5) to show that the first
two columns of Ni+ are upper triangular, and so on. The idea is illustrated by (3.6),
which assumes n 6 and k 2. When P2 has transformed H2 so the first column of
H3 has upper Hessenberg form, the first column of (3.6) shows the first two columns
of N3 are in upper triangular form, and so on. This proof that the usage is correct is
just the counterpart of our earlier derivation of the implicit shift algorithm. Thus if
r > 2 (in fact, r _> 4 if k 2 and n 6), the second column of (3.6) gives p2 = 0 and

02[ T3 0-3 /23 :P2[ 2 "Y2 (2

is also nonzero since a2 is, and T3 0"3 /23 is since the first three columns of N3
are linearly independent. This shows /2 "Y2 62 IT is nonzero, and P3 is effectively
uniquely designed to transform this to a multiple of el. However, if r 2 (imagine
(3.6) with k _> 4), then T3 0"3 /23 ]--0, SO[ /2 ’2 (2 ]-" 0. In either case, we
see we that eventually obtain the form in (4.9) and (4.10), and that these are true in
general.

We see in (4.10) that N(1) has linearly independent columns, and pHN(1) has
upper triangular form. But QHN(1) has the same form in (4.5), so by uniqueness
of the QR factorization, p(1) Q(1)D ID I, and the rest of the theorem follows
from (4.9), (4.10), and Theorem 4.1. F1

Because the (2,1) block in Hr+l in (4.9) is zero, Pr+l, which is meant to make the
first r columns of Hr+2 upper Hessenberg, is clearly arbitrary to an obvious extent.
At this point we say the standard implicit shift algorithm breaks down in that the
relationship with the explicit shift algorithm is lost. However, if we are computing
eigenvalues, it has done its job in separating H22 with known eigenvalues from HI
with unknown eigenvalues, and we would usually stop here. Note that Nr+l has its
last s rows zero, and Hr+l has /r 0 in (3.6), so (3.5) and (3.6) tell us nothing about
H22, which is understandable because H22 is not completely defined by this implicit
shift algorithm.
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We have shown that when the set of shifts {#1,’", #k} contains exactly s eigen-
values of A, the first n- s steps of the implicit shift algorithm are uniquely defined,
and the relations in (3.5) play a key role to this point, both in justifying and un-
derstanding the algorithm. These n- s implicit steps mimic the result of the full k
explicit steps to the extent shown in the theorem, as would be hoped. For algorithms
which find eigenvalues it is useful to know this rigorously and to have a completely
general result. That N of rank r has its first r columns linearly independent leading
to (4.5) was unexpected, and the effect of repeated shifts corresponding to eigenvalues
of A was not initially clear to the authors. We expect the resulting structure to be
extremely useful in the design of algorithms.

A general upper Hessenberg matrix A may have some zero (j + l, j) elements,
so that A may be partitioned to be block upper triangular with each submatrix on
the diagonal being unreduced upper Hessenberg. Applying the explicitly shifted QR
algorithm to A results in applying the algorithm with the same shifts to each such
submatrix. But the implicitly shifted algorithm "breaks down" when the first zero

aj+l,j is encountered. For example, if a2 0 in (3.6), the second column tells us
nothing about the third column of N3, and in fact we cannot design P3 successfully
from H3 since /2, "2, and 52 will all be zero. In a sense this is acceptable, since
only the first two rows of N3 and H3 will differ from N and A, respectively, so H3
will already be upper Hessenberg, and the algorithm could stop. But the only way
to mimic the explicit step would be to form the necessary part of the third column
of N3 (i.e., of N) and design P3 on this. Of course, in the QR algorithm for finding
eigenvalues, we welcome such splitting, and proceed to treat each submatrix on the
diagonal separately.

For a matrix which splits, the first theorem and its corollaries consider the explic-
itly shifted QR algorithm, and so these apply to each unreduced upper Hessenberg
matrix on the diagonal. Theorem 4.4 considers the implicit algorithm using the first
column of N only, so it only applies to the first unreduced upper Hessenberg block.

5. Block and band QR algorithms. The explicitly shifted QR algorithm and
its theory in (2.1)-(2.4) hold for n n A of any structure, but there is no generally
available extension of the standard implicit shift theory to other than Hessenberg
matrices. Fortunately the new theory for implicitly shifted algorithms in (3.1)-(3.5)
extends easily to other matrices. Here we illustrate how to use this theory to design
implicit shift algorithms for two classes of matrices. First we consider t-unreduced
upper Hessenberg (t-uuh) A, meaning A has at+j, nonzero, j 1,..., n- t, with
all subdiagonals below that being zero. Then we consider block upper Hessenberg
matrices. This class is quite general and includes t-uuh matrices, but the t-uuh case
is important in illustrating what we must do to start all these more general cases,
that is, it shows us the equivalent of the PNel elpl step in the ordinary upper
Hessenberg case (1-uuh).

Variants of the implicitly shifted QR algorithm for block upper Hessenberg A
can be used to solve eigenvalue allocation problems, and may be useful for parallel
implementations of block QR algorithms. Examples are all that are required to show
how effective the approach of 3 is, but in any particular problem the relevant version
of (3.6) must be analyzed. For simplicity, in these examples we will assume none
of the shifts are eigenvalues, so that N is nonsingular, and only consider single and
double shift algorithms.

The general approach is to realize that Q from the explicit shift algorithm gives
the QR factorization of N in (2.4), so Q is effectively unique when no shifts are
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eigenvalues. Next consider obtaining this unique QR factorization from N as in (3.2),
and try to show for > m, for some m _> 1, how each Pi in (3.2) may also be developed
from the Hi in (3.4) (rather than the Ni in (3.3)) by looking at a detailed version of
(3.5). These Pi will be designed to bring H, back to the original form of A, and the
detailed version of (3.5) will show that such Pi also produce the required reduction
in (3.3), and so give the unique PI" "’P,-I QD, IDI I, and H, DHAk+ID.
Of course the P will often be designed to make certain blocks zero in the n-block by
n-block case. See [15] for the use of block reflectors to do this, or [9] for the possible
use of unsymmetric generalizations of Householder transformations.

Consider a 5 5, 2-uuh matrix A with a single shift #1, so k 1 and N N1
A- #1I. After designing P1 via ptHNel elPl and applying it, (3.5) becomes

x x x x x x x x x
I’2 X X X X X X X X

O’2 x x x i x x x x
Q2 X X X OZ2 X X X

3 x x 3 x x

N. A

x x x x x pl x x x x
x x x x x 7-2 x x x
x x x x x 0-2 x x x
Iq x x x x oz2 x x x
1:3 I:::I x x x c3 x x

H2 N2

where the rq denote elements introduced into H2 pHAp1. Note that the first
column does not show us how to design P2 from H2, because c1 in A picks up the
third, not second, column of N2. Thus we still have to design P2 on N2, but after
applying this we have

Pl X X X X X X X X X

P2 X X X X X X X X
7"3 x x 1 x x x x
/23 x x Q2 X X X

3 x x 3 x x

N A

x x x x x /91 x x x x
X X X X X /92 X X X

# x x x x r x x
YI x x x x /]3 x x
’. x x x x c: x x

Ha Na

The first column on each side shows us we can design P3 on either N3 or H3 to give
the required implicit computation. Clearly, from this point we can carry out the
computation on the Hi without reference to the N.

The point here is that for t-uuh A, the transformation matrices P1,’", P must
be designed from N, whether by forming the first t columns of N and upper trian-
gularizing this part, or by some more subtle procedure designed to improve speed or
accuracy. The remaining Pi, t + 1,..., n- 1 may then be designed from and
applied to the Hi, giving the implicit shift algorithm. Note that this statement is
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independent of k, the number of shifts used. We see that increasing k can increase
the complexity of each Pi, but does not alter the structure of A, and the position of
the last nonzero element in the first column of A is what determines the number of
transformations t that must be designed on N.

Finally we consider the general case of block upper Hessenberg A, with initially
no restriction on the block structure other than that the blocks on the diagonal be
square. Here we use H!8. to represent the (i, j) block of H8 For example a 6-block
by 6-block A which is 9 9 may have block and scalar representations

X X X X X X

A2,1 X X X X X

A3,2 X X X X

A4,3 X X X

A5,4 X X

A6,5 x

x x
X X

x x
X X
X X
X x
X x
X x

X
x
X
x
X
x

where so far we have made no restrictions on the ranks of the Aj+I,j, in fact, A3,2 is
zero above. Here N, and each Ni, will have 6-block by 6-block structure, and each

will have the same block structure as A. In general we let each of Aj,,H
be m x mj, j 1,...,n, so A is an m x m matrix with m- ml /... / ran.

Once again we assume that no shift is an eigenvalue, so that each N is nonsingular,
and we give a small example which represents a computation for any number k of
shifts. We consider a 4-block by 4-block case, where some of the indicated subdiagonal
blocks of Ni and Hi may be zero if k is small enough. If m x mj N) represents the
jth block of columns of Ni, then the initial step is to design a unitary matrix P so
that

R nonsingular, and usually upper triangular.

This P, applied to give H2 PAPI, and N2 pHN in theory, results in (3.5) of
the form

R1 x x x
T(-)
’2,2 X X A2,1 X X X
/M(2) A3,2’3,2 X X X X

N(2) A4,3 X
4,2 X X

A
N2

x x x x
H(2)

2,1 X X X

H(2)
3,1 X X X

H()
4,1 X X X

H

R1 x x x
x x x
x x x
x x x
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and from the first column, by defining 2(2) and/2) we have

"’2,2 2,1
r(2) A2,1 H() R1 /)R(5.3) 2)A2, "’3,2 3,1
r(2) /_/(2)
’’4,2 4,1

If A2, has full row rank m2, then since N2 is nonsingular we see 2) has rank

m. and R is nonsingular, so that/-) has rank m2. But then

AT -1

and a unitary matrix P2 (the relevant part of P2) that makes all but the first m2
rows of /52H/2) zero, will necessarily do the same for 2). But if R1 is upper
triangular, and we also require R2 to be upper triangular, then A2,1 must come into
the computation. The easiest approach is to insist

A2,1 [0, .2,1]

with -2, nonsingular and upper triangular. The first m m2 columns of/2) will

then be zero, and/52H which transforms the last m2 columns of/52H/2) to an upper
triangle in the first m2 rows and zero elsewhere, will do the same to 2), which is
the required form.

Note that a block variant of the QR algorithm, which only gives block upper
triangular Ri in (2.1) and Nn in (3.2), is also possible, but then P... P,_I QD
would only be unique up to a block diagonal unitary matrix D.

On the other hand, if A2, has rank r2 < m2, then it is impossible to define the
desired P2 by working with/2) alone. For example, suppose R is upper triangular
and

0 2,A2,1 0 0 r2 r2 2, upper triangular.

From (5.3) the first m -r2 columns of/2) will be zero, and the matrix that trans-
forms the last r2 columns of/2) in the usual way will also give the correct result
for the first r2 columns of/2), but not for the remaining m2 -r2 columns. For this

particular block structure these last m2 -r2 columns of 22) will have to be formed
and used to complete the design of P2 (or some equivalent computation).

When P2 has been designed, it can be applied to give H3 P2HH2P2, etc. But
then we will have a similar equation to (5.3) to use in the design of P3, and a similar
argument will hold here and in each succeeding step. It follows that for the implicit
computation to be carried out on Hi without recourse to Ni, > 1, we need Ai,i-
to have full row rank. This was assured by each Ai,i- being t t and nonsingular
in our earlier t-uuh example. If mi mi- Ai,i- has rank ri < mi, then we need
to consider the equivalent of mi -ri columns of Ni, as well as the relevant columns
of Hi in order to design Pi correctly to give Hi+ and, in theory, Ni+l. This can
always be done, and is simple and cheap when k 1, but becomes more complicated
and expensive as k increases. A familiar example is upper Hessenberg A with some

ci,i- 0 so that the matrix splits. Here mi 1, ri O, and an extra mi -ri 1
column of Ni is needed to continue the implicit algorithm.
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6. Conclusions and suggestions. This paper has presented two new pieces of
work. Section 3 described a new approach to the theory and development of implicit
shifting, and illustrated it with the QR algorithm applied to an unreduced upper
Hessenberg matrix A. The power of this approach was exhibited in 4, by showing
how it handled the fully general Hessenberg case, and in 5, by showing how it could
be used to derive implicit shift algorithms for more general matrices A, in particu-
lar block Hessenberg A of any form having square diagonal blocks. This work could
be continued to show how this approach can be used to develop implicitly shifted
algorithms for related methods applied to more general matrices than Hessenberg.
Another direction is to show how this approach can also be used to develop implic-
itly shifted algorithms where the intermediate factorizations do not necessarily give
upper triangular matrices, such as was done for the QS algorithm in [11] and [12] to
allocate eigenvalues in a multi-input linear constant coefficient control system with
state feedback.

The second piece of work was given in 4, where the theory for the shifted QR
algorithm applied to upper Hessenberg A was extended to cover the case where any
of the k shifts could be eigenvalues. This was done for both the explicit and implicit
shift algorithms. It is needed, for example, to complete the theory for eigenvalue
allocation algorithms working with Hessenberg A, where shifts are eigenvalues of
the matrix being designed--unlike the usual case of finding eigenvalues by the QR
algorithm. An obvious continuation of this work would be to give the equivalent
theory for shifted QR algorithms (with no restrictions on the shifts) applied to the
more general matrices A (t-uuh and block upper Hessenberg) dealt with in 5. The
equivalent theory could also be developed for other than the QR algorithm, wherever
such results are found to be useful.

Acknowledgments. We would like to thank Linda Kaufman and the referees
for their helpful comments.
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THE RESTRICTED SINGULAR VALUE DECOMPOSITION:
PROPERTIES AND APPLICATIONS*

PART L. R. DE MOORt AND GENE H. GOLUB$

Abstract. The restricted singular value decomposition (RSVD) is the factorization of a given
matrix, relative to two other given matrices. It can be interpreted as the ordinary singular value
decomposition with different inner products in row and column spaces. Its properties and structure,
as well as its connection to generalized eigenvalue problems, canonical correlation analysis, and other
generalizations of the singular value decomposition, are investigated in detail.

Applications that are discussed include the analysis of the extended shorted operator, unitarily
invariant norm minimization with rank constraints, rank minimization in matrix balls, the analysis
and solution of linear matrix equations, rank minimization of a partitioned matrix, and the connection
with generalized Schur complements, constrained linear and total linear least squares problems with
mixed exact and noisy data, including a generalized Gauss-Markov estimation scheme.

Key words, generalized SVD, generalized matrix inverses, (total) linear least squares, (gener-
alized) Schur complements, matrix balls, shorted operator

AMS(MOS) subject classifications. 15A09, 15A18, 15A21, 15A24, 65F20

1. Introduction. The ordinary singular value decomposition (OSVD) has a long
history with original contributions by Seltrami (1873) [2], Sylvester (1889) [26], Au-
tonne (1902) [1], Eckart and Young (1936) [12] and many others (see, e.g., the refer-
ences in [15], [21], [27]). It has become an important tool in the analysis and numerical
solution of numerous problems arising in such diverse applications as psychometrics,
statistics, signal processing, and system theory. Not only does it allow for an ele-
gant problem formulation, but at the same time it provides geometrical and algebraic
insight together with an immediate numerically robust implementation [15].

Recently, several generalizations to the OSVD have been proposed and their prop-
erties analysed. The one that is best known is the generalized SVD as introduced by
Paige and Saunders in 1981 [22], which we propose to rename as the Quotient SVD
(QSVD) [8]. Another example is the Product SVD (PSVD) as proposed by Fer-
nando and Hammarling in 1987 [14] and further analysed in [10]. The third one is
the Restricted SVD (RSVD), introduced in its explicit form by Zha in [32] and fur-
ther developed and discussed in this paper. In [8] we have proposed a standardized
nomenclature for the singular value decomposition and its generalizations. This set
of names has the advantage of being alphabetic and mnemonic, O-P-Q-R-SVD. For
the structure and properties of the OSVD, PSVD, and QSVD, we also refer to [8].

The RSVD, which is the main subject of this paper, applies for a given triplet
of matrices A,B, C of compatible dimensions (Theorem 1). In essence, the RSVD
provides a factorization of the matrix A, relative to matrices B and C. It could be

Received by the editors June 8, 1989; accepted for publication (in revised form) September 12,
1990. Part of this work was supported by the United States Army under contract DAAL03-87-K-
0095.

Department of Electrical Engineering (ESAT), Katholieke Universiteit Leuven, Kardinaal
Mercierlaan 94 B-3001, Leuven, Belgium (demooresat.kuleuven.ac.be). This author was a visit-
ing research associate at the Computer Science Department and the Department of Electrical En-
gineering (Information Systems Laboratory) of Stanford University, where he was supported by an
Advanced Research Fellowship in Science and Technology of the North Atlantic Treaty Organization
(NATO) Science Fellowships Program and by a grant from IBM. He is now a research associate of
the Belgian National Fund for Scientific Research (NFWO).

Department of Computer Science, Stanford University, Stanford, California 94305
(na.golub@na-net.stanford.edu).

401



402 B.L.R. DE MOOR AND G. H. GOLUB

considered as the OSVD of the matrix A, but with different (possibly nonnegative-
definite) inner products in its column and in its row space. It will be shown that the
RSVD not only allows for an elegant treatment of algebraic and geometric problems
in a wide variety of applications, but that its structure provides a powerful tool in
simplifying proofs and derivations that are algebraically rather complicated.

Soon after the present paper was completed, Zha and de Moor discovered that
the RSVD is only one of the three possible SVD-like factorizations for three matrices.
Similar generalizations of the OSVD are not only limited to two or three matrices,
but can be derived for 4, 5, ..., i.e., any number of matrices of compatible dimen-
sions. The PSVD and the QSVD serve as basic building blocks in this infinite tree of
generalizations of the OSVD. For instance, the RSVD which is analysed in this paper
can also be considered as a double QSVD. This is the reason why we have called it
the QQ-SVD in [11], where the complete structure of this tree of generalizations is
also developed in detail.

This paper is organised as follows. In 2, the main structure of the RSVD is anal-
ysed in terms of the ranks of the concatenation of certain matrices. The factorization
is related to a generalized eigenvalue problem (2.2.1). A variational characterization
is provided in 2.2.2. A generalized dyadic decomposition is explored in 2.2.3 to-
gether with a geometrical interpretation. It is shown how the RSVD contains other
generalizations of the OSVD, such as the PSVD and the QSVD, as special cases in

2.2.4. In 3, several applications are discussed:
Rank minimization and the extended shorted operator are the subject of 3.1,
as well as unitarily invariant norm minimization with rank constraints and
the relation with matrix balls. We also investigate a certain linear matrix
equation which is directly related to the Moore-Penrose pseudo-inverse of a
matrix.
The low rank approximation o.f a partitioned matrix when only one of its
blocks can be modified is explored in 3.2, together with total least squares
with mixed exact and noisy data and linear constraints. While the role of the
Schur complement and its close connection to least squares estimation is well
understood, it will be shown in this section that there exists a similar relation
between constrained total linear least squares solutions and a generalized
Schur complement.
Generalized Gauss-Markov models, possibly with constraints, are discussed
in 3.3 and it is shown how the RSVD simplifies the solution of linear least
squares problems with constraints.

In 4 the main conclusions are presented together with some perspectives. Let us
conclude this Introduction by referring to the reports mentioned in [9] for a detailed
constructive proof of the main theorem of this paper.

Notation, conventions, and abbreviations. Throughout the paper, capitals
denote matrices. The lower case letters i, j, k, l, m, n,p, q, r are nonnegative integers.
Other lower case letters denote vectors. The set of real numbers is denoted by .
Scalars (possibly complex) are denoted by Greek letters. The matrices A (m x n),
B (m p), C (q x n) are given matrices. Their ranks will be denoted by ra, rb, rc.
D is a p x q matrix. M is the matrix with A, B, C, D* as its blocks: M (cA D. ).
We shall also frequently use the following ranks: rac rank(), rabc rank( B0 ),
tab rank( A B ). A is the transpose of a (possibly complex) matrix A and is the
complex conjugate of A. A* denotes the complex conjugate transpose of a (complex)
matrix: A* . The matrix A-* represents the inverse of A*. Ik is the k x k
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identity matrix. The subscript is omitted when the dimensions are clear from the
context. Identity vectors with the ith component equal to 1 and all others zero, are
denoted by ei (m 1). A matrix X is called an A(i, j,...)-inverse of the matrix A if
it satisfies equation i, j,... of the following:

1. AXA=A,
2. XAX X,
3. (AX)* AX,
4. (XA)* XA.

An A(1) inverse is also called an inner inverse and denoted by A-. The A(1,2,3, 4)
inverse is the Moore-Penrose pseudo-inverse denoted by A+ and it is unique. We
shall also need the following lemmas.

LEMMA 1 (inner inverse of a factored matrix). Let the matrix A be factored as

o o Q-

where Da is square ra ra nonsingular.
written as

Then, every inner inverse A- can be

Z12 ) p,(1) A- Q Z21 Z22

where Z12, Z21, Z22 are arbitrary matrices. Conversely, every matrix A- of this form
is an inner inverse of A.

For a detailed discussion of generalized inverses, we refer to [21]. The matrices Ua
(mxm), Va (nn), Vb (pp), Uc (qq) are unitary, i.e., UaU Im UUa, VaV
In VVa, VbV Ip VVb, UcU Iq UUc. The matrices P (m m) and Q
(n n) are square nonsingular. The nonzero elements of the diagonal matrices S, $2,
and $3, which appear in the theorems, are denoted by hi,/3i, and 7i. The vector ai
denotes the ith column of the matrix A. The range (column space) of the matrix A is
denoted by R(A) {yJy Ax}. The row space of A is denoted by R(A*). The null
space of the matrix A is represented as N(A) (xlAx= 0}. The symbol denotes
the intersection of two vector spaces. We shall use the following well-known result.

LEMMA 2 (the dimension of the intersection of subspaces).

dim(R(A) N R(B)) ra + rb rab

dim(R(A*) N R(C*)) ra + rc re.

JJAJl is any unitarily invariant matrix norm while JJAJJF is the Frobenius norm: JJAJJ 2F--
trace(AA*). The norm of the vector a is denoted by ]la]12 where ]la]122 a*a. Moreover,
we will adopt the following convention for block matrices: Any (possibly rectangular)
block of zeros is denoted by 0, the precise dimensions being obvious from the block
dimensions. The symbol I represents a matrix block corresponding to the square
identity matrix of appropriate dimensions. Whenever a dimension indicated by an
integer in a block matrix is zero, the corresponding block row or block column should
be omitted and all expressions and equations in which a block matrix of that block
row or block column appears, can be disregarded. An equivalent formulation would
be that we allow 0 n or n 0 (n # 0) blocks to appear in matrices. This permits
an elegant treatment of several cases at once. Finally, we would like to introduce the
term quasi-diagonal matrix for a matrix, the block rows and block columns of which
are a permutation of a diagonal matrix.
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2. The restricted singular value decomposition (RSVD). The idea of a
generalization of the OSVD for three matrices is implicit in the S, T-singular value
decomposition of Van Loan [30] via its relation to a generalized eigenvalue problem.
Zha [32] introduced an explicit formulation of the RSVD constructing it through the
use of several OSVDs and QSVDs (see also [9]). For the sake of brevity, we have
omitted our constructive proof based on a sequence of OSVDs and PSVDs. It can be
found in [9]. In this section, we first state the main theorem (2.1), which describes
the structure of the RSVD, followed by a discussion of the main properties in 2.2,
including the connection to generalized eigenvalue problems, a generalized dyadic
decomposition, geometrical insights, and the demonstration that the RSVD contains
the OSVD, the PSVD, and the QSVD as special cases.

2.1. The RSVD theorem. With the notation and conventions of 1, we have
the following theorem.

THEOREM 1 (the restricted singular value decomposition). Every triplet of ma-
trices A (m n), B (m p), and C (q n) can be factorized as

A P-*SaQ-1,
B=P-*SbV,
C USQ-,

where P (m m) and Q (n n) are square nonsingular, and Vb (p p) and Uc (q q)
are unitary. Sa (m n), Sb (m p), and Sc (q n) are real quasi-diagonal matrices
with nonnegative elements and the following block structure:

1
2
3
4
5

=6

1 2 3 4 5 6 1 2 3 4
’$1 0 0 0 0 0 I 0 0 0
0 I 0 0 0 0 0 0 0 0
0 0 I 0 0 0 0 I 0 0
0 0 0 I 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 S
0 0 0 0 0 0 0 0 0 0

I 0 0 0 0 0
0 I 0 0 0 0
0 0 0 0 0 0, 0 0 0 0 S 0

The block dimensions of the matrices Sa, Sb, Sc are the following.

Block columns .of Sa and Sc Block columns of Sb
1. rabc ra rac rab
2. re,b rc rabc
3. rac d- rb rabc
4. rabc rb rc
5. rac ra
6. n rac

Block row8 of Sa and S’b’
l. l’abc -- ?’a tab l’ac
2. tab -[- rc rabc
3. rac d- rb rabc
4. rabc rb rc
5. tab ra
6. m rab

rabc -]- ra rac rab
rac d- rb rabc
p-- rb
tab ra

Block rows of S
rabc d- l’a tab rac
tab - l’c rabc
q-rc
rac ra
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The matrices $1, $2, $3 are square nonsingular diagonal with positive diagonal ele-
ments.

Let ai, j, "Yk be the diagonal elements of the matrices $1, $2, $3. We propose to
call the following triplets of numbers the restricted singular value triplets:

rabc + ra- tab- rac triplets of the form (ai, 1, 1) with ai > 0. By convention,
they will be ordered as

tab + rc rabc triplets of the form (1, 0, 1).
rac + rb rabc triplets of the form (1, 1, 0).
rabc rb rc triplets of the form (1, 0, 0).
tab --r triplets of the form (0, j, 0), j > 0 (elements of $2).
rac ra triplets of the form (0, 0, "k), ’k > 0 (elements of $3).
min(rn rb, n r) trivial triplets (0, 0, 0).

We propose to call the factorization of a matrix triplet, as described in Theorem 1,
the restricted singular value decomposition because the RSVD allows us to analyse
matrix problems that can be stated in terms of the matrices A + BDC and

in which the matrices B and C represent certain restrictions on the type of operations
that are allowed. Typically, we are interested in the ranks of these matrices as the
matrix D is modified. The rank of the matrix A + BDC can only be reduced by
modifications that belong to the column space of B and the row space of C. It will be
shown how the rank of M can be analysed via a generalized Schur complement, which
is of the form D* CA-B, where again, C and B represent certain restrictions and
A- is an inner inverse of A. Moreover, the RSVD yields the restriction of the linear
operator represented by the matrix A to the column space of B and the row space of
C. Finally, the RSVD can be interpreted as an OSVD but with certain restrictions
on the inner products to be used in the column and row space of the matrix A (see

Some algorithmic issues related to the RSVD are discussed in [11], [13], [29], [28],
and [33], though a full portable and documented algorithm for the RSVD is still to
be developed.

2.2. Properties of the RSVD. The OSVD, as well as the PSVD and the
QSVD, can all be related to a certain (generalized) eigenvalue problem. It comes as
no surprise that this is also the case for the RSVD. First, the generalized eigenvalue
problem for the RSVD will be analysed in 2.2.1 and we shall point out an interesting
connection with canonical correlation analysis. A variational characterization of the
RSVD is provided in 2.2.2. A generalized dyadic decomposition and some geometrical
properties are investigated in 2.2.3. In 2.2.4, it is shown how the OSVD, PSVD,
and QSVD are special cases of the RSVD.

2.2.1. Relation to a generalized eigenvalue problem. Consider the gener-
alized eigenvalue problem

(2) ( AO, A 0
0
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Let p be the ith column of P and q the ith column of Q. Obviously, the column
vector (p q)* is a generalized eigenvector of the pencil (2). There are four types
of generalized eigenvalues (finite nonzero, zero, infinite, and arbitrary), which can be
related to the restricted singular value triplets of Theorem 1.

Note that if BB* Im and C*C I, the eigenvalues are :i= the singular values
of the matrix A. In the case that the matrices BB* and C*C are nonsingular, it can
be shown that the generalized eigenvalue problem (2) is equivalent to a singular value
decomposition. It follows from (2) that

If BB* and C*C are both nonsingular, then there exist square nonsingular matrices
Wb and We (for example, the Cholesky decomposition) such that BB* WWb and
C*C WWc. Then, we have that

(W[*AW-l)(Wcqi) (Wbpi)Ai,
(W-*A*W’I)(Wbpi) (Wcqi)Ai.

From Theorem 1, it follows that P* (BB*)P SbS and Q*(C*C)Q StcSc. Hence,
if BB* is nonsingular, the column vectors of P are orthogonal with respect to the
inner product provided by the positive-definite matrix BB*. A similar observation
applies for the column vectors of Q with respect to C*C. The BB*-orthogonality of
the vectors pi and the C*C-orthogonality of the vectors qi implies that the vectors
Wbpi and Wcqi are (multiples of) the left and right singular vectors of the matrix

W-*AW-.
Consider the RSVD of the matrix triplet (A’B, A*, B) and its related generalized

eigenvalue problem:

A*B A 0(o.0 0 0

This is nothing more than the eigenvalue problem that arises in canonical correlation
analysis (principal angles and vectors between subspaces; see, e.g., [3], [15]). There
exist applications where the matrices BB* and C*C are (almost) singular (see, e.g.,
[13], [18]). The matrices BB* and C*C can be (sample) covariance matrices that
are (almost) singular. This is, for instance, the case in [18], where a generalized type
of canonical correlation analysis is required, allowing singular covariance matrices.
Another example is generalized Gauss-Markov estimation as described in 3.3. It is
in these situations that the RSVD may provide essential insight into the geometry
of the singularities and at the same time yield a numerically robust and elegant
implementation of the solution by avoiding the explicit solution (with its "implicit
squaring") of the generalized eigenvalue problem.

2.2.2. A variational characterization. Let (x, y) x*Ay be a bilinear form
of 2 vectors x and y. We wish to maximize (x, y) over all vectors x, y subject to
x*BB*x 1 and y*C*Cy 1. It follows directly from the RSVD that a solution
exists only if one of the following situations occurs"

rabc T ra -rab --rac O. In this case, the maximum is equal to the largest
diagonal element of S and the optimizing vectors are x p (first column
vector of P) and y q (first column vector of Q) so that (pl, q)
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rabc + ra --tab- rac O. The norm constraints on x and y can only be
satisfied if

and

rac -t- rb rabc > 0 or tab ra 0

tab rc rabc 0 or rac ra > O.

In either case, the maximum is 0.
If none of these conditions is satisfied, there is no solution.

Assume that the maximum is achieved for the vectors x pl and y q.
Then, other extrema of the objective function (x, y) x*Ay, constrained to lie in
subspaces that are BB*-orthogonal to p and C*C-orthogonal to q, can be found in
an obvious recursive manner. All of these extrema are then generated by the columns
of the matrices P and Q.

2.2.3. A generalized dyadic decomposition and geometrical properties.
Denote P’ P-* and Q-1 Q’*. Then, with an appropriate partitioning of the
matrices P’, Q’, Uc, and Vb, corresponding to the diagonal structure of the matrices
Sa, Sb, Sc of Theorem 1, it is straightforward to obtain the following sums:

A PSQ’* ,r),* Q,*+ P Q’i +. +
B PV + PV2 + PS2V,
c + ’*+ UaSaQ .

Hence,

R(P) + R(P) R(A)’ R(B),

R(Q’) + R(Q’) R(A*)N R(C*).

The decomposition of A can be interpreted as a decomposition relative to R(B) and
R(C*): The four terms of this decomposition can be classified geometrically as follows:

in R(C*)
not in R(C*)

in It(B) not in R(B)
PSQ’* ,r),*

’’* .’’*
"g3 4g 4

Obviously, the term PSQ’* represents the restriction of the linear operator repre-
sented by the matrix A to the column space of the matrix B and the row space of the
matrix C, while the term PQ* is the restriction of A to the orthogonal complements
of R(B) and R(C*).

Also, we find that

R(B*) R(Vb)+ R(Vb) + R(Vb),
It(C) I(Uc) + R(Uc2)+ R(Uc4),

and

BVb3 0 === N(B) R(Vb3),
U3C 0 ==v N(C*) R(Uc3).
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Finally, some of the block dimensions in the RSVD of the matrix triplet (A, B, C) can
be related to geometrical interpretations by repeated application of Lemma 2.

dim R( )NR(Bo )]--rac-i-rb--rabc,
dim[ R(A B)* f’ R(C 0)* rab -- 1"c rabc,

dim[ R(A)

dim[ R(A*) R(C*)

It is easy to show that

R(Q) N(A) N N(C),

R(P) N(A*)"] N(B*).

Hence Q provides a basis for the common null space of A and C, which is of dimension
n- rac, while P provides a basis for the common null space of A* and B*, which is
of dimension m tab.

2.2.4. Relation to (generalized) SVDs. The RSVD reduces to the OSVD,
the PSVD, or the QSVD for special choices of the matrices A, B, and/or C. For the
precise structure of the PSVD and the QSVD, we refer to [8].

THEOREM 2 (special cases of the RSVD).
1. RSVD of (A, Im, In) is an OSVD of A.
2. RSVD of (Ira, B, C)is a PSVD of (B*, C).
3. RSVD of (A,B, In) is a QSVD of (A,B).
4. RSVD of (A, Ira, C) is a QSVD of (A, C).

Proof. 1. B I,, C In. Consider the RSVD of (A, Ira, In). By definition,
Im= P-*SbV and In UcScQ-1. This implies P-* VS-1 and
Hence, we find that A Vb(S[SaSI)U, which is an OSVD of A.

2. A Ira. Consider the RSVD of (Ira, B, C). Then Im P-*SaQ-, which
implies Q- SiP*. Hence, B* VbSP-, C Uc(ScS)P*, which is nothing
else than a PSVD of (B*, C).

3. C In. Consider the RSVD of (A, B, In). Then In UcSQ-, which implies
Q- S[IU. Then, A P-*(SaS[)U, B P-*SDVb* which is (up to a diagonal
scaling) a QSVD of the matrix pair (A, B).

4. B Ira. The proof is similar to part 3.

3. Applications. In this section, we shall first explore the use of the RSVD in
the analysis of problems related to expressions of the form A/BDC where A, B, C are
given matrices. The connection with Mitra’s concept of the extended shorted operator
[20] and with matrix balls will be discussed, as will the solution of the matrix equation
BDC A, which led Penrose to rediscover the pseudo-inverse of a matrix [24], [25].
In 3.2, it is shown how the RSVD can be used to solve constrained total linear least
squares problems with exact, noiseless rows and columns and the close connection to
Carlson’s generalized Schur complement [4] is emphasized. In 3.3, we discuss the
application of the RSVD in the analysis and solution of generalized Gauss-Markov
models, with and without constraints.

Throughout this section, we shall use a matrix E, defined as

(3) E VDUc
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with a block partitioning derived from the block structure of Sb and Sc as follows:

(4)
rabc -" ra tab rac rab -t- rc rabc q rc rac ra

rabc + ra rab rac Eli El2 El3 El4
rac + rb rabc E21 E22 E23 E24
p rb E31 E32 E33 E34
tab ra E41 E42 E43 E44

3.1. On the structure of A + BDC. The RSVD provides geometrical insight
into the structure of a matrix A relative to the column space of a matrix B and the
row space of a matrix C. As will now be shown, it is an appropriate tool to analyse
expressions of the form A / BDC where D is an arbitrary p q matrix. The RSVD
allows us to analyse and solve the following questions:

1. What is the range of ranks of A / BDC over all possible p q matrices D
(3.1.1)?

2. When is the matrix D that minimizes the rank of A + BDC unique (3.1.2)?
3. When is the term BDC that minimizes rank(A + BDC) unique? It will be

shown how this corresponds to Mitra’s extension of the shorted operator [20]
in 3.1.3.

4. In the case of nonuniqueness, what is the minimum norm solution (for uni-
tarily invariant norms) D that minimizes rank(A + BDC) (3.1.4)?

5. The reverse question is the following: Assume that IIDII _< 5 where 5 is a
given positive real scalar. What is the minimum rank of A + BDC? This can
be linked to rank minimization problems in so-called matrix balls (3.1.5).

6. An extreme case occurs if we look for the (minimum norm) solution D to
the linear matrix equation BDC A. The RSVD provides the necessary
and sufficient conditions for consistency and allows us to parameterize all
solutions (3.1.6).

3.1.1. The range of ranks of A+BDC. The range of ranks of A + BDC for
all possible matrices D is described in the following theorem.

THEOREM 3 (on the rank of A + BDC).

rab +rac- rabc

_
rank(A + BDC) <_ rain(tab, rac).

For every number r in between these bounds, there exists a matrix D such that
rank(A + BDC) r.

Proof. The proof uses the RSVD structure of Theorem 1"

A + BDC P-*SaQ- + P-*SbVDUcScQ-P-*(Sa + SbESc)Q-,
where E VDUc. Because of the nonsingularity of P, Q, Uc, Vb, we have that
rank(A + BDC) rank(Sa + SbESc). Using elementary row and column operations
and the block partitioning of E as in (4), it is easy to show that

S + EI 0 0 0 E14S3 0
0 I 0 0 0 0

rank(A+BDC)=rank 0 0 I 0 0 0
0 0 0 I 0 0

$2E41 0 0 0 $2E44S3 0
0 0 0 0 0 0
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the block dimensions of which are the same as those of Sa in Theorem 1. Obviously,
a lower bound is achieved for Ell -$1, E14 0, E4 0, E44 0. The upper
bound is achieved for almost every ("random") choice of E,E4, E4,E44.

Observe that, if ra tab -t- rac rabc, then there is no S block in Sa and the
minimum rank of A + BDC will be ra. Also observe that the minimum achievable
rank, rab -b rac- rabc, is precisely the number of restricted singular values triplets of
the form (1, 0, 1), (1, 1, 0), and (1, 0, 0).

3.1.2. The unique rank minimizing matrix D. When is the matrix D that
minimizes the rank of A+BDC unique? The answer is given in the following theorem.

THEOREM 4. Let D be such that rank(A + BDC) tab + rac rabc and assume
that ra > rab q-rac- rabc. Then the matrix D that minimizes the rank of A + BDC
is unique if and only if:

1. rc q,
2. rb--P
3. rabc rab q- rc rac q- rb.

In the case where these conditions are satisfied, the matrix D is given as

D Vb 0 0

Observe that the expression for the matrix D is nothing more than an OSVD!
Proof. It can be verified from the matrix in (5) that the rank of A / BDC is in-

dependent of the block matrices El2, El3, E21, E22, E23, E24, E31, E32, E33, E34, E42,
E43. Hence, the rank minimizing matrix D will not be unique, whenever one of the
corresponding block dimensions is not zero, in which case it is parameterized by the
blocks Eij in

(6)
-S E2 E13 0
E21 E22 E23 E24D V Ea Ea Eaa Ea U.
0 E42 E43 0

Setting the expressions for these block dimensions equal to zero results in the necessary
conditions. The unique optimal matrix D is then given by D VbEU2, where

q + ra rac rac ra

tab ra E41 E44 0 0
[3

3.1.3. On the uniqueness of BDC: The extended shorted operator. A
question related to the one of 3.1.2 concerns the uniqueness of the product term BDC
that minimizes the rank of A / BDC. As a matter of fact, this problem has received
much attention in the literature where the term BDC is called the extended shorted
operator and was introduced in [20]. It is an extension to rectangular matrices, of the
shorting of an operator considered by Krein, Anderson, and Trapp only for positive
operators (see [20] for references).

DEFINITION 1 (the extended shorted operator). Let A (m n), B (m p), and
C (q n) be given matrices. A shorted matrix S(A]B, C) is any m n matrix that
satisfies the following conditions:

We have slightly changed the notation that is used in [20].
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R(S(AIB, C)) c_ R(B), R(S(AIB, C)*)

_
R(C*).

2. If F is an m n matrix satisfying It(F) C_ R(B) and It(F*) C_ R(C*), then

rank(A F) _> rank(A 8(AIB C)).

Hence, the shorted operator is a matrix whose column space belongs to the column
space of B, whose row space belongs to the row space of C, and which minimizes the
rank of A- F over all matrices F, satisfying these conditions. From this, it follows
that the shorted operator can be written as

8(AIB, C) BDC

for a certain p q matrix D. This establishes the direct connection of the concept of
extended shorted operator with the RSVD.

The shorted operator is not always unique, as can be seen from the following
example. Let

1 0 0)A= 1 1 1 B=
0 1 0

Then, all matrices of the form

1 0 0)a 0
0 0 0

minimize the rank of A- S, which equals 2, for arbitrary a and .
Necessary conditions for uniqueness of the shorted operator can be found in a

straightforward way from the RSVD.
THEOREM 5 (on the uniqueness of the extended shorted operator). Let the RSVD

of the matrix triplet (A, B, C) be given as in Theorem 1. Then

,S(AIB, C) P-*,S(S,[Sb, Sc)Q-.
The extended shorted operator 8(A[B, C) is unique if and only

1. rabc rc -[- tab,

2. rabc rb rac
and is given by

-S 0 0 0 0
0 0 0 0 0

S(A[B,C)=P-* 0 0 0 0 0 Q-1
0 0 0 0 0
0 0 0 0 0

Proof. It follows from Theorem 3 that the minimum rank of A + BDC is tab +
rac- rabc, and that in this case EI -S1,E14 0, E41 0, E44 0. A short
computation shows that

-S E2 0 0 0 0
0 0 0 0 0 0
E2 E22 0 0 E24S3 0 -1BDC P-* 0 0 0 0 0 0 Q
0 $2E42 0 0 0 0
0 0 0 0 0 0
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Hence, the matrix BDC is unique if and only if the blocks El2, E22, E42, E21, E22, and
E24 do not appear in this decomposition. Setting the corresponding block dimensions
equal to zero proves the theorem.

Observe that the conditions for uniqueness of the extended shorted operator BDC
are less restrictive than the uniqueness conditions for the matrix D (Theorem 4). As a
consequence of Theorem 5, we also obtain a parameterization of all shorted operators
in the case where the uniqueness conditions are not satisfied. All possible shorted
operators are then parameterized by the matrices El2, E21, E22, E24, E42. Observe
that the shorted operator is independent of the matrices El3, E23, E31, E32, E33,
E34, E43. The result of Theorem 5, derived via the RSVD, corresponds to Theorem
4.1 and Lemma 5.1 of [20]. Some connections with the generalized Schur complement
and statistical applications of the shorted operator can also be found in [20].

3.1.4. The minimum norm solutions D that reduce the rank ofA+BDC.
Consider the problem of finding the matrix D of minimal (unitarily invariant) norm

]ID]I such that"

rank(A + BDC) r < r,

where r is a prescribed nonnegative integer.
It follows from Theorem 3 that a necessary condition for a solution to exist is

that ra > r >_ tab + rac rabc. Observe that if ra tab + rac rabc, no solution
exists. In this case, there is no diagonal matrix $1 in Sa of Theorem 1. Assume that
the required rank r equals the minimal achievable" r tab + rac rabc. Then, if the
conditions of Theorem 4 are satisfied, the optimal D is unique and follows directly
from the RSVD. The interesting case occurs whenever the rank minimizing D is not
unique. Before examining matrices D that minimize the rank of A / BDC, note that,
whenever min(rab, rac) --ra > 0, there exist many matrices that will increase the rank
of A + BDC. In this case,

in,f{ e IIDII rank(A + BDC) > ra} O,

which implies that there exist arbitrarily "small" matrices D that will increase the
rank.

THEOREM 6. Consider all matrices D satisfying

tab + rac --rbc <_ r rank(A + BDC) < r

where r is a given integer and let I[.11 be any unitarily invariant norm. A matrix D of
minimal norm IlDll is given by

D=--Vb( SO O0 )Uc,
where S[ is a singular diagonal matrix

,r r / rabc tab rac (
ra r

r / rabc rac tab ra r

o o)0 S

contains the ra- r smallest diagonal elements of St.
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Proof. From the RSVD of the matrix triplet A, B, C it follows that

A + BDC P-*(S + Sb(VDUc)Sc)Q-P-*(Sa + SbESc)Q-
with IIEll IIVDUcll IIDll. The result follows immediately from the partitioning
of E as in (4) and from equation (5). [:]

We could use Theorem 6 to define the restricted singular values ak as

ak inef{e amax(D) rank(A + BDC) k- 1 }

where amax(.) denotes the maximum ordinary singular value. Because the rank of
A + BDC cannot be reduced below tab "+" rac- rabc, there will be tab +rac- rabc
infinite restricted singular values. There are ra + rabc- rab- rac finite restricted
singular values, corresponding to the diagonal elements of $1. From (5), it can be
seen that the diagonal elements of $2 and $3 can be used to increase the rank of
A + BDC to min(rab, rac). However, from (7) it is obvious that min(rac ra, rab ra)
restricted singular values will be zero.

3.1.5. The reverse problem: Given IIDII, what is the minimal rank of
A+BDC? The results of 3.1.3 and 3.1.4 allow us to obtain in a simple fashion the
answer to the reverse question: Assuming we are given a positive real number 5 such
that IIDII _< , what is the minimum rank rmin of A + BDC?

The answer is an immediate consequence of Theorem 6. Note that the optimal
matrix D is given as the product of three matrices, which form its OSVD! Hence,
IIDII IIS[II and the integer rmin c&n be determined as follows. Let S/be the x
diagonal matrix that contains the smallest elements of $1. Then,

(8) rmin ----ra- (m.ax {size(S/) such that IISill <_ 5}).

It is interesting to note that expressions of the form A +BDC with restrictions on the
norm of D can be related to the notion of matrix balls, which show up in the analysis
of so-called completion problems [6].

DEFINITION 2 (matrix ball). For given matrices A (m x n), B (m x p), and
C (q x n), the closed matrix ball Ti(AIB C) with center A, left semiradius B, and
right semiradius C is defined by

T(AIB, C) { X IX A + BDC where IIDII2 _< 1}.

Using Theorem 6 and (8), we can find all matrices of least rank within a certain
given matrix ball by simply requiring that amax(D) <_ 1. The solution is obtained from
the appropriate truncation of S[ in Theorem 6. Since the solution of the completion
problems investigated in [6] are described in terms of matrix balls, it follows that we
can find the minimal rank solution in the matrix ball of all solutions of the completion
problems, using the RSVD.

3.1.6. The matrix equation BDC A. Consider the problem of investigat-
ing the consistency of, and, if consistent, finding a (minimum norm) solution to, the
linear equation in the unknown matrix D:

BDC A.
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This equation has an historical significance because it led Penrose to rediscover what
is now called the Moore-Penrose pseudo-inverse [21], [24]. Of course, this problem
can be viewed as an extreme case of Theorems 3 and 6, with the prescribed integer
r-0o

THEOREM 7. The matrix equation BDC A in the unknown matrix D is
consistent if and only if

rab rb rac rc rabc rb -[-rc.

All solutions are then given by

$1 El3 0 )D=Vb E3 E33 E34 U
0 E43 0

and a minimum norm solution corresponds to E3 O, E3 O, E33 0, E34 0,
E43 O.

Proof. Let E VDUc and partition E as in (4). The consistency of BDC A
depends on whether the following is satisfied with equality

EI E2 0 0 E14S3 0 ’1 0 0 0 0 0
0 0 0 0 0 0 0 I 0 0 0 0
E2 E22 0 0 E24S3 0 0 0 I 0 0 0
0 0 0 0 0 0 0 0 0 I 0 0

$2E41 $2E42 0 0 $2E44S3 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0

Comparing the diagonal blocks, the conditions for consistency follow immediately as

rabc tab q-rc rac -b rb rb -[-rc, which implies rab rb and rac rc. These
conditions express the fact that the column space of A should be contained in the
column space of B and that the row space of A should be contained in the row space
of C. If these conditions are satisfied, the matrix equation BDC A is consistent
and the matrix E VDUc is given by

ra q rc rc ra
ra (E El3 El4 )E p rb E31 E33 E34
rb ra E41 E43 E44

The equation BDC A is equivalent to

$2E41 $2E44$3 0 0 0 0
0 0 0 0 0 0

This is solved for EI S, El4 0 E41 0, E44 0. Observe that the solution
is independent of the blocks E3, E3, E33, E34, E43. Hence, all solutions can be
parameterized as

D Vbl Vb3 Vb4 E3 E33 E34
0 E43 0

The minimum norm solution follows immediately.
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Penrose originally proved [21], [24] that a necessary and sufficient condition for
BDC A to have a solution is:

(9) BB-AC-C =A,

where B- and C- are inner inverses of B and C.
written as

All solutions D can then be

(10) D B-AC- + Z- BB-ZC-C,

where Z is an arbitrary p x q matrix. It requires a tedious though straightforward
calculation to verify that our solution of Theorem 7 coincides with (10). In order to
verify this, consider the RSVD of A, B, C and use Lemma 1 to obtain an expression
for the inner inverses of B and C, which will contain arbitrary matrices. Using the
block dimensions of Sa, Sb, Sc as in Theorem 1, it can be shown that the consistency
conditions of Theorem 7 coincide with the consistency condition (9).

Before concluding this section, it is worth mentioning that all results of this section
can be specialized for the case where either B or C equals the identity matrix. In this
case, the RSVD specializes to the QSVD (Theorem 2) and mutatis mutandis, the same
type of questions, now related to two matrices, can be formulated and solved using
the QSVD such as shorted operators, minimum norm rank minimization, solution of
the matrix equation DC A, etc.

3.2. On low rank approximations of a partitioned matrix. In this section,
the RSVD will be used to analyse and solve problems that can be stated in terms
of the matrix2 M (DA S

D* where A, B, C, D are given matrices. The main results
include the analysis of the (generalized) Schur complement [4] in terms of the RSVD
(3.2.1), the range of ranks of the matrix M as D is modified, and the analysis of the
(non)unique matrix D that minimizes the rank of M (3.2.2), and finally the solution
of the constrained total least squares problem with exact and noisy data by imposing
additional norm constraints on D (3.2.3).

3.2.1. (Generalized) Schur complements and the RSVD. The notion of
a Schur complement S of the matrix A in M (which is S D* -CA-1B when A is
square nonsingular), can be generalized to the case where the matrix A is rectangular
and/or rank deficient [4] as follows.

DEFINITION 3 ((Generalized) Schur complement). A generalized Schur comple-
ment of A in M (cA .)is any matrix S D*-CA-B where A- is an inner
inverse of A.

In general, there are many generalized Schur complements, because from Lemma
1 we know that there are many inner inverses. However, the RSVD allows us to
investigate the dependency of S on the choice of the inner inverse.

THEOREM 8. The Schur complement S D* -CA-B is independent of A- if
and only if ra tab =rac. In this case, S is given by

EI Sf
S Uc E[2

E3

2 In order to keep the notation consistent with that of 3.1, we use the matrix D*, which is the
complex conjugate transpose of D in 3.1, as the lower right block of M. This allows us, for instance,
to use the same matrix E as defined in (3) and (4).
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Proof. Consider the factorization of A as in the RSVD. From Lemma 1, every
inner inverse of A can be written as

S- 0 0 0 X X
0 I 0 0 X25 X26

A- Q 0 0 I 0 x3 x36 p.
0 0 0 I x45 x46
Xl X52 X3 X4 X
X61 X. X3 X4 X X6

for certain block matrices Xij, where the block dimensions correspond to the block
dimensions of the matrix S of Theorem 1. It is straightforward to show that

S 0 0 XS
CA-B Uc 0 0 0 X2S. V0 0 0 0

SX SX3 0 SzXS

Hence, this product is dependent on the blocks X5, X25, Xh, X53, X55. The corre-
sponding block dimensions are 0 if and only if ra rab rac. [3

Observe that the theorem is equivalent with the statement that the (generalized)
Schur complement S D* -CA-B is independent of the precise choice of A- if and
only if R(B) C R(A) and R(C*) C R(A*). This corresponds to Carlson’s statement
of the same result (Proposition 1 of [4]). In the case that these conditions are not
satisfied, all possible generalized Schur complements are parameterized by the blocks
X5, X53, X15, X25, and X55 as

3.2.2. How does the rank of M change with changing D? Define the
A Bmatrix M([9) (c D*-b. )" We shall also use D D D. How can we modify the

rank of M(/) by changing the matrix/? Before answering this question, we need to
state the following (well-known) lemma.

LEMMA 3 (rank of a partitioned matrix and the Schur complement). If A is
square and nonsingular, then

rank C D* rank(A) + rank(D* CA-B).

Proof. Observe that:

o) (, 0 )(,C D* CA- I 0 D*-CA-IB 0

Thus we have Theorem 9.
THEOREM 9.

Arank C D* rab + rac ra + rank E2 E2 3.’2E3 E3 "33
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Proof. From the RSVD, it follows immediately that the required rank is equal to
the rank of the matrix

’ S1 0 0 0 0 0 I 0 0 0
0 I 0 0 0 0 0 0 0 0
0 0 I 0 0 0 0 I 0 0
0 0 0 I 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0

I 0 0 0 0 0 EI EI E E
0 I 0 0 0 0 E2 E22 E3,2 E2
0 000 0 0

\ 0 0 0 0 $3 0 E4 E34 E44
From the nonsingularity of $2 and $3, it follows that the rank is independent of
E41, E42, E43, El4, E24, E34, E44. The result then follows immediately from Lemma
3, taking into account the block dimensions of the matrices. [:]

A consequence of Theorem 9 is the following result.
COROLLARY 1. The range of ranks r of M attainable by an appropriate choice

of[9 in M (A BCO’-[9*) is

tab + rac ra

_
r

_
min(p +rac, q + tab).

The minimum is attained for

(12) /*=Uc
E3 E,3 E3 E3

E4 E4 E4 E4
where the matrices/4,/24,/34,/41,/42,/43, and 44 are arbitrary matrices.

Compare the expression of D of Corollary i with the expression for the generalized
Schur complement of A in M, as given by (11). Obviously, the set of matrices D
contains all generalized Schur complements, which are those matrices D for which
/34 E34 and E43 E43. If these blocks are not present in E, there are no matrices
D, other than generalized Schur complements, that minimize the rank of M. Hence,
we have proved the following theorem.

THEOREM 10. The rank of M([9) is minimized for [9 equal to a generalized Schur
complement of A in M. The rank of M([9) is minimized only for D D* CA-B
where A- is an inner inverse of A, if and only ff rab ra or rc q and rac rc or

rb p. If ra tab rac, then the minimizing D is unique.
Proof. The fact that each generalized Schur complement minimizes the rank of

M(/) follows directly from the comparison of/ in Corollary 2 with the expression for
the generalized Schur complement in (11). The rank conditions follow simply from
setting the block dimensions of E34 and E43 in (4) equal to 0. The condition for
uniqueness of/ follows from Theorem 8.

This theorem can also be found as Theorem 3 of [4], where it is proved via a
different approach. Related results can be found in [7] and [31].

3.2.3. Total linear least squares with exact rows and columns. The
nomenclature total linear least squares was introduced in [16]. The technique is an
extension of least squares fitting in the case where there are errors in both the ob-
servation vector b and the data matrix A for overdetermined sets of linear equations
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Ax b. The analysis and solution is given completely in terms of the OSVD of the
concatenated matrix (A b). In the case where some of the columns of A are noise-free
while the others contain errors, a mixed least squares-total least squares strategy was
developed in [17]. The problem where some rows are also error-free was analysed via
a Schur complement-based approach in [7]. One of the key canonical decompositions
(Lemma 2 of [7]) and related results concerning rank minimization were described
earlier in [4]. Another useful reference is [31]. We shall now show how the RSVD
allows us to treat the general situation in an elegant way. Again, let the data matrix
be given as M (cA DB.) where A, B, C are free of error and only D is contaminated
by noise. It is assumed that the data matrix is of full row rank.

The constrained total linear least squares problem is the following.
Find the matrix/) and the nonzero vector x such that

C D*

and lID-/)IIF is minimized.
A slightly more general problem is the following.
Find the matrix/) such that lid-/)IIF is minimal and

(in) rank C /). _< r.

The error matrix D-/ will be denoted by . Assume that a solution x is found.
By partitioning x conformally to the dimensions of A and B, we find that the vector
x satisfies

Axl + Bx2 O,
Cx + [9*x O.

Hence, the total least squares problem can be interpreted as follows. The rows of A
and B correspond to linear constraints on the solution vector x. The columns of the
matrix C contain error-free (noiseless) data while those of the matrix D are corrupted
by noise. In order to find a solution, we must modify the matrix D with minimum
effort, as measured by the Frobenius norm of the "error matrix" /), into the matrix
/). Without the constraints imposed by matrices A and B, the problem reduces to a
mixed linear-total linear least squares problem, as is analysed and solved in [17].

From the results in 3.2.2, we already know that a necessary condition for a
solution to exist is r >_ tab +rac- ra (Corollary 1). The class of rank minimizing
matrices/) is described by Corollary 1 when r tab + rac- ra. Theorem 9 shows
how the generalized Schur complements of A in M form a subset of this set. From
Corollary 1, it is straightforward to find the minimum norm matrix/) that reduces
the rank of M() to r rab -t- rac ra. It is given by

EI-Sf E E 0 1E2 E2 0* U i: E9. E3 0 vb*"
0 0 0 0

The minimum norm generalized Schur complement that minimizes the rank of M is
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given by

E[-S E
El2 E2S Uc E3 E23
0 0 /o

0

This corresponds to a choice of inner inverse in (11) given by X15 EIS1, X25
E2S-1, X51 S1E4, X53 S-1E4, X55 S-1E4S- 1.

We shall now investigate two solution strategies, both of which are based on the
RSVD. The first one is an immediate consequence of Theorems 6, but, while elegant
and extremely simple, might be considered as suffering from some "overkill." It is
a direct application of the insights obtained in analysing the sum A + BDC. The
second one is less elegant but is more in the line of results reported in [4] an,d7]. It
exploits the insights obtained from analysing the partitioned matrix M ( .

3.2.3.1. Constrained total linear least squares directly via the I:tSVD.
It is straightforward to show that the constrained total least squares problem can be
recast as a minimum norm problem as discussed in Theorem 6 as follows.

Find the matrix D of minimum norm I[DII such that

rank((A B ) (Omq)f).C D* + Iq (0nn /P)

The solution is an immediate consequence of Theorem 6.
COROLLARY 2. The solution of the constrained total linear least squares problem

follows from the application of Theorem 6 to the matrix triplet A’, B’, C’ where

C D* Ia =(0pxn Ip).

Hence, all that we need is the RSVD of the matrix triplet (A’, B’, C) and the
truncation of the matrix $1 as described in Theorem 6. It is interesting to also apply
Theorem 3 to the matrix triplet (A, B, C)

A B 0 )ra,b,=rank C D* Iq =tab+q,

ra, c, rank C D* rac + Po

ra’b’c’ rank C D* ra + p + q.

Hence, from Theorem 3, the minimum achievable rank is ra’b’ q-ra’c’- ra’b’c’
rab q-rac- ra, which corresponds precisely to the result from Corollary 1.

As a special case, consider the Golub-Hoffman-Stewart result [17] for the total
linear least squares solution of (A B)x , O, where A is noise-free and B is contami-
nated with errors. Instead of applying the QR-SVD-least squares solution as discussed
in [17], we could as well achieve the mixed linear-total linear least squares solution
from the following.

Minimize I[/1[ such that

rank((A B)- J0(0pn Ip)) <_ r,
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where r is a prespecified integer. This can be done directly via the QSVD of the
matrix pair ((A B), (Opn Ip)) and it is not too difficult to provide another proof of
the Golub-Hoffman-Stewart result derived in [17], now in terms of the properties of
the QSVD.

As a matter of fact, the RSVD of the matrix triplet of Corollary 2 allows us to
provide a geometrical proof of constrained total linear least squares, in the line of the
Golub-Hoffman-Stewart result, taking into account the structure of the matrices B’
and C’. We shall not, however, consider this any further in this paper.

3.2.3.2. Solution via RSVD-OSVD. While the solution to the constrained
total least squares problem as presented in Corollary 2 is extremely simple, we might
object to it because of the apparent "overkill" in computing the RSVD of the matrix
triplet (A, B, C), where B and C have an extremely simple structure (zeros and
the identity matrix). It will now be shown that the RSVD, combined with the OSVD,
may lead to a computationally simpler solution, which more closely follows the lines
of the solution as presented in [7].

Using the RSVD, we find that

.) 0)( o 0)C D* 0 Uc Sc U2D*Vb 0 V(

Let E* UD*Vb. Since Uc and Vb are unitary matrices, the problem can be restated
as follows.

Find/ such that liE-/llF is minimal and

Srank Sc /*

The constrained total least squares problem can now be solved as follows.
THEOREM 11 (RSVD-OSVD solution of constrained total least squares). Con-

sider the OSVD

Ell-S El2 E3 )E2 E22 E23 Z
E31 E32 E33 i-1

where re is the rank of this matrix. The modification of minimal Frobenius norm fol-
lows immediately from the OSVD of this matrix by truncating its dyadic decomposition
after r tab rac + ra terms. Let

r--tab--rac

U gr

i=1

Then the optimal [9 is given by

o o u;.

Proof. From Theorem 9, it follows that the rank of ( j.) can be reduced by
reducing the rank of the matrix

E S- E12 El3 )E21 E22 E23
E31 E32 E33
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The matrix/) is then obtained from (12) by setting the blocks/14, /24, /34, /41,
/42,/43,/43 to 0 in order to minimize the Frobenius norm and then truncating the
OSVD of the matrix above.

We conclude this section by pointing out that more results as well as algorithms to
solve total least squares problems with and without constraints and given covariance
matrices, can be found in [7], [28], [29], and [31].

3.3. Generalized Gauss-Markov models with constraints. Consider the
problem of minimizing Ilyll 2 + Ilzll 2 y*y + z*z over all vectors x, y, z satisfying

b Ax + By, z Cx

where A, B, C, b are given.
This formulation is a generalization of the conventional least squares problem

where B Im and C 0. The formulation above admits singular or ill-conditioned
matrices B and C. The problem formulation as presented here could be considered
as a "square root" version of the problem as follows.

Find x such that

is minimized, where Ilullwb u*Wbu and Wb and Wc are nonnegative-definite sym-
metric matrices.

In the case that BB* is nonsingular, we can put Wb (BB*)- and Wc C*C.
The solution can then be obtained as follows.

Minimize Ilyll 2 + Ilzl] 2 where

y*y (b- Ax)*Wb(b- Ax),
z* z X*C* Cx.

Setting the derivative with respect to x equal to 0, results in

(14) x (A*WbA + Wc)-IA*Wbb.

In the case where Wb =Im and C 0, (14) reduces to the classical least squares
expression. For the more general case, we can see a connection with so-called regular-
ization problems. Consider the case where C : 0 and B Im. If the matrix A is ill
conditioned (because of so-called collinearities, which are (almost) linear dependencies
among the columns of A), the addition of the term C*C may possibly make the sum
better suited for numerical inversion than the original product A*A, hence stabilizing
the solution x.

The matrix B acts as a "static" noise filter: Typically, it is assumed that the vec-
tor y is normally distributed with the covariance matrix E(yy*) being a multiple of the
identity. The error vector By for the first equation can only be in a direction which
is present n the column space of B. If the observation vector b has some component
in a certain direction not present in the column space of B, this component should
be considered as error-free. The matrix C represents a weighting on the components
of x. It reflects possible a priori information concerning the unknown components
of x or may reflect the fact that certain components of x (or linear combinations
thereof) are more "likely" or less costly than others. The fact that we try to minimize
y*y + z*z reflects the intention to explain as much as possible (i.e., min y’y) in terms
of the data (columns of the matrix A), taking into account a priori knowledge of the
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geometrical distribution of the noise (the weighting Wb). The matrix C reflects the
cost per component, expressing the preference (or prejudice?) of the modeller to use
more of one variable in explaining the phenomenon than of another. In applications,
however, typically the matrix A contains many more rows than columns, which cor-
responds to the fact that better results are to be expected if there are more equations
(measurements) than unknowns. However, the condition that BB* is nonsingular
requires a priori knowledge concerning the statistics of the noise. Because typically
this knowledge is rather limited, B will have fewer columns than rows, implying that
BB* is singular and (14) does not apply. In this case, however, the RSVD can be ap-
plied. It provides important geometrical information on the sensitivity of the solution.
Inserting the RSVD of the matrix triplet (A, B, C), the problem can be rewritten as

(P’b) Sa(Q-lx) + Sb(V , y),
(U2z)

Define b’ P*b,x’ Q-ix, y Vy,z Uz. Then, with obvious partitionings of
b, x, y, z’, it follows that

Observe that b’6 0 is a consistency condition. It reflects the fact that b is not
allowed to have a component in a direction that is not present in the column space of
(A B). The components of x and x can be estimated without error while the fact
that b5 S2y could be exploited to estimate the variance of the noise.

Most terms in the object function y*y + z*z can now be expressed with the
subvectors x’, (i 1,..., 6),

The minimum solution follows from differentiation with respect to these vectors and
results in

+ + +
2 b Y’2 0, z2 b,

X 3 b 3, Y3 0, Z3 0,
X4 b, Y4 Sb5, z4 0,
x5 0
X6 arbitrary.

Statistical properties, such as (un)biasedness and consistency, can be analysed in the
same spirit as in [23], where Paige has related the Gauss-Markov model without the
z-equation, to the QSVD. Similarly, the RSVD also allows us to analyse the sensitivity
of the solution. If, for instance, $2 is ill conditioned, then the minimum of the object
function will tend to be high, whenever b has strong components among the "weak"
singular vectors of $2, because of the term b*
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A related problem is the following.
Minimize y*y subject to b Ax / By and Cx c where A, B, C, b, c are given.
This is also a Gauss-Markov linear estimation problem as in [23], but now with

constraints. The solution is again straightforward from the RSVD. With b’ P’b,
x’ Q-ix, y’ Vy, c’ Uc, and an appropriate partitioning, we find

X’ ,,--la,
3 4

x arbitrary.

y’ b S-i c,y =0,
Y3:0

Observe that c b and c 0 are two consistency conditions.

4. Conclusions and perspectives. In this paper, we have derived a general-
ization of the OSVD, the restricted singular value decomposition (RSVD), which has
the OSVD, PSVD, and QSVD as special cases. A constructive proof, based upon a
sequence of OSVDs and PSVDs can be found in [9]. We have also analysed in detail
its structural and geometrical properties and its relations to generalized eigenvalue
problems and canonical correlation analysis. It was shown how the RSVD is a valu-
able tool in the analysis and solution of rank minimization problems with restrictions.
First, we have shown how to study expressions of the form A+BDC and find matrices
D of minimum norm that minimize the rank. It was demonstrated how this problem
is connected to the concept of shorted operators and matrix balls. Second, we have
analysed in detail low rank approximations of a partitioned matrix, when only one
of its blocks can be modified. The close relation with generalized Schur complements
was discussed and it was shown how the RSVD permits us to solve constrained total
linear least squares problems with mixed exact and noisy data. Third, it was demon-
strated how the RSVD provides an elegant solution to Gauss-Markov models with
constraints. The fact that the RSVD is only the tip of an iceberg of generalizations
of the OSVD for 2, 3, 4, matrices, is fully explored in [11].
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O(n 2) REDUCTION ALGORITHMS FOR THE CONSTRUCTION
OF A BAND MATRIX FROM SPECTRAL DATA*

GREGORY S. AMMARf AND WILLIAM B. GRAGG:I:

Abstract. Efficient rotation patterns are presented that provide stable O(n2) algorithms for the construction
ofa real symmetric band matrix having specified eigenvalues and first p components ofits normalized eigenvectors.
These methods can also be used in the second phase of the construction of a band matrix from the interlacing
eigenvalues as described in Linear Algebra Appl., 40 1981 ), pp. 79-87 ]. Previously presented algorithms for
these reductions that use elementary orthogonal similarity transformations require O(n3) arithmetic operations.

Key words, band matrix, inverse eigenvalue problem, Givens rotations

AMS(MOS) subject classification. 65F30

1. Introduction. Let A be a real symmetric (2p + )-band matrix of order n, and
let Ak denote the trailing principal submatrix ofA A, of order k. It is well known that
the eigenvalues of Ak interlace those ofA+1 for each k < n, and moreover, given real
numbers kj(.k) =< j -< k, n p _-< k =< n) satisfying

there is a (2p + )-band matrix A A, such that the eienvalues ofA are ( ,. )--1
for each k. In eneral, this band matrix is not uniquely determined.

The problem of constructing a band matrix from the interlacing eigenvalues is
considered in [2] and [1]. A survey of this problem and some related inverse eienvalue
problems is iven in [J ]. In [2] the interlacin eienvalues are used to determine the
first p components of the normalized eienvectors ofA, and the remainin components
of the eienvectors (and hence A) are constructed usin a block Lanczos process. In [1]
a matrix of bordered structure (where the trailin principal submatfix of order p is di-
aonal) is constructed that satisfies the required spectral conditions. Householder trans-
formations that preserve the eienvalues of the trailin submatrices are then applied to
reduce this bordered matrix to band fom. This reduction procedure uses O() arithmetic
operations.

In this note we present efficient rotation patterns that provide stable O(:) procedures
that can be used in the second step (the reduction step) of either of the above methods.
These algorithms provide solutions to the open problem posed in [, p. 515 ]. The first
rotation pattern we present can be considered as the eneralization to band matrices of
Rutishauser’s procedure for the construction of Jacobi matrices from spectral data pre-
sented in 4 ].

2. Efficient rduction ulgorithms. The reduction step in [2 can be described as
follows. Given ( h_- and an, p matrix Q with ohonormal columns, construct a
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(2p + )-band matrix A having eigenvalues j such that Q ( forms the first p rows ofthe
(orthogonal) eigenvector matrix for A. This reduction can be performed using a sequence
of orthogonal similarity transformations whose composition results in an orthogonal
transformation Q such that

0 QT Q, 0 Q It’ A
0

is a (2p + )-band matrix of order n + p. The trailing principal submatrix A An then
satisfies the required spectral conditions, and Q comprises the first p columns of Q. (The
matrix X is arbitrary and remains unchanged.)

In the algorithm given in [1 ], an n n matrix of the bordered form

(3) B=
B

where D is a diagonal matrix oforder n p, is constructed such that the trailing principal
submatrices of orders n p through n of B have prescribed eigenvalues. Householder
transformations that do not involve the first p coordinate axes are then used to transform
B to a (2p + )-band matrix A while preserving the eigenvalues of the trailing principal
submatrices. In particular, the composition of these Householder transformations yields
an orthogonal matrix U of order n p such that

(4) A=[ IpO U0:r][ BOBI )] [Iz’0U]0
is a (2p + )-band matrix of order n. Thus, the reduction of the matrices in (2) and (4)
is essentially the same problem. (Observe that the identity matrix in (2) arises because
the columns of Q are orthonormal.) We will describe our efficient rotation patterns in
terms of the reduction of a matrix in the bordered form (3).

The efficient reduction to band form that generalizes the algorithm of 4 is obtained
by performing plane rotations to introduce appropriate zeros in B row-by-row beginning
at row p + 2, in such a way that the intermediate matrices remain sparse. In contrast, a
Householder transformation to introduce zeros in the first column of the matrix will
result in a full matrix, and the subsequent Householder transformations must be per-
formed on full matrices.

Let R(A,j, k, l) GAG T, where G is the elementary Givens rotation in the (j, k)-
plane that annihilates akt. Thus, G is the identity matrix if akt 0. If akt 4: 0, then G is
the identity matrix apart from the 2 2 submatrix formed from rows and columns j
and k, which is given by

G
j, -s c’

where c aj//a + a, and s akff /a + a,. Our algorithm for reducing the bord-
ered matrix to band form is then given as follows.
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(R)

(R)

(R)

(R)

(R)

(R)

(R)

(R)

FIG. 1. Rotations are performed in coordinate planes 3, 8 ), (4, 8 ), 5, 8 ), (6, 8 ), and 7, 8 to introduce
the appropriate zeros in the eighth row.

ALGORITHM 1.
for k =p+2, n

for j =p+l, ,k-1
L A "=R (A,j,k,j-p)

To see how the sparsity is preserved, consider the example in Fig. 1. There n 8,
p 2, and the necessary zeros have already been introduced in rows 4 through 7. Nonzero
entries are represented by X, a Givens rotation is performed in the indicated planes to
annihilate the circled entry, and the symbol + indicates the "fillin" (i.e., the additional
nonzero entries) introduced by the rotation. The first rotation, in the (3, 8) plane, an-
nihilates a8, and creates p + 3 additional nonzero entries. (We count aij and aji as
one element.) The successive rotations introduce at most one additional nonzero element
each, so there are at most 2p + 5 nonzero entries on the eighth row at any time. We
can therefore perform each elementary similarity transformation on A in O(p) arithmetic
work. Thus the amount of computation required by the reduction is O(pn2).

Below is an explicit description ofAlgorithm that involves only the lower-triangular
part of the symmetric matrix A.

ALGORITHM 1.
Input: a symmetric matrix A [aj,k]jlk=l whose trailing principal submatrix of order

n p is diagonal.
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Output: a symmetric (2p + )-band matrix A whose trailing principal submatrices of
orders n p through n are orthogonally similar with those of the input matrix.

for k=p+2, n
for j-p+ 1, ,k-

if a,9_p 4:0 then
2 2p aj,j_p -1- a k,j-p,

c :=aj,j_p/o; s :=ak,j-p/0
aj,j_p :=p; ak,j_p "=0;
for i=p 1,p-2, ,

ak,j-i --S C ak,j-iJ

fr i=j+l,j+2, min {j+p,k-1}.

ak, -s c

u’=agj; v "=a,; w’=aj;
a, := cu+sv+2csw; a, := cv+su-2csw;
a, :=cs(v-u)+(c-s)w.

%

(R)

(R)

x

+
/ X X X X X

X X X X

(R)

X X
(R)

X
X X + X

X X X

+ X X X X X
X X X X

X
x

x x x
X X

x

FIG. 2. Rotations are performed in coordinate planes 3, 4), (4, 5 ), 5, 6), (6, 7 ), and (7, 8) to introduce
the appropriate zeros.
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Another rotation pattern can be obtained by introducing the zeros in (3) from the
bottom up along downwardly sloping diagonals.

ALGORITHM 2.
for k =n-1,n-2, p +

for j =k+ 1,. .,n
A "=R(A,k-l,k,j-k)

One step of this procedure is illustrated in Fig. 2. Observe that Algorithm 2 creates the
same amount of fillin as Algorithm 1.

In fact, several patterns ofrotations exist that preserve the sparsity ofthe intermediate
matrices. For example, Algorithms and 2 can be combined to build the band matrix
according to any ordering for which the intermediate band (sub)matrices occupy con-
tiguous rows and columns of the work array.

3. Numerical results. Numerical experiments verify that our efficient rotation pat-
tern produces accurate results in lower-order work than the Householder reduction tech-
nique. These experiments were performed on the VAX 11/750 at Northern Illinois
University. We will not attempt to analyze the numerical sensitivity of the inverse ei-
genproblem. Our only aim is to show that an efficient rotation pattern produces errors
comparable with the Householder reduction technique in lower-order work.

The following experiment was performed. The method of was used to create a
bordered matrix whose trailing principal matrices oforder n p through n have specified
eigenvalues. This matrix was then reduced to (2p + )-band form using

I. The Householder reduction procedure of ];
II. The efficient rotation pattern of Algorithm 1.

We calculated the average and maximum error among the assigned eigenvalues of the
trailing principal submatrices of orders n p through n relative to the Frobenius norm
of the band matrix. The results displayed in Table were obtained by assigning the
eigenvalues ofAk, n p _--< k -< n, to be the integers 2j + (n k 1), _-< j _-< k.
Experiments were carried out on a variety of other problems with similar results.

Tables 2 (a) and 2 (b) show average CPU times used by each reduction scheme for
various values of n and p. Table 2 (c) shows the corresponding ratios of the time used
by the Householder reduction to that of our rotation pattern. These ratios represent the
speedup factors of Procedure II relative to Procedure I. Note that for fixed n, the amount

TABLE
Relative errors in eigenvalues.

n p

10
20
50
10
20
50
10
20
50

Average error

II

3.39e-08
3.58e-08
2.40e-08
3.52e-08
2.00e-08
2.71 e-08
2.08e-08
2.73e-08
2.91e-08

1.58e-08
2.16e-08
2.96e-08
1.50e-08
2.86e-08
2.94e-08
1.29e-08
3.18e-08
5.04e-08

Maximum error

2.61 e-07 5.23e-08
2.2 le-07 9.42e-08
1.31e-07 1.12e-07
1.57e-07 5.23e-08
1.10e-07 1.1 le-07
1.12e-07 1.68e-07
7.84e-08 5.23e-08
7.39e-08 1.11 e-07
1.68e-07 1.50e-07

II
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TABLE 2(a)
Average timings for Procedure (CPU seconds).

n 10 20 30 40 50 O0 200

2
5
10
20

0.029
0.023
0.013

0.182 0.550 1.231 2.342 17.858 140.070
0.163 0.534 1.199 2.286 17.632 139.693
0.131 0.456 1.081 2.119 17.127 137.837
0.072 0.327 0.868 1.796 15.852 133.120

0.117 0.476 1.178 13.503 123.227

TABLE 2(b)
Average timings for Procedure II (CPU seconds).

n 10 20 30 40 50 100 200

2
5
10
20

0.022
0.018
0.009

0.087 0.207 0.381 0.596 2.493 10.273
0.099 0.244 0.453 0.734 3.112 13.037
0.103 0.302 0.618 1.044 4.807 20.757
0.063 0.287 0.692 1.275 6.937 32.130

0.104 0.451 1.110 9.250 50.007

TABLE 2(c)
Ratios ofCPU times.

n 10 20 30 40 50 100 200

2
5
10
20

1.346
1.333
1.364

2.096 2.661 3.232 3.931 7.162 13.634
1.639 2.188 2.645 3.114 5.666 10.715
1.266 1.511 1.748 2.030 3.563 6.641
1.147 1.136 1.253 1.408 2.285 4.143

1.128 1.055 1.062 1.460 2.464

of computation required by Procedure I decreases as p increases, while that of Procedure
II is often increasing as a function of p when p is small. These results show that our
rotation pattern is consistently more efficient than the Householder reduction technique.
The relative efficiency of the rotation pattern generally increases as n increases and de-
creases as p increases.
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Abstract. The central subject of this paper is the three-term recurrence formula satisfied by the symmetric
(first-kind) and antisymmetric (second-kind) polynomials relative to a given sequence of reflection coefficients,
the last element of which has unit modulus. The theory of these polynomials is shown to have interesting
analogies with the classical theory of orthogonal polynomials on the real line. In the case of real data, the former
is equivalent to a special case of the latter (by a change of variable). The main application considered here is
the problem of computing the zeros ofthe highest-degree symmetric polynomial, which is identified as a predictor
polynomial. This problem occurs not only in some modelling techniques for digital signal processing, but can
also be interpreted as the eigenvalue problem for a unitary Hessenberg matrix. Attractive solution methods are
derived from the "tridiagonal approach," based on the three-term recurrence relation.

Key words, three-term recurrence, positive-definite tridiagonal matrix, unitary Hessenberg matrix, rational
lossless functions, orthogonal polynomials
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1. Introduction. In a companion paper 9 ], we have seen how to associate a family
of symmetric polynomials Po(Z), pn(z) with a sequence of reflection coefficients
pl, pn satisfying pl < for k 1, n and Ion 1. This family is specified
by a fixed complex number ofunit modulus, denoted by ’o and called the circle parameter.
The symmetric polynomials pk(z) obey a three-term recurrence relation of the simple
form pk + l(z) a + z)p(z) zp_ z), where the coefficients ak can be determined
explicitly from the data ’o, pl, pn. By construction, the final polynomial pn(z) is
proportional to the classical on-symmetric predictor polynomial an(z) produced by the
Szegr-Levinson formula a(z) a_ l(Z) + ozdk- l(Z) for k 1, n.

The present contribution provides further results on these polynomials pk(z), based
essentially on the three-term recurrence relation. As far as applications are concerned,
the main objective is to derive some methods for computing the zeros of the predictor
polynomial a,(z). In this framework it is assumed that the relevant data are the reflection
coefficients, although the proposed methods can be modified so as to deal with the case
where the data are the entries of the corresponding Toeplitz matrix Cn. (Recall that the
coefficient vector an of an(z) is the solution of the homogeneous linear system Cnan
0.) The zeros ’l, ’n of an(z) are known to be distinct and to have unit modulus
[19 ]. In digital signal processing applications, the problem of computing these zeros
occurs in the Pisarenko modelling technique 22], and in the composite sinusoidal mod-
elling technique [24]. Furthermore, the same problem is essentially equivalent to that of
computing the eigenvalues of a unitary Hessenberg matrix 2 ], 17 ], 18 ], which is a
significant subject since any unitary matrix can be reduced to Hessenberg form by simple
transformations.

Section 2 contains some preliminary material concerning the symmetric polynomials
p(z). Without real loss of generality, we restrict our attention to the regular case
an(’o) 4: 0, implying pk(’o) 4:0 for all k. Our results include a duality relation induced
by reversing the sequence of the recurrence coefficients c, and some important Chris-
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toffel-Darboux-typeformulas. When written in matrix form, these formulas involve an
accretive bidiagonal matrix or, after symmetrization, a positive-definite tridiagonal matrix
(see [9 ]) built from the coefficients ck. This explains our "tridiagonal approach" ter-
minology.

Section 3 is concerned with two lossless rational functions, dual of each other (in
the sense above), having p,(z) as their denominators. In fact, it deals with Gaussian
quadrature on the unit circle. (The intimate connection between this subject and unitary
Hessenberg matrices is discussed in 16 and 18 ].) The poles of these lossless functions,
which are the zeros ’, ’, of a,(z), yield the mass points of the discrete positive
measure (defined on the unit circle) with respect to which the polynomials dk(z) are
pairwise orthogonal, and the corresponding residues yield the appropriate weights. We
derive Christoffel-type formulas, involving the values Pk(’j), for the weights associated
with the mass points.

A general technique for computing the zeros of a,(z) is developed in 4. These
zeros are shown to be obtainable as the generalized eigenvalues of a well-defined lower
and upper bidiagonal accretive-type pencil constructed directly from the recurrence coef-
ficients ck. By use of a simple change of variable, this pencil can be transformed into a
tridiagonal Hermitian-positive pencil. As an application, we consider the problem of
computing the eigenvalues of a unitary Hessenberg matrix. The exact connection with
our zero problem and the applicability of the proposed technique is explained from the
parameterization of such a matrix in terms of a sequence of reflection coefficients 17 ],
21 ]. This provides a clear interpretation of the "duality operation" ok -- to..- k inves-

tigated in 9 ].
The case where the reflection coefficients ok are real, and the circle parameter ’0 is

chosen to be or 1, deserves a special study and is treated in detail in 5. Here, instead
of a change of variable expressed by a cotangent function, as in the preceding section,
we use a cosine function (roughly speaking). This transforms the family of symmetric
polynomials Pk(Z) into a family ofeven/odd real polynomials 4k(x) which are orthogonal
on the interval 1, with respect to an appropriate positive measure 5 ], 12 in fact,
they satisfy the standard recurrence relation 4k+ l(X) 2[akl4k(X) 4k-(X). As a
result, we can reduce the zero problem for the predictor polynomial a,(z) to the eigenvalue
problem for any offour well-defined tridiagonal matrices constructed from the reflection
coefficients (see 2 ], 4 ], and 5 in that respect).

2. Preliminary results. To start, let us consider a family of polynomials p0(z),
p(z),-.., p,(z), with complex coefficients, satisfying the Frobenius-type three-term
recurrence relation

(2.1) Pk + l(Z)= (ak + kz)Pk(Z)-- zPk-(Z),

for k 0, n 1, with p-I (z) 0 and P0(Z) P0, a nonzero real number. Given a
sequence of nonzero complex numbers c0, Cl, a,-1, the formula (2.1) produces
a polynomial Pk(Z) of degree k that enjoys the symmetry property/3k(z) Pk(Z), for
0 _-< k _-< n. Without loss of generality, to agree with [9 ], we make the normaliza-
tion assumption

(2.2) p02 Iol012= 1.

Such a family of symmetric polynomials Pk(Z) has been constructed in the companion
paper [9] from a nonnegative-definite Toeplitz matrix C, ci-j :0 <-_ i, j <= n] oforder
n + and rank n or, equivalently, from a sequence ofreflection coefficients to l, to,- 1,

to, satisfying tOk] < for k 1, n and to, 1. Let us now briefly recall the
explicit connections that are needed in the sequel.
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Without loss of generality, we assume that a01 > 1/2 (in order to agree with the
setting of [9 ]). Then there exists a complex number ’0 of unit modulus satisfying
Re (/2ao) 1/2. (Here and in the sequel, -/2 denotes either of the square roots of ’0.)
As in [9 ], the number ’0 will be referred to as the circle parameter. From a0 let us
define another unit modulus complex number, that is col ?o/ao. Thus we obtain
the identity

(2.3)

Note that we have the property O) ’0 =/= 1, which means that we consider only the regular
case ofthe general theory developed in 9 ]. Recall that this restriction entails no essential
loss of generality (see 9, 4 ).

From the numbers ck in (2.1) we define the sequence (X, 22, n) of Jacobi
parameters by the recurrence

(2.4) kk+ 2 Re (’/2OZk) X
with 0 o. Thus we have k 1. As shown in [9 ], the polynomials p(z) correspond
to a suitable Toeplitz matrix Cn under the necessary and sufficient condition > 0 for
k 2, n. Using (2.1) and (2.4) we obtain the identity

(2.5) Pk(o) Po/2 klk2
The recurrence coefficients ak can be determined from the circle parameter ’0 and

the reflection coefficients o, "’", 0n as follows. First, the sequence of pseudoreflection
coefficients cok is computed by means of the formula

(2.6) OOk (Ok + O0)k + 1)( + ’oCOk + k)-1

for k n 1, n 2, 1, with the initial value con on. Since Ion 1, this yields
the property [O:k[ 1, for n >= k >= 1, by induction. The final value o:1 allows us to
determine ao by use of (2.3). Next, the numbers c1, cn- are obtainable by means
of the recurrence formula

(2.7) c,= ’oc

_
l( + ’oco_ l)-l( kOk) -1

with oo (by convention). An interpretation ofthese results in the Toeplitz environment
can be found in [9].

Certain applications involve not only the family of "first-kind" (symmetric) poly-
nomials pk(z), but also an appropriate family of associated second-kind polynomials,
denoted by qk(z). These satisfy exactly the same recurrence relation (2.1) as the first-
kind polynomials. On the other hand, they enjoy the antisymmetry property (z)
-q(z). In this paper, we choose the initial conditions

(2.8) qo(z) 0, q(z) 2coP -/2(o-Z).
They imply qk(’0) 0 for all k >= 0, in contrast with the property p(’o) =/= 0 for all k >=
0. (Polynomials qk(z) are called "shifted" second-kind polynomials in 9 ], and are denoted
by q.(z).) Using both versions of (2.1), we obtain the remarkable identity

(2.9) pk(z)qk+ l(z)-qk(z)p+ (Z) 2C0’1/2(’0-- Z)Zc,
for k 0, n 1. This makes sense for k if we set q-1 (z) -z-lql (z).

Next, let us examine an interesting duality in the theory. (It is different from that
investigated in 4 of 9 ].) This duality is produced by transforming the coefficient se-
quence (ao, a, an-) into its mirror image (o, , -1), where

(2.10) lk’-Oln_l_ k for0=<k=<n 1.
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Let/k(z) and k(z) denote the first-kind and second-kind polynomials of degree k gen-
erated by the three-term recurrence (2.1), where c is replaced by ,, while the ini-
tial conditions remain the same as in the original case, i.e.,/LI (z) 0,/o(Z) Po, and
40(z) 0, 41 (z) q (z). Then we have the simple duality relations

/n(Z) Pn(Z), 15n- (z)=Poqn(Z)/q(z),

n(Z) q(Z)Pn- I(z)/Po, n- (Z)= qn- (Z),

between polynomials of degree n and n 1.
To prove this, let us introduce the 2 X 2 matrix W(z) associated naturally with

(2.1); it is defined by

(2.12) W(z)=[ck+dz -1]z 0

for k 0, 1, n 1. It is easily verified that the first-kind and second-kind versions
of (2.1) yield the matrix factorization

Pn(Z)/Po
(2.13)

Zqn(z)/q(z)
--Pn- (z)/Po ]= Wo(Z)W(z) Wn- (Z).

-zqn-(z)/q(z)

There exists a "dual identity," which is the reciprocal version of (2.13); it reads

(2.14)
p,(z)/po

zp._ (z)/po

-q,(z)/q(z) ]-Zqn- (z)/q(z)
Wn- (z) W(z)Wo(z).

In view of (2.10) and (2.12), the desired relations (2.1 follow immediately from a
comparison between (2.13 and (2.14).

The remainder ofthis section is mainly concerned with certain "Christoffel-Darboux-
type formulas" that relate the symmetric polynomials p(z). From the circle parameter
’o and the recurrence coefficients c0, c, , c_ in (2.1), construct the n X n bidiagonal
matrix

(2.15) A=

The positivity property }, > 0 ofthe Jacobi parameters means that A is strictly accretive,
in the sense that its real part (or Hermitian part), i.e.,

(2.16) Re A= 1/2(A +A*),

is positive definite. Let us now prove this elementary but important result by exhibiting
an explicit factorization of (2.16 that will be useful in the sequel. (An alternative proof
can be found at the end of 3 in [9 ].)

Set the diagonal matrix A diag (’0*/2" 0 =< k =< n ). By (2.15), we have the
relation 2 Re A ARA, where R is the real symmetric tridiagonal matrix that has the
numbers 2 Re (’1/2ck) on the diagonal, for k 0, n 1, and the number -1
above and below the diagonal. Define the n X n matrices

)L -1 L]
(2.17) L= .z. G= -1"

"n
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The set of formulas (2.4) can be written as the matrix identity R GrLG. Hence we
obtain the Choleskyfactorization ofthe tridiagonal matrix Re A in the explicit form

(2.18) ReA=M*M withM=-L/2G.
Next, we derive an interesting identity that can be viewed as an analogue of the

celebrated Christoffel-Darboux formula of orthogonal polynomial theory [25 ]. Set the
n-vector polynomial

(2.19) p(z)= [po(z),p3(z), ,Pn- l(Z)] r.
Its reciprocal O(z) zn- 11*( 1/Y) is (z) [z"-po(z), pn- 3(z)], by the symmetry
property ofPk(Z). The three-term recurrence (2.1) amounts to the matrix identity

(2.20) oA * + zA )p( z) /2p,( z)e,,

with e, [0, 0, 1] v. Replacing z by " in (2.20) and taking reciprocals, we deduce
an alternative version, that is,

(2.21 ( ’)( ’0A * + ’A /2p,( )e.
Premultiplying 2.20 by (’), postmultiplying 2.21 by l(Z), and subtracting the results,
we arrive at the following conclusion.

PROPOSITION 1. The symmetric polynomials pk(z) generated by the three-term re-
currence (2.1) satisfy the Christoffel-Darboux-typeformula
(2.22) (_z)()Ap(z)= /2[p,()p,_ 3(z)-p,- (’)p,(z)].

It differs markedly from the analogous result of orthogonal polynomial theory by
the presence ofthe accretive bidiagonal matrixA (instead ofa positive diagonal matrix ).
Combining (2.22) with its reciprocal version, we obtain a "symmetrized formula," in-
volving the positive-definite tridiagonal matrix Re A, that is,

(2.23) (’- z)(’) Re Ap(z) 1/2 I/2[(o-z)p,()p,_3(z)-(o-)p,_,()p,(z)].

The confluent version of (2.23), obtained by letting z tend to ’, is of special interest in
the theory; it reads as follows:

(2.24)

(’) Re A 1(’) 1/2 .3/2 { p, -)p,(-) + ’o z)[p, ’)p,(’) p,( ’)p -3 (’) }.

Furthermore, it is possible to derive a "Green-type formula" that links the first-
kind and second-kind families. Let us briefly introduce this question, without going into
all the details. Set the n-vector polynomial

(2.25) q(z)=[qo(z),q3(z), ,q_3(z)] .
Here, we have fi(z) z 3q0(z), q_ 3(z) ], by antisymmetry. Using the recurrence
relation (2.1) for second-kind polynomials, and recalling q-3 (z) -z-q (z), we obtain
the matrix identity

(2.26) (oA*+zA)q(z)=/2[q(z)en-q3(z)e3],

where e3 [1, 0, ..., 0]v. Then, manipulations similar to those above produce the
bidiagonal Green-typeformula
(2.27) (-Z)l()Ap(z)=2Co(o-)n-3+/2[q_3()pn(z)-qn()p,_(z)].
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When " z, this reduces to (2.9) where k is replaced by n 1. We shall give neither
the symmetrized (tridiagonal) version, nor the confluent versions of the Green-type for-
mula (2.27).

Finally, let us mention that (2.20) yields an interesting expression for the first-kind
(symmetric) polynomials, namely,

(2.28) Pn(z) pon/2 det oA * + zA ).

In view of (2.18), this agrees with (2.5). There exists an analogous expression for the
second-kind polynomials, based on (2.26); it will not be given here.

3. Lossless rational functions. Since the Toeplitz matrix Cn is nonnegative-definite
and has nullity one, there exists a unique positive measure dt, defined on the interval
[0, 2r), that admits the entries of Cn as its first 2n + trigonometric moments, in the
sense that it satisfies

3.1 c, e-i d#(0),

for -n _-< k _-< n; the measure d is discrete and possesses exactly n mass points 0, 0,
0n in the interval [0, 2r). This is a classical result [19].

Let a(z) denote the comonic polynomial that admits the sequence of reflection
coefficients Ol, on; by definition, it is produced by the SzegO-Levinson recurrence
relation a(z) a_ l(Z) + ozd_ (z), with a0(z) 1. Equivalently, an(z) is the unique
comonic polynomial of degree n whose coefficient vector an satisfies the system of ho-
mogeneous linear equations Cnan II (see details in [9]). Polynomial a(z) will be
referred to as the first-kind predictor relative to the Toeplitz matrix C. Consider
the factorization

3.2

It is well known that the zeros ’, ’n of the predictor an(z) are simple and belong
to the unit circle. In fact, they are given by

(3.3) j=eij forj=l,...,n,

where 01,
at point 0. Then (3.1) can be written in the explicit form

(3.4) c=
j=l

Relation (3.4) provides the Carathdodory representation of the entries of the Toeplitz
matrix Cn (see Grenander and Szeg6 [19]).

Next, let us examine the question ofthe weights in some detail. Consider the Gaussian
quadratureformula on the unit circle relative to du, that is,

(3.5) v(ei) d/(0) Z hjv(fj),
j=l

where v(z) is any Laurent polynomial in the variable z; this is a direct consequence of
the Carath6odory representation (3.4). The inner product (x(z), y(z)) of two Laurent
polynomials with respect to the measure d# is defined as the left-hand side of 3.5 with
v(z) 2(1/Y)y(z). Thus we have the identity

(3.6) (x(z),y(z))= Z hY(f)y(f).
j=l
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It is well known that the reciprocals dk(z) of the predictor polynomials ak(z) constitute
the family of monic polynomials orthogonal on the unit circle with respect to d. Indeed,
they satisfy the Szeg6 orthogonality relations

3.7 (d(z), d(z)) 6,,

for 0 _-< k, l _-< n. Recall the properties a > 0 for k 0, n and rn 0. In view
of (3.6), a standard manipulation of (3.7) yields the classical expression

n-1

-1 2(3.8) h.= [ak())l
k=0

Alternatively, the weight h can be interpreted as explained below. Define rk(z) as
the second-kind predictor polynomial relative to C, for k 0, n; it is obtained by
means of the Szeg6-Levinson recurrence rk(z) r_ (z) PkZk- l(Z), with the initial
condition r0(z) Co. As shown in [9 ], we have the embedding properties

(3.9) p,(z)=p,(O)a,(z), q(z)=p,(O)[r,(z)+ i3,a,(z)],

with the real number 3’ (Co 0’o)/ico(co + o’o). It turns out that the weights h9
can be determined from the polar expansion

(3.10)
q,(z) jl j’3l- z
p,(z) i3’ + hj-

.j._ z

of the losslessfunction h(z) q,(z)/p,(z). Indeed, in view of(3.1 ), (3.4), and (3.5),
this expresses the fact that du is the positive measure that occurs in the Riesz-Herglotz
representation [1] of the lossless function f(z) h(z) i3" r( z) / a,( z). Note that
qk(z)/pk(Z) is a lossless function of degree k for each k (with 0 _-< k _-< n). Therefore,
Pk(Z) and qk(Z) have simple zeros, located on the unit circle, and the zeros ofp(z)
separate those ofqk( Z).

Let us now derive a useful Christoffel-type formula for the weights hj.. In view of
(3.10) we have the expression

3.11 hj -q,(’) /2p ’j-).

Applying the confluent Christoffel-Darboux-type relation (2.24) at a zero of p(z),
we can write the identity

(3.12) 1*(’9) Re A 1(’j) 1/2 -1/2( ’0- ’9)/3,_ l( ’9)P,(’).

Besides, we have 2Co(’0 ’9) f/2fi,-(fy)q,(f9), by use of (2.9). Combining this
with (3.12), we obtain the desired formula; the result can be stated as follows.

PROPOSITION 2. The weights h associated with the mass points O9 can be expressed
in terms ofthe values Pk( ) by means ofthe Christoffel-typeformula

Co ’o- ’j
(3.13) h 21* (’j.) Re A 1(’9)

This formula can be used as a substitute for the classical formula (3.8). The positivity
property h > 0 appears here as a consequence ofthe positive definiteness ofthe tridiagonal
matrix Re A.

Besides the function h(z) in (3.10), there is a second rational lossless function that
occurs naturally in the theory (see [6 ], [10]). To emphasize the role of the duality
mentioned in 2, we denote this function by Jr(z); the definition is

/t(z) 2 Co( ’0-- Z)Pn-1(-7)
(3.14) pgf/2pn(Z)
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In view of (2.11) and (2.8) we have h(z) 4n(Z)/ln(z). By duality, this implies that
h(z) is a lossless function of degree n. As a consequence, since a similar result holds
when n is replaced by k (with _-< k -< n), we conclude that the zeros ofpk(z) separate
those of( o z)pk-(z) (on the unit circle). Consider the polar expansion

(3.15) h(z) i’ -jl hj ’j - Z

Z
with h Co(f- fo)P,-l(f)/pgf/p(f), in view of(3.14). Making use of(3.11)
and (2.9), we obtain a remarkable relation between the weights h and h, that is,

(3.16) h hlplpn (j) 2.

When x(z) and y(z) are polynomials of degree less than or equal to n in z,
the inner product (3.6) can be written in the form x*C,y, where x and y denote the coeffi-
cient vectors of x(z) and y(z). As an application, let us compute the squared norm
[]pk(Z 2 Ckk ofthe symmetric polynomial p(z), for k N n 1. Using the results
of[9], we obtain l[pk(z)[ 2 2Co Re (f/za), so that (3.6) yields the identity

n

(3.17) , hjlpk(j)12= 2co Re (/za-).
j=l

More generally, we can compute inner products of the form (Pk(Z), ztpt(z) and thus
obtain an explicit congruence relation between the tridiagonal matrix Re A and the
Toeplitz matrix Cn-. Details on this subject can be found in [9 ]. Note that (3.17)
provides an interesting check about (3.16). Indeed, in view of (3.15 ), the sum of the
weights ]tj is the real part of h(0), which equals 2c0p2 Re (’/2c1)since pn(0)
cn Pn (0) by (2.1); according to (3.16), this is nothing but 3.17 with k n 1.

Remark. The singular case where the circle parameter ’o coincides with one ofthe
zeros of an(z), i.e., the case where (2.3) yields a0 , can be "regularized" as follows
9 ]. It suffices to replace the generating sequence (Co, a, cn-1) of the symmetric
polynomials Pk(Z) by the truncated sequence c 2, , an- ). This sequence generates
a family of reduced symmetric polynomials/k(z), for k 0, 1, n 1, with the
property that/n-(z) is proportional to the polynomial n-l(Z) an(z) z). If
the zeros of 6n (z) are ’1, ’n (i.e., if ’0 ’n), then the weight ofthe "reduced
measure" d that corresponds to the mass point 0 is given by h[ ’0 ’jl 2, for j
1, n 1. This result is proved implicitly in 4 of[9].

4. The zeros of a. (z) as generalized eigenvalues. Let us now examine, in a detailed
manner, the question of computing the zeros ’1, ’n of the predictor polynomial
an(z) defined from the singular Toeplitz system Cnan 0. In the sequel it is assumed
that the actual data are the reflection coefficients p l, on relative to Cn rather than
the coefficients an,i themselves. Note that this information is highly redundant, since
an(z) is pn-symmetric.
Our approach makes use ofthe family of symmetric polynomials Pk(Z) in which an(z)

is embedded, in the sense that an(z) is proportional to pn(z). It is explained in 2 how
such a family can be constructed uniquely from the reflection coefficients ok and an
"arbitrary" value of the circle parameter 0 (with ]’0[ ). The only constraint we
impose is that an(’o) 4 0, i.e., ’o 4 ’j for _-< j =< n. (In terms of the data, this amounts
to w ’o 4 -1.) As explained at the end of 3, such a restriction implies no essential loss
of generality. Indeed, if the singular case w ’0 -1 occurs, then a slight modification of
the algorithm devised for the regular case produces the zeros ’, ’n- ofthe reduced
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polynomial ,_ 1(Z) a,(z)/( ’z) from the given reflection coefficients ok relative
to a,(z).

Remark. In certain applications, such as the Pisarenko modelling problem [22 ],
it is probably more appropriate from an algorithmic viewpoint to consider that the actual
data are the entries of the nonnegative-definite Toeplitz matrix C,. In such a situation,
rather than computing the recurrence coefficients ck (from the reflection coefficients, as
explained above), it may be preferable to compute the "distorted recurrence coefficients"
c from the entries of C,, by means ofthe extended split Levinson algorithm, as explained
in 5 of[9 ]. This produces the desired result since the reduced polynomial f,+(z) is
proportional to a(z). We shall not go into further detail about such a dual computation
scheme.

Let p(z) be the n-vector 2.19 ), whose entries are the symmetric polynomials Pk(Z)
with 0 _-< k _-< n 1. From (2.20) we deduce the identity

(4.1) (’oA* + )A)p(’/) 0,

for j l, n. Thus, we can state the following result.
PROPOSITION 3. The zeros l, , ofthe p,-symmetric predictor a,(z) are the

generalized eigenvalues ofthe pencil foA *, -A ).
Next, we examine a simple transformation ofthe problem (4.1). Consider the change

of variable z e; -- cot (0 00)/2, which maps the unit circle to the extended real
line. In other terms, we have

1-it .o+
(4.2) z= -’0 + it’

-z o-
Accordingly, with the zeros ’j exp (i0j) of a,(z) we associate the real numbers

0.- 00
(4.3) tj.=cot for j= 1, ,n.

Translating (4.1) by means of (4.2), we obtain the linear system

(4.4) (Im A-t Re A)p(’j.) 0,

where Im A (A A *)/2i denotes the imaginary part of A. The main conclusion is
the following version of the preceding result.

PROPOSITION 4. The numbers t, t, associated with the zeros fl, "", of
a,( z) are the generalized eigenvalues ofthe tridiagonal Hermitian-definite pencil Im A,
Re A).

This result leads to an interesting numerical method for computing the zeros of
a,(z) since there exist efficient algorithms to solve that type of generalized eigenvalue
problems 15 ].

Let us make an additional comment concerning the relation between Propositions
3 and 4. In view of (4.1), the numbers ’j are the eigenvalues of the matrix -foA-1A *,
which is similar to a unitary matrix due to the fact that A is strictly accretive ]. In the
present context, this similarity property can be explained as follows. Define the Hermi-
tian matrix

(4.5) K= (M-l)* (Im A)M-I

where M is the Cholesky factor of Re A given in (2.18 ). In view of(4.4), the eigenvalues
ofK are the real numbers t.. Consider the Cayley transform U (I + iK)-(I iK) of
(4.5). Since K is Hermitian, U is unitary. Using (4.5), we obtain the factorization

(4.6) U=M(A-A*)M-,
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which shows that A-A * is similar to U (as alluded to above). In view of (4.1), the
eigenvalues of U are the unit modulus numbers -’- ’j- for j 1, n.

The weights hj associated with the zeros ’j of an(z) can be computed either by use
of (3.8) or by use of (3.13). The latter method involves the generalized eigenvectors
1(’) ofthe problems (4.1) and (4.4). Let us now examine the properties ofthese vectors.
Define the vector polynomial

(4.7) g(z)=Mp(z).

It is seen from (4.4) that g(’) is the eigenvector ofthe Hermitian matrix Kcorresponding
to the eigenvalue t. Set the squared norm

(4.8) w Jig(’j) 2 11" (’j) Re A 1(’j).

The transpose version of the orthogonality relations satisfied by the eigenvectors g(’j-)
can be written in the form

(4.9) w)- k( ’)gt(’) 6k,t,
j=l

for 0 =< k, =< n 1, with [g0(z), gn- l(z)] r g(z). Now, using (2.17), (2.18),
and (4.7), together with the expression of d(z) in terms ofp(z) and p+ l(Z) given in
9 ], we obtain

(4.10) g,(Z)=(2)k++l)-l/Z[fik+(O)(o--Z)d(Z)+6,n_lPn(Z)].

Since w)-1 2c11’0 ’[-)-hj, by (3.13) and (4.8), it can be verified, with the help of
(4.10), that (4.9) yields exactly the Szeg6 orthogonality relations (3.7). Details are omitted.

The methods described above can be applied to several interesting problems where
we must compute the zeros ofan an(z)-type polynomial (see [7 ], [8 ]). In the remaining
part of this section we explain one of the most natural applications, dealing with the
spectral decomposition of unitary Hessenberg matrices.

Let (Vo(Z), Vl(Z), vn(z)) be a graded basis of the vector space of complex
polynomials of degree less than or equal to n in the variable z. Here, "graded" means
that v(z) has degree k, for k 0, 1, n. Consider the expansion of the shifted
polynomial zv(z) in that basis, for 0 N k _-< n 1; it has the form

k+l

(4.11) zvk(z)= , d,v(z),
l=0

for some complex numbers d,, with d, +1 4 0. Let us denote by D the n n matrix
that represents the shift operator in the given basis. In view of (4.11 ), it reads

(4.12) D=

d0,0 do,
dl,0 dl,l dl,2

d.-2,o d-2,1 d.-2,2"’"
dn- 1,o dn-l,1

Thus, D is an irreducible lower Hessenberg matrix. (Here, "irreducible" means that
the entries just above the diagonal are nonzero.) The matrix D is called the confederate
matrix of vn(z) with respect to the given graded basis. (See Barnett 3 and the references
therein. Note that confederate matrices have been known for a long time; see, for example,
Householder [20, pp. 25-26].) The set of relations (4.11 can be written in matrix form
as follows:

(4.13) (zI-D)v(z) [0, O, dn__ 1,nl)n(Z)] T,
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with v(z) Vo(Z), vn- (z) T. This shows that the zeros ’j- of vn(z) are the eigen-
values ofD and that the vectors v(’j.) are the corresponding eigenvectors (in the case of
simple eigenvalues).

Now consider a nonnegative-definite Toeplitz matrix Cn of order n + and rank
n, with the normalization Co 1. From the Szeg6 polynomials dk(z) relative to Cn, define
the graded basis (v0(z), vn(z)), called SzegO" basis, by setting

(4.14) v,( z) a,( z), l)k(Z)--O’-l/2k(Z for0_-<k=<n 1,

with a0 and rk 10kl 2) O.k_ 1o It is easily verified that the corresponding confederate
matrix D is unitary. Indeed, the orthogonality relations (3.7) yield the identity VHV*
I, with H diag (h, hn) and

(4.15 V= [v( ’1 ), v(’2), v(’n) 1,

where v(z) [v0(z), vn_ l(Z)] v as above. From (4.13) we deduce

(4.16) DV- VZ withZ=diag(’, ,’n).

The identity D (VH1/z)z(VH1/2) -1 exhibits D as a product of three unitary matrices,
which proves the claim. Note that (4.16) provides the spectral decomposition of the
unitary Hessenberg matrix D. Indeed, the numbers ’j. are the eigenvalues of D and the
vectors h)/Zv(j) are the corresponding normalized (pairwise orthogonal) eigenvectors.

For future use, let us give the expression of the entries dk,z in terms of the reflection
coefficients. From the Szegr-Levinson formula, used in an inductive manner, we can
deduce the expansion of k(z) in the v(z) basis, whence the expansion of zvk(z) in that
basis. Thus, by straightforward computation, we obtain

f--PU+lU+2"’’kk+l if l<=k,
(4.17) dk,l

if l k + 1,

and dn_ ,n ,a _/2 where oo 1; ol, , on are the reflection coefficients; and ul,,_ are positive numbers given by

(4.18) #k=(1 112) /=.

We are now in a position to state the following remarkable result [17 ], [21 ], which is
an exact converse of the results above.

PROPOSITION 5. Let D be an irreducible lower Hessenberg unitary matrix oforder
n. Assume that D is normalized in such a way that its dk,k + entries are positive. Then
D is the confederate matrix ofa pn-symmetric predictor polynomial an(z) with respect to
a well-defined SzegO" basis. In other words, the entries dk,t olD can be parameterized in
theform (4.17 ), (4.18), where oo, o pn are well-defined complex numbers satisfying
oo 1, [ok[ < fork 1,..., n- 1, and [phi 1.

Let us briefly indicate the argument 17 ], 21 ]. Consider the well-known Jacobi-
Givens factorization
(4.19) D=DnDn-I" "D,

with D, In-1 (R) Qn and Dk Ik-1 (R) Qk (R) In-k- for k 1, n 1; here, the Q’s
are unitary matrices of the form

(4.20) Qn=-n, Qk=
-ok k

for -< k <- n 1, with #k [pk[) /. This defines the parameters
they enjoy the properties [p[ < 1, [pn-[ < 1, and [pn 1. It is easily checked,
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by use of (4.20), that the factorized form 4.19 produces exactly the desired expressions
(4.12) and (4.17).

As a consequence, we can use the methods summarized in Propositions 3 and 4 to
compute the eigenvalues (and the eigenvectors ofa normalized unitary Hessenberg matrix
D given in terms of its parameters ol, 02, on. Indeed, we have seen in (4.16) that
the eigenvalues of D are the zeros of the predictor an(z) generated by the reflection
coefficients ok, and the entries of the corresponding eigenvectors are the values vk(’j) of
the orthonormal Szeg6 polynomials l)k(Z O’-l/2dk(Z), for k 0, n 1. (Note
that these values could be determined from the values Pk(’j); see [9 ].) The technique
just mentioned is quite different from the QR algorithm [17] and from the divide-and-
conquer algorithm 18 which were recently proposed to solve the unitary Hessenberg
eigenvalue problem.

The context of unitary Hessenberg matrices provides a transparent interpretation
of the duality relation Ok "- to , ton-{an k (for 0 =< k _-< n) between sequences of reflection
coefficients, investigated in [9 ]. Indeed, it follows immediately from (4.17) that the

#unitary Hessenberg matrix D# parameterized by the dual sequence (to k)k= can be written
in the form

(4.21) D#= JDTrJ,
where J denotes the mirror permutation matrix, i.e., the secondary diagonal matrix.
Therefore, D and D# have the same spectrum. Thus, the eigenvalues ofD can be computed,
by means of the method suggested above, either from the data sequence (tok)’,= or from
the dual sequence (to)= ,. Of course, the same conclusion holds for the "general prob-
lem" of computing the zeros of the predictor an(z), since we have a#(z) an(z).

Not surprisingly, there is a close connection between the unitary matrix U defined
in (4.6) from c0, cn- and the unitary Hessenberg matrix D given by (4.17) in
terms of to,, ton. It is clear that U is lower Hessenberg, since, by use of (2.18), we
obtain the expression U 2MA-M* I where A- is lower triangular and M is upper
bidiagonal. More precisely, it can be shown that the unitary lower Hessenberg matrices
D and U are related by the simple identity

(4.22) D ’oI’-1 UP,
where I" is a well-defined diagonal matrix, the diagonal entries of which have squared
modulus Co]2. This produces an explicit interpretation of unitary Hessenberg matrices
in the framework ofthe tridiagonal theory. The proofof(4.22) results from a comparison
of(4.1 and (4.13 ). Indeed, using (4.10) and (4.14) we can write g(’a) ’0 ’) Fv( ’a.),
for j 1, n, with a suitable diagonal matrix F. Hence (4.7) yields

(4.23) P(’j) ’0- ’j)M- ll-’v (’j),

which implies that (4.1) can be written in the form

(4.24) .I+ ’oF-1 UF) v(g-.) O.

In view of (4.13 ), this proves the desired relation (4.22). The successive diagonal entries
3’1, "’", ’n of P are found to be given by

(4.25) 3’k =/3k(0)[ rk 1/2hk’0 1/2.

Using formula ,k cg rk- pk(0)l 2 in [9], we deduce the identity I’)’k 2 C0/2 which
completes the proof of the statement.

5. Methods for real data. In this section we consider certain special features exhibited
by the theory in the case where the data tok are real. Thus we have -1 < tok < for k
1, , n 1, and ton -1. In this framework it is natural to restrict the circle parameter
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’o to real values, i.e., ’o + 1. More generally (see however the remark at the end of 2
of[9 ]), we assume that the reflection coefficients ok satisfy the reality condition

(5.1) Im(0k’ok)=0 fork =l,.-.,n,

with respect to a given complex number ’o of unit modulus. Note that the transformation
’o -- ’o preserves this property; therefore, the admissible values ofthe circle parameter
’o occur in symmetric pairs o, o }.

Equivalently, the assumption 5.1 amounts to the fact that the polynomials ak(’0z)
have real coefficients (in the variable z). By induction, it is easily seen that the pseudore-
flectio coefficients wk in (2.6) have the simple form

(5.2) wk e- with e on’ + 1.

Thus, in contrast with the general complex case, they are independent of the numerical
values of o l, "’", on-1. Besides, our reality condition implies that all coefficients ck in
the recurrence (2.1) have the same phase. More precisely, by use of (5.1) and (5.2), we
deduce the property

(5.3) ck lZk/2 with u > 0.

Hence, all polynomials -IC/2pk(oZ) have real coefficients with respect to z.
The cases e and e -1 in (5.2) correspond to an(’o) 4:0 and to an(’o) 0,

respectively. Without loss of generality, we restrict our attention to the first case, that is,
e 1. The required information concerning the treatment of the second case will be
provided later on.

Instead of the "cotangent" transformation (4.2), we consider the "cosine" change
of variable z -- x given formally by

(5.4) x= 1/2(fl/zl/ +
i.e., z e; --* x cos (0 0o)/2. This maps the unit circle to the real interval [-1, 1].
Note that the sign ambiguity in (5.4) is harmless; in fact, we are only interested in the
correspondence between pairs of points, given by

(5.5) z ei(+) -- x +cos 0/2.

Note, however, the exceptional situations z ’o -- x + and z -’o -- x 0.
With the symmetric polynomials p(z) generated by (2.1) let us associate the func-

tions Ck(x) defined by

(5.6) Ckk(X) z-k/Zpk( Z),

by means of (5.4). It is easily seen that 4(x) is a polynomial ofdegree k in the variable
x, with real coefficients Ck, enjoying the parity property

(5.7) (-x) (- )(x),
i.e., f])k,k- 2i 0 for 0, 1, [ (k / 2 J. It follows from (5.3), (5.4), and (5.6)
that the three-term recurrence relation (2.1) can be written in the simple form

(5.8) Ck + (x) 2ukXCk(X) Ck- (X).

The initial conditions are given by -1 (x) 0 and Co(X) Po. Note that the numbers
Ck( have the same sign, whereas the numbers Ck(--1 have alternating signs. Indeed,
we have Ck( P0X "Xk and Ck(-- (-- )kCk( ), in view of (2.5) and (5.7).

The properties mentioned above mean exactly that Co(X), (x), ,(x)con-
stitute a family oforthogonal polynomials on the interval [- 1, ], with respect to an even
measure. (We shall identify the appropriate "minimal discrete measure" in the sequel.)
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In particular, (5.8) is the well-known three-term formula of orthogonal polynomial the-
ory [25 ]. It is useful to "symmetrize" (5.8). To that end, let us introduce the normal
ized polynomials

(5.9) Ck(z)

for k 0, 1, n, with an arbitrary positive value for un. Thus, we have Co(X) Ip0l 1/2.
In addition, we set -1(x) 0. Next, let us define the positive numbers C/l,
as follows:

The rightmost expression in (5.10) is obtained from (2.7), (5.2), and (5.3), with e 1.
It is valid for k 1, ..., n (not for k n). Note that/3k depends only on the
reflection coefficients 0k-1 and ok, in a simple manner. By use of (5.9) and (5.10) we
can write (5.8) in the standard symmetric form

+ l+ (x) x(x)-

_
(x).

Consider the n n real symmetric tridiagonal matrix T associated classically with
the recurrence (5.1 ), that is,

(5.12) T=

0 1
/ 0 ".

/3n_ 0

Thus, T is the confederate matrix of n(x) with respect to the graded basis
(k(x))=0. More precisely, the set of identities (5.1 with 0 =< k =< n can be given
the form

(5.13) (xI- T)ff(x) [0, ,0,3npn(x)] T,

with k(x) [0(x), fin-(x)] T. As a consequence, the zeros xl, xn oflpn(x)
are the eigenvalues of T, and the vectors k(Xl ),"" P(xn) are the corresponding eigen-
vectors. It is interesting to compare these statements with the analogous statements made
in 4 concerning the role of unitary Hessenberg matrices with respect to orthogonal
polynomials on the unit circle.

The result (5.13) leads to an efficient method for computing the zeros ’j. exp (i0j)
of the predictor polynomial an(z) from the given reflection coefficients ok. (When it
applies, i.e., in the "real case" (5.1), this method is certainly preferable to the general
technique described in 4.) Let us briefly explain the idea. In view of (5.7), the zeros of
n(x) occur in symmetric pairs { xj, -x}, with the exception of the value x 0 when
n is odd. From (5.5) and (5.6) it follows that these pairs correspond to the conjugate
pairs of zeros { ’6 ’, 0’)-1 of the real polynomial a,(z) an(’0z) via the formula

(5.14) {x,-xj} {cos (0-00)/2,-cos (0- 00)/2 }.

The main conclusion of this development is the following.
PROPOSITION 6. The zeros ofan(z) can be obtained, via (5.14), from the eigen-

values x ofthe tridiagonal matrix T, which is defined by means of(5.10) in terms ofthe
reflection coefficients ok.

Without going into detail, let us mention that the eigenvalue problem for this matrix
T is exactly equivalent to the singular value problem for the n/ 2 j [ n / 23 bidiagonal
matrix that has the numbers 1,/33, on the diagonal and the numbers/32,/34, just
below the diagonal 13 ], 14 ].
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The method outlined above is especially attractive for determining the eigenvalues
of a real orthogonal Hessenberg matrix D. (In this context, the idea goes back to Rutis-
hauser [23]; an efficient implementation was recently proposed by Ammar, Gragg, and
Reichel [2 ].) Indeed, D has real parameters Ol, on, via (4.17), and its eigenvalues
are the zeros of the corresponding predictor polynomial an(z); see 4. Of course, the
appropriate choices for the circle parameter are ’0 and/ or ’0 in that case. (The
condition e amounts to ’g on. Hence, there are zero or two possibilities for ’0 when
n is even, and there is one possibility when n is odd.)

Next, we examine the question of the orthogonality relations satisfied by the poly-
nomials k(x). The result will provide us with an explicit formula for the weights h,
which are required in ceain applications. We shall prove that the "discrete version" of
the ohogonality relations is nothing but

(5.15) h(x)(x) 2c06,t,
j=l

for 0 N k, N n 1, where Xl, x, are the zeros of ft,(x) and where the Chfistoffel
numbers h, h, coincide with the weights (3.8) of the measure d. According to
the classical theory of ohogonal polynomials [25], the only thing we have to show is
that the inverse of the weight h is given by

(5.16) h2’ (2c0)-,ff(x)ff,_, (x).
From the results of 3 we deduce

5.17 h71 CI( j-- f0)-I f/2 .p( f)fi, (f).

It is an easy exercise to transform 5.17 into the desired formula (5.16), by use of (5.4),
(5.6), and (5.9). Details are omitted. The conclusion can be stated as follows.

PROPOSITION 7. The weights h associated with the mass points O are equal to the
Christoffel numbers relative to the zeros x of,(x). More precisely, they are given by
the Christoffelformula

(5.18) h= 2c0 ff(x)

This should be compared with the analogous expression (3.8) in Szeg6’s theow.
Observe that the zeros x and -x offt,(x) yield the same weight (or Chfistoffel number)
h. Note also that (5.18) can be written in terms of the values p(f) as follows:

]_l(5.19) h =2cof/ E klPk(j)l 2

k=0

Therefore, an alternative proof of 5.15 consists of showing that formula (3.13 reduces
to 5.19 under the reality assumption (5.1), (5.3).

Recall that the dual reflection coefficients o 0nn- k generate the same 0n-symmetric
predictor polynomial an(z) as the given reflection coefficients ok (see [9 ]). Hence, the
zeros ’j- of an(z) can be obtained alternatively, via 5.14 ), from the eigenvalues xj of the
real symmetric tridiagonal matrix T# whose nontrivial entries /, are given by

(5.20) /3= 1/2(1 ’opk)/2(1 + ’o+ lpk+ l) 1/2,

for k 1, n 1. This expression of B is deduced from (5.10), by use of the
assumption e 1. (For convenience, we have included the mirror permutation k ---)

n k in the definition of T#.)
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It is interesting to give a context-free proof of the fact that the matrices T and T#

have the same spectrum. Let us introduce the monic orthogonal polynomials rk(x)
k(x)/,. They satisfy the recurrence relation

(5.21) -k + (x) xrr(x)- 3]rk_ (x).

Note that rk(x) is the characteristic polynomial of the top principal submatrix of order
k of T. With a similar definition for the dual polynomials r(z) from the matrix T#, we
have the remarkable identity

(5.22) (x) (x)- 1/4 fo- ’o-,)( ’oo)

_
(x),

for k 2, n. This can be proved easily by induction, with the help of(5.10), (5.20),
(5.21 ), and its dual. Details are left to the reader. In particular, (5.3) yields the desired
result r,(x) r #, (x), since ’g0n e 1.

Let us now consider the case e -1, which characterizes the fact that ’0 is a zero
ofan(z). The final remark in 3 shows that the results above apply without modification
to this case provided c is replaced by & c+l. Thus, the remaining zeros ’l,
’n- ofan(z) can be obtained from (5.14) where the numbers Xl, xn- are interpreted
as the eigenvalues of the symmetric tridiagonal matrix T, of the form (5.10) with r7
n 1, whose nontrivial entries k are given by

(5.23) /3\= 1/2( koPk)l/2 -I- ko+ lpk + 1) I/2,

for k 1, ..., n 2. (Formally, this is identical to (5.20).) Note that changing the
sequence (Ok),= into its dual (p)= would yield the same tridiagonal matrix as .

Remark 2 ]. Recall that we can replace ’0 by ’o, i.e., 0o by 0o + r in the method
described above. (This preserves the parameter e ’gOn if and only if n is even.) Thus,
the zeros of an(z) can be determined not only, via (5.14), from the eigenvalues xj of the
tridiagonal matrix T or T relative to the point ’0, but also, via

(5.24) {x},-x}} {sin (0.-00)/2,-sin (0j- 0o)/2 },
from the eigenvalues xj ofthe tridiagonal matrix T or relative to the point ’o. It may
be interesting to compute both spectra (x) and (xj) in order to determine the zeros of
an(z) with good accuracy by means of (5.14) and (5.24).

Finally, let us examine a rational functionf(x) that is of frequent use in the theory
of orthogonal polynomials on the real line. The definition is

(5.25) f( x) P,- (x)/(x).

Formulas (5.6) and (5.9) provide a direct connection between f(x) and the lossless
function h(z) in (3.14), that is,

(5.26)

Next, consider the polar expansion

5.27 f(x) fj.( x- x) -1

j=l

with J Pn-l(Xj)lP’(xj). In view of(5.16), we have

5.28 J= (2 Co)-1/3,h2_ (xj-).

On the other hand, by formal computation based on (5.4), we can express (5.27) in
terms of the variable z as follows:

f+z(5.29) f(x)=2(/2Z-1/2---dl/Zzl/2)-lj,fjj_Z..=
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Using (5.26) and comparing both expansions (5.28) and (3.15), with 0 since
/t(0) is real, we deduce the identity

(5.30) fj (2 Co)-’ p/3,,,,,_ lj.
By equating the right-hand sides of 5.28 and 5.30 ), we obtain an alternative proof (in
the "real case") of the connection (3.16) between the weights hj and/j.
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MONOTONICITY PROPERTIES OF THE TODA FLOW, THE QR-FLOW,
AND SUBSPACE ITERATION*

JEFFREY C. LAGARIAS’

Abstract. Let X (t) denote the Toda flow on the space of n n matrices, with X (0) a symmetric matrix,
and let Xr(t) denote the r r upper left corner principal submatrix of X (t), i.e., Xr(t) E rrX (t)Er where
Er ]. Then the r ordered eigenvalues ?1 (Xr(t)) >= k2(Xr(t) > > kr(Xr(t)) ofXr(t) are each a nondecreasing
function of t, for < r =< n. A similar result is proved for the QR-flow Y (t) exp (X (t)), for the eigenvalues
of Yr(t) ErrY (t)Er. For any generalized Toda flowf(X (t)) with f(. a nondecreasing function, it is shown
that Tr (Eff(X(t))Er) is a nondecreasing function of t. The QR-flow inequalities are used to show that the
Ritz values of a symmetric matrix X on a subspace are nondecreasing under subspace iteration.

Key words. Toda flow, QR-flow, QR-algorithm, subspace iteration, Ritz value

AMS(MOS) subject classifications. 15A42, 65F15, 34A34

1. Introduction. Let X be an n n symmetric matrix and let 9 be an r-dimensional
subspace ofn. The Ritz values of X on 9 P, p. 214 ], denoted by

,(x; o)>_- >_- ,,(x; ),

are the eigenvalues of VTXV where V is any n r partial isometry (VTV Ir) whose
columns span O. The Ritz values depend only on 6, for if V, 9 are any two partial
isometries spanning O, then V 90 for some r r orthogonal matrix O.

Subspace iteration P, Chap. 14] is an extension of the power method for finding
the largest eigenvalue of a symmetric matrix. Given a subspace O0, define subspaces of
O; recursively by Oi + X 5ei. For most subspaces Oo, the Ritz values of Oi converge
to the r largest eigenvalues of X as - . This paper shows that the Ritz values are
nondecreasing under subspace iteration, i.e., for any symmetric X and any subspace Oo,

(1.1) ?i(X; 6’ >_- ki(X; 90), l<=i<-_r.

This eigenvalue monotonicity property ofsubspace iteration is well known for the largest
eigenvalue, and has apparently been observed in general (see [R, p. 11 ], [P, p. 295 ]),
but without proof. The inequalities (1.1) are derived from eigenvalue monotonicity
properties ofa continuous flow interpolating subspace iteration, which itself is a projection
of the QR-flow (defined below). More generally, the paper proves monotonicity in-
equalities for generalized Toda flows, which include the QR-flow as a special case.

The Todaflow or Toda lattice is a Hamiltonian dynamical system originally proposed
to describe the motion of a set of particles moving on a line under the influence of
exponentially repulsive potentials between nearest neighbors [T]. Flaschka [F1 ], [F2
showed that for n particles this system of differential equations can, by a change of
variable, be put in the Lax pair form

(1.2)
(t) [X (t), rs(X (t))]

X (t)r(X (t))- r(X (t))X (t).
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Here X (t) is an n n symmetric tridiagonal matrix with entries xij(t), and -s(X (t)) is
the skew-symmetric tridiagonal matrix associated to X (t) by

xi(t),

rs(X (t)) 0,

-x.t),

i>j,

i=j,

i<j.

The mapping 7rs(X arises from the unique decomposition (for real matrices X

1.3 X 7rs(X + au(X ),

in which -s(X is skew-symmetric and ru(X is upper-triangular. The mappings r(.)
and ru(" are both linear maps. The Lax pair equation (1.2) guarantees that the eigen-
values of X (t) are independent of t, i.e., the flow X (t) is isospectral (cf. L ). Flaschka
observed that the eigenvalues of X (t) form a set of commuting Hamiltonians for the
flow, which show that it is a completely integrable Hamiltonian dynamical system. In
1975, Moser [M] made a detailed study of this flow, obtaining an explicit solution
and, among other things, showing that the flow always converges to a diagonal matrix as--- __+In 1982, Symes [Sy] observed that there is a close connection between the Toda
flow and the QR-algorithm for finding the eigenvalues and eigenvectors of a positive-
definite symmetric tridiagonal matrix (see DNT], Fr ], W ], W2 ). Any invertible
real matrix M0 has a unique QR-decomposition

Mo QR,

in which Q is orthogonal and R is upper triangular with positive elements on the diagonal.
This decomposition is computed using the Gram-Schmidt orthogonalization process on
the columns of M0. The QR-algorithm iterate M of Mo is

M RQ QMoQ.
For any positive-definite symmetric matrix M0, the QR-algorithm iterates { Mi } of Mo
converge to a diagonal matrix that has the eigenvalues of M0 on the diagonal. Now
associate to the Toda flow X (t) the flow

(1.4) Y (t) exp (X (t)),

which evolves according to the Lax pair equation

(t) [Y (t), Try(log Y (t))],

where log Y (t) denotes the (unique) symmetric logarithm ofa positive-definite symmetric
matrix Y (t). Symes [Sy] and later Deift, Nanda, and Tomei [DNT] observed that if

(1.5) Y(t)=Q(t)R(t),

then

Y(t+ 1)=R(t)Q(t):Q(t)TY(t)Q(t).

Hence for positive-definite symmetric matrices, the flow Y (t) gives at integer times the
QR-algorithm iterates of Y (0). For this reason the flow Y (t) is called the QR-flow.

Symes’s results actually apply to the QL-flow, but carry over in a straightforward way to the QR-flow.
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The QR-decomposition can be used to explicitly exhibit the isospectral nature of
the Toda flow (see Sy ]). Consider the QR-decomposition

(1.6) exp (tX(O))=Q(t)R(t).

Then we have

(1.7) X(t)=((t)TX(O)O(t),
which exhibits a similarity transformation between X (t) and X (0). We also have

(1.8) Y(t)=O(t)Ty(o)o(t).
The Toda flow is defined on the set Z, ofreal symmetric n n matrices, and remains

a completely integrable Hamiltonian dynamical system on "genetic" matrices [DLNT].
For all matrices on Z,, it has the property that all off-diagonal elements Xij(t) -- 0 as- +. For a "genetic" symmetric starting point X (0) the limiting values X (-c),
as -- - and X () as -- , are given by

1.9 X(-oo) .. X(oo) ..
1 n

in which ) >= >= )n are the eigenvalues of X0 arranged in decreasing order. (This
does not hold for all starting points X (0), e.g., for any diagonal X (0) the Toda flow is
constant, so that X(-c) X() X(0) in this case.) Thus the effect of the time
evolution of the Toda flow for - to + on a "genetic" symmetric matrix is
to reverse the order of eigenvalues on the diagonal, from increasing order at - to
decreasing order at +.

This paper proves matrix inequalities which show that, as time increases, the Toda
flow on symmetric matrices moves eigenvalues up and to the left in a monotone fashion
on all Toda orbits, including "nongeneric" ones. To make precise statements, let X r)(t)
denote the r r principal submatrix of X (t) and ),r(t) >- )2,r(t) >---- >= )r,r(t) be the
eigenvalues ofXr)(t) arranged in decreasing order. Note that

[ X,l(t)" Xl.(t)]xCr)(t)=ETrX(t)Er=
Xrl"(/) Xrr’(t)J

where Er is the n r matrix [r], SO that ErTEr Ir, the r X r identity matrix. The
eigenvalues Xi,r(t) depend on the initial condition X (0) X0 ofthe differential equation;
this will be indicated as Xi,r(t, X0) when necessary.

THEOREM 1. For <= r <= n and any symmetric matrix X (0), all the ordered ei-
genvalues ofthe projected Todaflow orbit X {r)( t) E X t)E are nondecreasingfunctions
oft, i.e., ift > t2, then

(1.10) kj,r( tl - kj,r( t2 ), <=j <= r.

This theorem asserts that while X (t) is an isospectral flow on the space of n n
matrices, when restricted to r r principal submatrices with r < n, it is spectrum-increasing
(actually spectrum-nondecreasing ).

Theorem yields a large class of matrix inequalities through rescalings of the ei-
genvalues ofthe Toda flow. Any functionf: - induces an operator-valued mapping,
also labeled f, of the space Z of n n real symmetric matrices into itself (see [Do],
[Lo]) such that if(X, Xn) are the eigenvalues of X, then (f(X), ,f(Xn)) are
the eigenvalues off(X ). Theorem immediately implies the following result.
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THEOREM 2. Let fl(x) be any nondecreasing real-valuedfunction. For <= r <= n
and any symmetric matrix X (0), the eigenvalues off (E X (t)Er) arranged in decreasing
order aref Xj,r( for <= j <- r and each f (Xj,(t)) is a nondecreasing function of t.

In particular,

(1.11) TA,,(t) Tr (fl (ErrX (/)Er))

is a nondecreasingfunction oftfor-c < < .
Next we establish similar monotonicity inequality of eigenvalues for all positive

powers of the QR-flow. Let Y (t; Y0) denote a QR-flow orbit with Y (0) Y0, and let

Xi,r(t; , 0)" -< -_< n} denote the eigenvalues of ErrY (t)"Er in decreasing order.
THEOREM 3. Let Yo be a positive-definite symmetric matrix and Y the QR-flow

orbit having Y(0) Yo. Then for all a > 0 and < r <= n all the ordered eigenvalues of
y (,r) (t) Etry (t) Er are nondecreasingfunctions oft. That is, if >= t2, then

(1.12) hj,r( c, Yo >= hj,r( t2 o, Yo j <= r.

As an immediate corollary of Theorem 3 we obtain another large class of matrix
inequalities through reparameterization of the QR-flow.

THEOREM 4. Letf (x) be any nondecreasing real-valuedfunctionfor x > O. Let Y0
be a positive-definite symmetric matrix, and let Y (t) be the QR-flow orbit having
(0) Y0. Then for <= r <= n and any c > O, the eigenvalues of fl(ErY(t)"Er) ar-
ranged in decreasing order, which aref Xj,r( t; a, 0)), are each a nondecreasingfunction
oft. In particular,

TAxxp (.)(t) Tr (f (ErTy (t)"Er))

is a nondecreasingfunction oftfor-oe < < .
Section 4 establishes a monotonicity inequality for the trace of a projection of a

generalized Toda flow. A generalized Todaflow is any reparameterized flowf(X (t)) on
the symmetric matrices 2n induced from the Toda flow X (t) by a monotone increasing
function f: -- , see [C1].

THEOREM 5. Letf2 (x) be any nondecreasing real-valuedfunction defined on . For
<= r <= n and any symmetric matrix X (0), the quantity

TI,j, (t) tr (E rrJ(X (t))Er)

is a nondecreasingfunction oftfor-oe < <
Section 5 shows that the simple subspace iteration algorithm [P, p. 290] for finding

the r largest eigenvalues of a symmetric matrix is a projected form of the QR-algorithm,
an observation due to Watkins [W ]. Using this result, the Ritz value inequalities 1.1
follow from Theorem 4. Hastie [H] suggested using simple subspace iteration to find a
best rank r approximation 3 to a given symmetric matrix X. He defines j xVjVf
and j- VjVfXVjVf, where Vj is thejth simple subspace iteration basis. We show that

j + 1-- X 2 < j-X

/ ,- x 2 _-< x
where X 2 E i,j X is the Frobenius norm. These inequalities answer questions raised
by Hastie H], which were the original motivation for this paper.

It seems likely that eigenvalue monotonicity inequalities hold for all generalized
Toda flows.

MONOTONICITY CONJECTURE I. Let f be any nondecreasing real-valued function
on . Letf(X (t) denote a generalized Toda flow orbit where X 0 is an n n symmetric
matrix. Then for -< r =< n, the eigenvalues of Erf(X (t)) Er arranged in decreasing
order are each nondecreasing functions of for
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An equivalent form of the Monotonicity Conjecture follows.
MONOTONICITY CONJECTURE II. Letf andf_ be nondecreasing real-valued func-

tions on . Let X (t) denote the Toda flow where X (0) is a symmetric n n matrix.
Then for =< r =< n, the function

T,i,A (t) Tr (f (Ej(X (t))Er))

is a nondecreasing function of t, for - < < .
The equivalence of these conjectures is easily proved. Conjecture II follows from

Conjecture since the trace is a sum of eigenvalues. To show that Conjecture I follows
from Conjecture II we establish the contrapositive: If the eigenvalues of Erf(X (t))Er
are somewhere decreasing as a function of t, then tr (f (Erf(X (t)) Er)) is somewhere
decreasing for a suitable choice of fl. Suppose that hi(t) hi(Eff(X (t))Er) is decreasing
on the interval [to, to + 6). Choosef (t) to be constant outside the interval
and to have slope on this interval, where h hi(to), and e is small enough to exclude
all hi(t0) 4 hi, and then Tr(fl(Erf(X(t))Er)) will decrease on [to, to + ] for small
enough

Each of Theorems 1-5 is a special case of these conjectures.
The results of this paper extend essentially without change to the complex domain,

with Hermitian matrices replacing symmetric matrices, and with an appropriate change
in the Toda lattice differential equation (1.2). Furthermore, similar eigenvalue mono-
tonicity inequalities hold for the projection onto the lower fight corner r r principal
submatrix of X (t), i.e., for ir(t) IfX (t) ]]r where r [/O in this case the ordered
eigenvalues of r(t) are nonincreasing functions of t, for =< r _-< n. This result, and the
analogous result for the QR-flow, can be proved using the QL-decomposition instead of
the QR-decomposition (see Sy ).

There are various directions for further work. The Toda flow and QR-flows are well
defined for nonsymmetric matrices, but have different dynamical properties, e.g., indi-
vidual orbits X (t) converge to upper triangular matrices as -- (see C2 ], C3 ). It
is possible that some generalization of the results here carries over to that case. One
might also study projections of other isospectral flows, the Cholesky and LU-flows (see
W2 ], DLT ), and a Hamiltonian QR-flow By ].

2. Eigenvalue monotonicity properties. We recall basic facts about symmetric ma-
trices. Given an r r symmetric matrix S, let h! (S) >= >= hr(S)denote the eigenvalues
of S in decreasing order. These eigenvalues have the max-min characterization

hi(S) max
dim (W) j

xVSx )min
xw "llxll 2

for =< j =< r (cf. [G, Thm. 12, p. 321]). An immediate consequence is that if S is
symmetric and T is positive-semidefinite symmetric, then

(2.1) hg(S + T) >_- h.(S), l<=j<=r

(cf. [BE, p. 115]).
Proofof Theorem 1. Let X (t) evolve according to the Toda flow. A computation

shows that

r)(t)=Er(t)E

Er[X (t), rs(X (t))] Er

[x(r)(t),Trs(Xr)(l))]+ Yr,j(t)yr,j(t) T,
j=r+l
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where Yr,j(t) is the r X column vector y r,j(t) (xj(t), Xrj(t)) T. Thus
(2.2) tr)(t)=[xtr)(t),Trs(X(r)(t))]+Yr,n(t)
where Yr,n(t) is a positive-semidefinite symmetric matrix. The key idea of the proof lies
in the form of this differential equation: the commutator term [xr)(t), rs(Xtr)(t))] is
spectrum-preserving, while the positive-semidefinite term can only increase the spectrum
of Xr)(t).

We remove the commutator term by a suitable orthogonal transformation. Let Q(t)
be the solution of

(2.3) 0(t) -Q(t)Trs(X(r)(t)),

with Q(0) I. Then Q(t) is orthogonal and a calculation using (2.2) yields

2.4 Q(t)X trY( t)Q(t) r).= Q( t)Yr,n( t)Q(t) .
The fight side of (2.3) is positive semidefinite, so by integration from 0 to a positive t,
we obtain

Hence

Q(t)x (r)( t)Q(t) r>__ X (r)(0).

hi(x(r)(l)) hi(Q(l)x(r)(l)Q(l) T)
> hi(x(r)(0))

for <= <-_ r. U]

As noted in the Introduction, Theorem 2 is an immediate corollary of Theorem 1.

3. Eigenvalue inequalities for the QR-flow. Let Y (t) Y (t; Y0) denote a QR-flow
orbit with Y (0) Y0. We suppose throughout this section that Y0 is a positive-definite
symmetric matrix. Our object is to prove monotonicity properties of the eigenvalues of
EY (t)Er (Theorem 3). We shall derive the continuous-time version ofthe inequalities
from the following weaker discrete-time version of the inequalities.

THEOrEM 3.1. Let Y (t) be a QR-flow orbit with Y (0) positive-definite symmetric.
Denote the eigenvalues of E Y )" Er in decreasing order by

h,r(t;c,Yo) >= h2,r(t; c,Yo) >- >= hr,r(t;c,Y(O)).
Then for all c > 0 and all r,

(3.1) hi,r( + 1; c, Yo) >= hi,r( , Yo),

for <= <= r.
Before proving this result, we show that it implies Theorem 3, using the following

lemma that shows that the size of the discrete-time step can be traded off against the
exponent c.

LEMMA 3.1. For positive-definite Y0 and a > O, > O,

(3.2) Y(t,Yo)" Y ,
Proof. Let Yo exp (Xo) with Xo symmetric. The QR-decomposition

exp (tXo)=Q(t;Xo)R(t;Xo)

gives both

exp (ctX0) Q(ct; X0)R(ct; Xo),
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and

exp (atXo) Q(t; aXo)R(t; aXo).

Then the uniqueness of the QR-decomposition for invertible matrices gives

3.3 Q(t; aXo) Q(at; Xo).

The relation between the QR-flow Y(t; Yo) and the associated Toda flow
X(t; Xo) gives

Y (t; Yo) exp (aX (t; Xo))
(3.4)

Q(t;Xo) r exp (aXo)Q(t; Xo)

since

Similarly, we have

X (t; Xo) Q(t; Xo) YXoQ(t; Xo).

Y ,Y =exp X ;/3Xo
=Q ;/3Xo exp(aXo)Q ;/3Xo

Since 3.3 implies that Q(t; Xo) Q(t/[3;/3Xo), the lemma follows on comparing (3.4)
and (3.5).

This lemma and Theorem 3.1 easily imply Theorem 3.
Proofof Theorem 3. The lemma implies that

so that

and, similarly,

)"/eY(t+l;Vo)=Y +,Yo

1.a yo)ki,r( "- 1;a, Yo) ki, --’,,

Voki,r(t; O/, Vo) )ki, ,,
Now, for any fixed/3, the map (a, Y0) "- (a//3, Y0) maps the cone + P+ onto itself,
where P+ is the cone ofpositive-definite symmetric matrices. Hence the last two equalities
show that Theorem 3.1 holds with the timestep 1//3 instead of 1. Since/3 > 0 is arbitrary,
we obtain for t >_- t2 that

ki,r( tl; a, Yo) >= ki,r( t2; a, Yo)

holds for alla>0, =<r-<n, =<i-<r. 3
Theorem 4 follows as an immediate corollary of Theorem 3.
It remains to establish Theorem 3.1. The main ideas are a relation between

ErY (t + )"Er and ErY (t)Er arising from the QR-algorithm (Lemma 3.2 below) and
matrix inequalities arising from Loewner’s theory of operator convexity. General back-
ground on operator convexity is available in [D 1], [Do], [Lo ], and related results in
[BS], [D21, [Kr].
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LEMMA 3.2. Let Y denote the QR-flow with Y (0) positive-definite symmetric.
Consider thefactorization Y (t) QTDQ with Q orthogonal andD diagonal with positive
entries, and set V QEr. Then for any > O,

(5.6) ErY (t)Er VTDV,
and ETry + )Er is similar to the matrix

3.7 " (VTD-zV)VTD + 2V.

Proof. For any positive-definite M and orthogonal matrix Q, and any c > 0,

3.8 (Q TMQ)" QTM’Q,
by definition of the matrix power operation. Taking n D and multiplying by E, Er
on the left and the right gives (3.6).

To prove the second part of the lemma, recall that the QR-algorithm gives

Y(t+ 1)=Q(t)Ty(t)Q(t),

where Y(t)=Q(t)R(t) is the QR-decomposition of Y(t). Together with (3.8),
this gives

ElY (t + )’Er (Q(t)rY (t)Q(t))’Er

3.9 ErQ(t) ry t),Q( t)Er

ErQ(t)rQVD’QQ(t)E,.
Now we have

Q(t)=Y(t)R(t) -’

QVDQR(t)-’.

Substituting this into (3.9) and using QQv= In yields

(3.10) ErY (t + 1)Er=Er(R(t)-’)VQTD+2QR(t)-’Er.

Now we use a key property of Er: any upper triangular matrix R satisfies

(3.11) REr E,ErREr.
We apply this in (3.10), with ErR(t)-IE,, to get

ErY (t + )Er VEQVD + 2

(3.12)
-1(,TVTD + 2V).

Note here that since R(t)- is upper triangular with nonzero diagonal entries, so is ,
hence - exists.

We claim that

(3.13)
Indeed we have

proving the claim.

T__ VTD-2V.

=ER(t)-IErE(R(t)-)VEr

ER(t)- (R(t)-)VE, (by (3.11))

ErR(t)-Q(t)TQ(t)(R(t)-)TE,
ErY(t)-(y(t)-)TEr

ErQVD-2QEr

VTD-2V,
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The second part of the lemma follows on substituting (3.13 into (3.12). E]

Theorem 3.1 will follow from the following eigenvalue inequalities.
LEMMA 3.3. Let D be an n x n diagonal matrix with positive entries, and let V be

an n X r partial isometry, i.e., VTV Ir. Then for all a > 0 and <= <= r,

(3.14) i((VTD-zV)VTD+zv)>:i(VTDV).
Proof. We use inequalities from the theory of operator-convex functions developed

by Loewner. For n n symmetric matrices M, M2 write M >_- M2 to mean that M
M is positive semidefinite. It is easy to see that M >_- M2 implies that

(3.15) WTMW >= WM2W,
for any rectangular matrix W. The operator convexity inequalities we need are given in
the following proposition.

PROPOSITION 3.1. Let M be an n n positive-definite symmetric matrix, and let
V be an n r partial isometry, i.e., VVV Ir. Then

(1) For <=a < ,
(3.16) VvMV >_- (VVM-V)-/.

(2) For <= a <= ,
(3.17) (VTMV)/ >_- VMV.

(3) For _-< a=< 2,

(3.18 (VVMV)" >_- VvM"V.

Proof. This is Corollary 4.2 in Ando [A], on taking (M) VMV. 7
To continue proving Lemma 3.3, let A1 A2 mean that A is similar to A2. Then

(3.19) (VTD-zV)VTD+zv--(VTD+zv)I/Z(VTD-ZV)(VTD+zv) 1/2

Now Proposition 3.1 shows that, for a > 0,

(VTD + 2V)/2VVD-ZV(VVD + 2V)/z >__ (VVD + 2V)/2(VVD + 2V)-2/ + 2)

(3.20) X (VTD + 2V)1/2

(V’D + 2V)a/(c + 2) VVDV,
where (1) was used in the first line, (2) in the second. Now recall (from (2.1)) that
M >= M2 implies that

i(M i(M2), =< _-< n.

Since (3.19) preserves eigenvalues and (3.20) decreases them, we have

i((VTD-2V)VTD+2V)>=i(VTDV), <=i<=r.

Proofof Theorem 3.1. Since similarity preserves eigenvalues, Lemmas 3.2 and 3.3
give for a > 0 that

i(ErTY (t - )aEr) ki(E rTy (t)aEr), -__< __-< r,

as required. 7q

4. Trace inequalities for generalized Toda flows. Our object is to prove Theorem
5, which asserts that for any nondecreasing real-valued function, the funtion

T(t) tr(E X (t))Er)

is a nondecreasing function of t, when X (t) evolves according to the Toda flow.
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We start with a general matrix inequality due to Mallows, which contains the crux
of the proof.

LEMMA 4.1 (Mallows). Let V be an n r matrix which is a partial isometry, i.e.,
VTV Ir, and suppose that A and B are real diagonal matrices such that

(4.1) A >= Ajj< B >= Bjj

Then

(4.2) tr (VABV) >= tr ((VAV)(VrBV )).

Proof. Let ai Aii, bi Bii. Then

tr ai- aj)( bi- bj) l)ipl)jp 0
i=lj=l =1

follows by hypothesis (4.1). Now

ff E E l)ip l)jp l)iq l)jq a aj b bj
i,j=l p,q=l

Since V is a partial isometry, then

, VpV,= ;q,
j=l

where 6pq ifp q and 0 otherwise; whence

r=2 aibil)ipl)iqpq -2 E E aibil)ipl)iql)jpl)jq
p,q i,j p,q

2 tr (VTABV)-- 2 tr ((VTAV)(VTBV )). 2

ProofofTheorem 5. The function Z(t) f(X (t)) inherits the smoothness properties
ofX (t) independent ofthe nature ofthe functionf, which may in fact be nondifferentiable
or discontinuous. To see this, note that X (t) O(t)rDO(t), where O(t) is orthogonal,
D is a constant diagonal matrix since the Toda flow is isospectral, and O(t) is a C-function of (in fact, real-analytic). By definition, f(X (t)) O(t)rf(D)O(t), whence
Z(t) f(X (t) is a smooth function of t. It evolves according to the differential equation

(t) [Z(t), r(X (t))].
Consequently,

T(t) tr (lrf(X (t))Er)

evolves according to the differential equation

(4.3) (t) tr(E v[f(X(t)),r(X(t))]Er).

The assertion of the theorem is that (t) >_- 0 for all t. This is a consequence of the
following lemma.

LEMM 4.2. For any nondecreasingfunctionf, any symmetric n n matrix X, and
l<=r<-_n,

(4.4) Tr (Er[f(X ), r(X )]E) >_- 0.

Proof. Represent X andf(X in block form:

X=
B r C

f(X)=
E r F
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where A ErTXEr and D Errf(X )Er are r r submatrices. A calculation shows that

tr (Ef[f(X), rs(X )]Er)= 2 tr (B TE).
Now X OTDO where O is orthogonal, D diagonal, and f(X) O rf(D)O. Write
O [V, W] in block form, where V is n r. Then V is a partial isometry Ir and

VV+WW= In.
Also,

Now
B =VrDW, r: vfl))W.

tr (B TE)= tr ((WVDV)(VTf(D)W))
tr (WWVDVVrf(D))
tr ((I VVw)DVV Wf(D))

tr (VWDf(D)V) tr ((VWDV)(VWf(D)V))
>=0,

by Lemma 4.1, on taking (A, B) (D, f(D)) and observing that (4.1) holds since f is
nondecreasing.

Lemma 4.2 shows that (t) >= 0 in (4.3), which completes the proof of Theo-
rem 5.

Remark. The proof of Lemma 4.2 only required that (D, f(D)) satisfy condition
(4.1), so that if extra restrictions are put on the eigenvalues D, then the conditions on
fmay be relaxed. For example, if D is nonnegative, we need only require that f(t) be
nondecreasing on [0, ). Thus we obtain, for example, that for n >- 1, we have

tr (Err[X n, rs(X )]Er) 0,

if n is odd and X is symmetric, and if n is even and X is a positive-definite symmetric
matrix.

5. Subspace iteration and Ritz value inequalities. The simple subspace iteration
algorithm P, p. 290 takes as input a symmetric matrix X and an n r partial isometry
Vo, which is an orthonormal basis of S/’0 and produces at stepj an n r partial isometry
Vj which is a basis of 6j X A’0. The algorithm uses the fact that any n r matrix M
of full column rank r has a unique decomposition

(5.1) M=/

where is an n r partial isometry and is an upper triangular r r matrix with
positive-diagonal elements. This decomposition is obtained by Gram-Schmidt orthonor-
malization of the columns of M. If the decomposition of XV is XV ’, then the
algorithm sets V/l .

It is well known that simple subspace iteration is a projection of the QR-algorithm
(see Watkins [Wl, p. 434]). We include a proof for convenience.

THEOREM 5.1. Let X be a positive-definite symmetric matrix, and 0 an n r
partial isometry. Choose any orthogonal matrix Q0 such that 0 QffEr, and let Y t)
denote the QR-flow with Y (0) QrXQ0. Then the simple subspace iteration iterates
Vj satisfy

(5.2) QoQ(j)Er, j 0, 1,2,
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where Y(t) 0(t)TY(0)Q(t). Consequently,for all j >= O,

5.3 VXV Ery (j) Er.

Proof. We prove (5.2) by induction on j. It is true for j 0 by hypothesis. Now
for all t,

and since

Y(t)=Q(t)R(t),

Y(t+ 1)=R(t)Q(t)=Q(t)TY(t)Q(t),

Y (t) O(t)Y (0)0(t)= 0(t) VQXQo0(t),

this implies that

Q(j + Q(j)Q(j).

By the induction hypothesis

XV SQoQ(j) Er
=QoQ(j)Y(j)Er

Qo((j)Q(j)R(j)Er

QoQ(j+ )R(j)Er

(Qo((j + 1)Er)(ETrR(j)Er)

=.
Since the decomposition 9 is unique, we have

Vj+, 9 Qo((j+ 1)Er,

and the induction step is completed.

by (3.11)

Now (5.3) follows directly on substituting (5.2) for Vj. [53

The monotonicity of Ritz values 1.1 follows directly from this result and Theo-
rem 4.

COROLLARY 5.1a. For any symmetric matrix X and subspace rico, if ,91
X 0o, then

hi(X, o(Jl > hi( X, o0 ), -< <- dim (O0).

Hastie H suggested using simple subspace iteration as an algorithm to find a best
rank r approximation to an n n symmetric matrix X, in the sense of minimizing
the Frobenius norm IIx 2 over all rank r matrices. (Here IIx 2 i, x,..) It is
known [EY ], [H] that a best rank r approximation is given by

(5.4) XVV ,
where V is any n r partial isometry whose rows consist of r left-eigenvectors of X
corresponding to its r la..rgest eigenvalues. need not be symmetric, and a best symmetric
rank r approximation X to X is given by

5.5 : vv rxvv r.
These best approximations are unique if hr(X :/: hr+ (X). Hastie’s algorithm .uses simple
subspace iteration starting with Vo and produces the rank r approximations Xj, Xj- using
(5.4) and (5.5), respectively, with V V.
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THEOREM 5.2. The rank r approximations fij, "ij to X, produced using simple sub-
space iteration startingfrom any subspace 5to, satisfy

(5.6) ]j +1 X [12 ]j_ X 2,

(5.7) :j /, x 2 _-< :j- x 2,

where I1" is the Frobenius norm.

Proof. Using Theorems 5.1 and 4 we have

IIx- : 2 tr ((x- xvv)v(x- xvj-vf))

tr (xvx )- tr (vfx2v)
tr (xvx tr EY (j)2Er).

By Theorem 4, tr (EY (t)2Er) is nondecreasing, hence (5.6) follows. Next

IIx- :112 tr ((x- v.vfsvv)v(x- vj-vsv-vf))

tr (x vx tr ((vxv)2)

tr (xvx)- tr ((EY (j)Er)2).

By Theorem 4, tr ((EY (t)Er) 2) is nondecreasing, so that (5.7) follows. []

Finally, note that the relation of Hastie’s algothm to the QR-flow given in Theorem
5.1 shows that the iterates { } (respectively, X converge to a best rank r approxi-
mation (respectively, best symmetric rank r approximation ) of X whenever Y (0)
is a "genetic" matrix, e.g., whenever all entries of Y (0) are nonzero.

Note added in lroof. P. Deift, S. Rivera, C. Tomei, and D. Watkins have found an
elegant proof of the Monotonicity Conjectures, which appears in this journal [DRTW].

Acknowledgment. I am indebted to Trevor Hastie for introducing me to the problems
in this paper and to Colin Mallows for the essential idea used to prove Theorem 5. David
Watkins pointed out the connection of my original results to subspace iteration, and
Percy Deift supplied a simplification of the proof of Theorem 1.
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A MONOTONICITY PROPERTY FOR TODA-TYPE FLOWS*
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Abstract. If (X(t))r is the leading r r submatrix of a matrix X(t) undergoing a general Toda-type flow
[X, B(f(X))], B(f(X)) (f(X))_ (f(X))_r, with f nondecreasing, two proofs that the eigenvalues

of (X(t))r are nondecreasing in time are given. This property was conjectured by Lagarias in [L].

Key words, monotonicity, Toda flow, eigenvalues
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1. Introduction. The differential equations of Toda-type

2=[X,B(f(X))l
(1.1)

XB(f(X))-B(f(X))X

have been the object of substantial research in recent years T ], F], M ], S ], $2 ],
DNT ], DLNT ], W ). Here X X(t) is a real, n n symmetric matrix, f is a
function, and B(M) M_ M_r -B(M)T, where M_ denotes the strictly lower part
ofM.

In this paper, we give two proofs of the following conjecture due to Lagarias ([L]).
THFOREM. Letfbe a nondecreasing, real valuedfunction on , let X be a solution

of 1.1 ), and let X)r be the r r submatrix Err XEr, where

Then, the eigenvalues of(X), arranged in nonincreasing order, are nondecreasingfunc-
ions oft N.

In [L], Lagarias proved some special cases of the above statement and applied his
results to establish monotone convergence properties ofan iterative method (simultaneous
iterationsee [Wi, 38, 39] and [H]), to obtain best possible rank r approximations
for symmetric matrices.. Proofs. A direct calculation shows that the solution to 1.1 is given by

(2.1) x(t)=QT(t)x(O)Q(t),

where Q(t) is the orthogonal transformation satisfying

O_(t) Q(t)B(f( X(t))),
(2.2a)

Q(0) :I.
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Xi(t) max min
A V A

zt4:0

Furthermore, Q(t) is given explicitly via the factorization S

(2.2b) etf(x())= Q(t)R(t),

where R (t) is upper triangular with positive diagonal.
We now give the first proof. Let Vr be the span ofthe first r standard vectors, el,

e,. Then, by min-max, the ith eigenvalue of (X(t)), in nonincreasing order, Xl(t) >--
X2(t) >_- >= X,(t), is given by the formula

(u,X(t)u)
where dim Ai i,

(u,u)

(etJ(x))(R(t))-lu, X(O)etfx))(R(t))-u)
max rain by (2.1) (2.2b)
Aic Vrtt cA (etf(x())(R(t))-u, etf(x())(R(t))-lu)

u4:0

max min
A V Y A

y4:0

(etf(x(O))y, X(O)etf(x(o))y)
etf(x())y, etf(x(o))y)

as (R (t))-I is a bijection of the/-dimensional subspaces of Vr onto themselves. But

(ex))y, X(O)efx())y) (y, e2fx))X(O)y) >_ (y, X(0)y)
(e,f(x(O))y, ef(x(O))y) (y, e2tf(x())y) (y, Y)

as follows by (simultaneously) diagonalizing X(0) andf( X(0)),

x(o) uT(o) / U(O)

f(X(O)) UT(O)f(A)U(O),
and expanding the inequality

2w > 0, U(0) orthogonal,(2.3) ] ((g(A))/) (g(A))kk)((A))- (A)kk)Wj
j,k

where Wm is the mth coordinate of w (= U(0)y), for the nondecreasing function g e2tY
> 0. This inequality is a special case of a calculation of Mallows, presented in [L ].

As

(y, x(0)y)
,,.(0) max min

A V Y A (y, Y)
y+O

and as the time 0 is not special, this proves the desired monotonicity.
For the second proof, note that

(2.4) X(t) UT(t)AU(t)

where U(t) U(0) Q(t) satisfies the differential equation

(2.5) ((t) U(t)B(f(X(t))).

From 2.1 and (2.2b), it follows that the solution X(t) of 1.1 is real analytic in t, and
in particular, (X(t)), is a real analytic, real, symmetric-matrix valued function of t. By
the well-known result of Rellich (e.g., [K, II.6 ]), its eigenvalues a,- ai(t), and cor-
responding orthonormalized eigenvectors v; v,.(t), 1, r, can be taken to be
real valued, real analytic functions of on R. In contrast to the ),,-(t)’s, the ai(t)’s may
cross in time.
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To prove the theorem it suffices to show that the functions a;(t) are nondecreasing
in t, as i(t), ordered as above, are given by

i(t)=minzi=j,,...,jr_i+,c {1,.-.,r} max/, {a(t)}, <=i<=r,

and hence will also be nondecreasing in t.
Let h denote (dh/dt) and let (., denote the real, Euclidean inner product. We

will show that &i >= 0. From (X)rVi aivi, we obtain

&i (((X)r)’Vi, Vi), as (v;, V;) 1,

((EfUTAUEr)’Vi, Vi)

2((ErUTAUB(f(X))Er)vi, re), by (2.4),

2(ETrUT(A- oi)UB(f(X))ErVi,

as UVU I and B(f(X)) and hence ErB(f(X))Er is skew symmetric.
Now, from the definition of B(M),

B(f(X)) f(X) + R,

where R is upper triangular; also, by (2.4),

Uf(X) f(A) U.

We then have

(2.6) & (EfUr(A ai)f(A)UErVi, vi) -[ (EfU(A ai)URErVi, vi).
2

The second term on the right-hand side is zero. Indeed, from the definition of ai and
EfUT(A oi)UErVi 0. But, as R is upper triangular, REr ErETrREr, and hence

ErRTUT(A oi)UErl)i (ErRTEr)(Er UT(A cei)UErl)i) O.

For w UErl)i, we have O (W, Aw) and (2.6) becomes

&i
((A ai)f(A)w, w) (w, Af(A)w) (w, Aw)(w,f(A)w),

2

which is nonnegative by Mallow’s inequality (2.3) (note (w, w) ). Thus &i >= 0, as
desired.

3. Remarks and applications. (1) The theorem remains true for the eigenvalues
of (g(X))r, where g(.) is any nondecreasing function. The proofs are essentially un-
changed.

(2) The theorem also shows that the eigenvalues of FrX(t)Fr are nonincreas-
ing, where

0

Indeed, let P P- pr be the n n matrix with ones on the antidiagonal, and zeros
elsewhere. It is enough to show that the eigenvalues of ErPX(t)PEr are nonincreas-
ing. But a simple computation shows that PB(M)P -B(PMP). Hence (PXP)"
[PXP, PB(f(X))P] -[PXP, B(f( PXP))] and so PX(t)P X(-t, PXoP), the solution
of 1.1 with initial data PXoP. The desired monotonicity now follows immediately.

(3) From the theorem, we know in particular that l(t) >_- >_- #_ l(t), the
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eigenvalues ofE_ X(t)En_ 1, are increasing in t. As we will show below, the/i’S cannot
cross the eigenvalues hi(t) 2; ofX(t), =< =< n. Also, in the case in which f is strictly
increasing, a modification of the proof in [M], for example, shows that X(t) converges
to a diagonal matrix as -- . Thus, genetically, a solution X(t) gives rise to pi’s that
evolve as in Fig. 1.

Let r(M) denote the spectrum of M. Suppose r(X(0)) is simple, and let X(t) be
the solution of 1.1 for an arbitrary f. To prove the no crossing property, it suffices to
show that a(X(t)) fq a((X(t))n_ is independent of t. To see this, we consider the
evolution ofu(t) U(t)en, where X(t) UT(t)AU(I), as in (2.4). Since/= UB(f(X)),
writing B(f(X)) -f(X) + L, where L is lower triangular, and using (e, Len)
(f( X)),, (f(A) u, u), we obtain

-f(X)u + (f()u, u)u,

which can be solved explicitly M as

u( t) e-tfa)u(O)/ e-tf’)u(O)
where ]l" denotes the Euclidean norm in ". Now, by Cramer’s rule,

g(X)-=
det ((X(t),_ 1- X))= [(X(t)- X)-’].

det (X(t) X)

U(t)
(u(t), (A- X)-u(t))=

k k’i=

where A diag (k, k,) and the Ui’S are the coordinates of u. The residue __/,/2i(t)
at ki of the rational function g(k) is zero if and only if k E o-((X (t) )n ), as o(S(t))
a(X(0)) is simple. But, from the expression for u(t) in terms of u(0) one sees that
u;(t) 0 ifand only if u;(0) 0, and the no crossing property follows. Thus Fig. is estab-
lished.

We note in passing that the classical interlacing property of the sets { k } and { t }
is itself a consequence of the above observations. Also, knowledge of limt__, X(t) can
be used to obtain information about the fs. For example, if X(t) -- diag (2, 4, 1, 3)
as -- , then, arguing as above, we conclude that necessarily 1 (t) E (3, 4], (t)
2, and 3(t) 1.

(4) In L ], Lagarias considered simultaneous iteration Wi, 38, 39 ], H to
obtain rank r approximations of symmetric matrices, as an adaptation of the QR algo-

FIG.
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rithm. By making use ofthe monotonicity results stated and proved for the QR algorithm
(which corresponds to the evaluation at integral times of( 1.1 forf(x) In x ([DNT],
[S1], [$2])) in [L], he showed that the approximations are monotonically improving.

Lagarias’s arguments naturally yield a family of approximating algorithms, one for
each (increasing) function f. Start with an n r partial isometry V0 and a symmetric
matrix S. Define Vj.+ recursively to be the partial isometry in the formula ef(S)vj
Vj.+ R, where R is an upper triangular r r matrix with positive diagonal. Then

j SVVf and ;j= VVfSVVf
give a sequence of approximations of S of rank at most r, the second being symmetric.

This algorithm has a continuous extension as follows. For an orthogonal matrix Q0
such that V0 QoEr, define Y(0) QSQo. Let Y(t) solve 1.1 for a nondecreasing
f, Y(t) Q(t)TY(O)Q(t), Q(O) I, as in (2.1), (2.2). Then, following [L], one can
prove that Vj. QoQ(j)Er, and the inequalities

s +, --< s II, s j + --< s -II
follow by replacing Theorem 4 in [L] by the Theorem in 1, above.

5 In L ], Lagarias proved a weaker version ofthe general monotonicity theorem,
viz., if Y(t) is a solution of( 1.1 for nondecreasing f, then trace ((Y(t))r) is nondecreasing.
The special case f(x) x of this weaker result was proved in [To] in the following
(equivalent) form: trace (DY(t)) is nondecreasing for any diagonal matrix D with non-
increasing entries along the diagonal. Moreover, the map Y trace (DY), for d >
d2 > >dn, was shown to be a Morse function for the manifold of real, tridiagonal,
symmetric n n matrices with fixed simple spectrum. Later, Fried ([ Fr]) showed that
the map is actually a perfect Morse function, which, together with results in [To ], allowed
him to compute the cohomology ring of the manifold.

Another application of this monotonicity property gives an amusing proof of the
classical Wielandt-Hoffman theorem: for real, n n matrices A and B, there is an
ordering of their eigenvalues a; }, b such that

, (ai- bi) 2 <= trace ((A B)2).

Indeed, by expanding both sides, it suffices to prove that trace (AB) < aibi, and
we can suppose that A is diagonal, A diag (a >= a2 >- >= an). Now, let B(t) be the
solution of 1.1 with, for instance, f(x) x and B(0) B. Then, by the (weak) mono-
tonicity result,

trace (AB(t)) <= trace (AB( )) , aibi,
i=

and this proves the result.

Acknowledgments. The authors would like to thank the referee for some helpful
comments.
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STABLE SOLVERS AND BLOCK ELIMINATION
FOR BORDERED SYSTEMS*

W. GOVAERTS-

Abstract. Linear systems with a fairly well conditioned matrix M of the form

b n

n

for which a "black-box" solver for A is available, are considered. To solve systems with M, a mixed block
elimination algorithm, called BEM, is proposed. It has the following advantages: It is easier to understand
and to program than the widely accepted deflated block elimination (DBE) proposed by Chan, yet allows the
same broad class of solvers and has comparable accuracy. (2) It requires one less solve with A. (3) It allows a
rigorous error analysis that shows why it may fail in exceptional cases (all other black-box methods known to
us also fail in these cases).

BEM is also compared to iterative refinement of Crout block elimination (BEC) introduced by Pryce and
Govaerts. BEC allows a more restricted class of solvers than BEM but is faster in cases where a solver is given
not for A but for a matrix close to A, which is often the case in applications like numerical continuation theory.

Key words, bordered matrix, block elimination, black-box solver

AMS(MOS) subject classification. 65F30

1. Introduction and notation. Let

be a bordered matrix. We want to solve

n

where x, fare n-vectors and y, g are scalars. In applications like numerical continuation
theory, a solver forA is often available because A has special structure (banded, symmetric,
sparse, or other). It is then advisable to use this solver to solve systems with M. Difficulties
arise when A is nearly singular (in the continuation context this means that we are near
a turning point; see Rheinboldt [13]).

Various authors (Keller 7 ], Moore 8 solved bordered singular systems by altering
A or the elimination strategy. Bj6rck [2] suggests rescaling the last row ofM in such a
way that Gaussian elimination (further denoted by GE) with row interchanges on M
does not pivot to the last row. The problem is then that ofGE with a badly scaled matrix
and Skeel [14] has shown that in most practical cases one iterative refinement leads to
a stable algorithm. This is close (but not equivalent) to BEC + (BEC is to be discussed
further; see also Govaerts and Pryce [5 ]). We concentrate, however, on the case where
a solver for A is given as a "black box," which in practice is often the case. The spirit is
therefore that of Chan and Resasco [3], [4].
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To be precise, we assume that a solver S for A is available, i.e., a map S Rn ._ R n

such that S(r) is an approximate solution to As r.
S is called stable if, when it is applied in floating-point arithmetic of unit roundoff

u, there exist a modest constant Cs, a matrix/A, and a vector Ar such that

(A + AA)S(r)= (r + Ar),

AA --< CsU A II, Ar Csu r ]1,

where is the 2-norm and Cs will be called the stability constant of S.
Block elimination (BE) is a method to solve by decomposing Mblockwise. One

way is to use the Crout factorization

(2)
c d c 6 0

followed by the solution of two block triangular systems.
This leads to the following algorithm.

ALGORITHM BEC.
1. Solve Av b
2. Compute 6 d- cv
3. Solve Aw f
4. Compute y (g cw) / i
5. Computex= w-vy

Another way is to use the Doolittle factorization

again followed by two solutions of block triangular systems.
This amounts to the following.

ALGORITHM BED.
1. Solve A c
2. Compute a d- b
3. Compute y- (g- g;f)/a
4. Solve Ax f- by

Both algorithms provide perfectly satisfying answers ifM, A are both well conditioned
and the solver for A (and in BED, for A T) is stable. IfA is less well conditioned then it
is generally a good idea to improve the obtained result by iterative refinement. If Alg
is any algorithm that produces x, y out off, g, we define Alg + k(k 0, 1, 2, -.-)
as follows.

ALGORITHM Alg+k.
1. Compute x, y out off, g using Alg
2. Fori= 1,2,-..,kdosteps3to5
3. Compute the residualsf f- Ax by and g g- cx dy
4. Compute x2, y2 out off, g using Alg
5. Compute x x + x2, y y + Y2

On first thinking, we might expect that:
(i) BEC and BED have roughly the same behaviour (in many treatments ofGauss-

ian elimination, the difference between the Crout and Doolittle decompositions is hardly
noticed).
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(ii) IfM is well conditioned and A tends to singularity, more and more iterations
of BEC (respectively, BED) will be necessary to produce accurate values for x and y.

These assertions are both incorrect, and the behaviour of iterations of BEC and
BED is far more complex. In [5] Govaerts and Pryce consider solvers based on an LU
or QR decomposition. They show that BEC + produces x and y accurately no matter
how ill conditioned A is (except in rare cases ofno practical interest). On the other hand,
BED produces y accurately but requires several iterations to find x (if at all). As made
clear in 5 the remarkable behaviour of BEC + in this case depends on properties of
matrix factorizations like LU and QR.

In 2 we describe some experiments in the case of a solver based on the precon-
ditioned conjugate gradient algorithm. They show that BEC + no longer works in this
case and also support the new algorithm BEM that we propose.

Section 3 gives an error analysis of BEM and shows that it usually produces x, y
accurately ifM is well conditioned and the solver is stable. It also highlights why excep-
tional cases may cause a failure. Propositions 3.1 and 3.3 further contain the basic in-
gredients to prove that in practically arising cases, BEM is stable.

Section 4 describes an "exceptional" situation. The aim is to compare the perfor-
mance ofBEM, BEC, a modified version ofBEC, the deflated block elimination ofChan
and Resasco [3], [4], and iterative refinements of these algorithms in a critical case.

Section 5 draws the final conclusions on the merits and disadvantages of the algo-
rithms.

2. Tests of block elimination algorithms with a solver based on conjugate gra-
dients. In the tests described in this section, A is an 80-by-80 symmetric nonnegative-
definite matrix. It is constructed as

A nlooon999" H2H1 diag 1.49, 1.48, 0.71,0)HH2. n999Hlooo,

where each matrix Hi (1 -<_ =< 1000) is a Householder elementary reflection matrix

Hi I 2hih and hi is a normalized random vector. Except for rounding errors, A has
singular values 1.49, 1.48, ...0.71, 0 and it is made nonsingular only by machine im-
precision. Obviously, A - 1.49.

Next, b, c, d, x, y are vectors and scalars with coefficients chosen uniformly random
in [0, 1]. We then compute f= Ax + by and g cx + dy and solve the resulting system
of the form by BEC, BED, and their iterations.

All computations are done in the PC-version of the Gauss programming language
with no extra precision in the computation of residuals or updating the solutions. Here
U 2 -52 2.2 10 -16. In all the examples M is well conditioned (2-norm condition
number smaller than 200).

The solver for A is the preconditioned conjugate gradient algorithm in Axelsson
and Barker [1, 1.4] with the diagonal ofA as a preconditioner. The stopping criterion
is that the norm ofthe residual must be bounded by 10-4 times the norm ofthe computed
solution. This ensures that the system with A is solved in a stable way (see 2 ). It is to
be remarked, however, that we had similar results with other stopping criteria, e.g., pre-
scribing a fixed number of iterations.

Table gives the logarithms of the relative errors of the computed x and y compo-
nents by BEC + k and BED + k (k 0, 1, 6). For comparison, we also give the
relative error in the solution by Gaussian elimination with row interchanges on the full
matrix M.

The columns BEC-x, BEC-y, and BED-x apparently support the hypothesis that
several iterations of BEC and BED are necessary to produce accurate values for x and
y. Since A is very nearly singular it may even seem surprising that the algorithms converge
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TABLE
Logarithms ofrelative errors in the computed x and y components by BEC, BED, and their iterations using

a preconditioned conjugate gradient solver.

Number
of

iterations

Full GE

BEC

-0.2348

--4.3612

-9.0570

13.5508

-15.7204

15.2564

-14.7037

-14.7330

-4.3704

-8.6889

-13.4635

-15.9106

-15.9106

-15.9106

-0.8711

-2.3433

-6.7891

-12.2967

-14.4728

-14.4763

-14.9900

BED

-14.7424

-13.5273

15.2063

15.8083

-14.6622

-15.1094

-15.5073

at all; however, Jankowski and Wozniakowski 6] have shown that iterative refinement
of almost any solution scheme to solve linear systems will ultimately converge to an
accurate solution (within the bounds posed by the condition of the system and provided
the solution scheme gives a solution with relative error smaller than one).

We can make two other observations:
Without any iteration BED produces y accurately. This result is confirmed by

many similar experiments and we shall prove it whenever A is solved in a stable way
(3).

(2) The relative error in the x-component of the solution by BEC + k + is of the
order of the relative error in the y-component of the solution by BEC + k (i.e., in the
preceding iteration) for k 0, 1, .... Again, this is confirmed by many similar exper-
iments and it will be proved in the important case where the y-component by BEC + k
is accurate ( 3 ).

To test this important case further we organize another experiment. The results are
collected in Table 2. Here we perform BEC and two iterations starting with the accurate
value for y and a zero vector for x. We also give the norm of the right-hand side vector
in step 3 of BEC and the norm of the computed solution (the importance of these
quantities will be clarified in 3).

Again, two things are to be remarked:
The first application of BEC already produces both x and y accurately. This is

what we hoped for and it confirms the second observation concerning Table 1.
(2) In the first application of A (step 3 of BEC) the computed solution has the

same size as the fight-hand side (remember that 11A
_

1.49). This is surprising since A
is nearly singular and for a random right-hand side vector the computed solution will
typically have the size u- AII - times the size of the fight-hand side. In 3 we show
that this observation is the key to the understanding of the algorithm.

The preceding experiments naturally lead us to first compute y by BED and to use
this value, together with a zero vector as approximation to x, in one step of BEC. The
resulting algorithm will be called BEM (block elimination mixed). It is given explicitly
by the following algorithm.
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TABLE 2
Logarithms of relative errors in the computed x and y components by BEC and two iterations where a

correct y and a zero vectorfor x are introduced (preconditioned conjugate gradient solver).

Introduced

BEC

+1

+2

Full GE

-14.0759

-15.4510

-15.4143

-15.4734

-15.7744

Norm of
fight-hand

side in
step 3

6.2112

1.9271E 15

8.3257E 16

-15.1916

Norm of
solution
in step 3

5.2935

0.06403

0.04805

ALGORITHM BEM
1. Solve A c
2. Compute 6l d- b
3. Compute y (g- f)/6
4. Solve Av b
5. Compute 6 d- cv
6. Computef f- by
7. Compute gl g- dy
8. Solve Aw
9. Compute y (g cw)/6
10. Compute x w vy
11. Compute y y + y
Remark that steps 1-3 ofBEM are identical to steps 1-3 ofBED. Steps 4-5 ofBEM

are identical to steps 1-2 of BEC. Steps 6-7 compute the residuals given y (from step 3)
and a zero vector for x as first approximations to the solution. Steps 8-10 correspond to
steps 3-5 of BEC applied to the new right-hand side components )], gl. Finally, step 11
updates y.

Remark that steps 4-5 of BEM are interchangeable with steps 6-7 of BEM. Step 4
of BED is omitted to avoid one solve with A (if included, steps 6-7 have to be adapted
and a step 12 is necessary to update x).

TABLE 3
Logarithms of relative errors in the computed x and y components by BEM and two iterations with BEC

(preconditioned conjugate gradient solver).

Step 3

Steps 10-11

+BEC

+BEC +

Full GE

-13.9947

-15.1867

-15.5406

-15.8359

-14.9328

-15.8359

Norm of
right-hand

side in
step 8(BEM),
step 3(BEC)

6.4435

5.1164E 14

2.3295E 15

-15.3589

Norm of
solution in

step 8(BEM),
step 3(BEC)

5.2883

0.5475

0.01477
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Table 3 gives the result of a test with BEM (A, b, c, d, x, y, f, g, as before). Note
that BEM produces x, y accurately, as we hoped, and that the fight-hand side and com-
puted solution in step 8 have the same order of magnitude (cf. the discussion of Fig. 2).

For completeness, Table 3 also shows the effect of two further iterations with BEC.
The improvement so obtained is small and apparently not worth the effort.

3. Error analysis of BEM. Throughout this section we assume that M is well con-
ditioned, i.e., K(M) MI[. M- is modest.

Proposition 3.1 and its Corollary 3.2 contain the analysis of steps 1-3 ofBEM. The
important result is that y, as computed in step 3 of BEM, is accurate even ifA is very ill
conditioned. This is consistent with the numerical evidence in Table 3 and also explains
the observation made in 2 while discussing Table 1.

Proposition 3.3 is the backward error analysis of BEC. Its Corollary 3.4 draws the
important conclusion: the accuracy ofthe solution obtained by BEC depends exclusively
on the size of I[. This explains why we choose to represent this quantity in Tables 2
and 3.

Now the second part of BEM is precisely an application of BEC to a system trans-
formed by Steps 1-3 and 6-7. Theorem 3.5 shows that in this transformed system, v
is usually of order [IAI[ - IIM[I Ilzlt (even for nearly singular A), and therefore BEM
produces x, y accurately. This confirms the numerical results of Table 3. From the proof
of Theorem 3.5 it is clear that the essential results (a modest IIv and accurate x, y)
remain true if steps 1-3 of BEM are replaced by any method that produces y accurately.
This explains the observations ), (2) in the discussion of Table 2 in 2.

All computations described in this paper are done in the same floating-point precision
u. In general, 7 denotes the computed value of the quantity a (so d need not be close to
a in any sense).

In the error analysis, we use the notation introduced by Pryce 12 for manipulating
the relative error metric introduced by Olver 10 in the scalar case and generalized by
Pryce to the vector case. Throughout the analysis, 01, 02, denote scalar or n
n matrix quantities close to the identity. In the scalar case the notation 0 e (6) where 6
is a nonnegative constant, means 0 e where el --< 6. In the matrix case, it means that
0 is a product of a finite number of matrices exp (Ei) where Z Ei[[ <= 6.

With this understanding we have

fl (x op y)= O(x op y), 0e (u)

whenever x, y are scalars and "op" is one ofthe four basic operations. This remains true
if x, y are vectors and "op" is a componentwise combination. It is also true when "op"
denotes multiplication of a vector by a scalar.

Furthermore, there is a constant Cle such that

fl (xTy) xTOy, 0 (Gu),

where 0 is a diagonal matrix and C1e <= n (cf. 5 ]; in case ofdouble precision accumulation
we have CIp - ).

The obvious bounds

el[ =< e I111, I[e- Ill [10][ e I111

will often be used without notice.
PROPOSITION 3.1. Let S be a stable solverfor A 7- with stability constant Cs. Let

be the result computed in step 3 ofAlgorithm BEM. Then is the y-component of the
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exact solution ofa system near Mz h. More precisely, there exist AA, Ab, Ac, Ad,
Af, Ag, and xoo such that

(4)

and

(4a)

(4b)

(4c)

(4d)

(4e)

(4f)

(5)

(6)

(7)

(8)

c+ Ac d+ Ad g+ Ag

b+Ab=Obb, 0be 1((1 +CIp)u),

d+ Ad Odd, Od (U),

f+Af=Of, Ofel((2+Clp)U),

g+ Ag=Ogg, Oge (2u),

ac --< Csu c I1,

Proof. We have

(A + AN c + Ac, AN =< Csu AII,

O-=d-Ozb, 01 l(u),

03 (g (f) g 04f, 03 u ),

05.17= (g- f) /(1,

Ac Csu c II,

02 (CIpu),

04 e (CIPR),

056 l(u).

Combining (6), (7), and 8 ), we obtain

O Olg-0 O 04f(9) y=
07d-OTO2b

So 17 is the exact y-component of the solution of

(10) (A + AAc+ Ac O-{l d y 07 ol g
from which the proposition follows, if]

COROLLARY 3.2. Let the assumptions ofProposition 3.1 be satisfied. Suppose, in
addition, that M is nonsingular and

(lla)

where

(llb)

Then

(llc)

where

(lid)

and

(lie)

UCMr(M) <

CM=(2 + Cip+ 2Cs) exp ((1 + Cip)u).

y- Y <= Gu z[I

(C+CM)K(M)
blCMK(M)

C=(4 + C/e) exp ((2 + Cn,)U).
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(12)

where

(13)

and

Proof. By Proposition 3.1 we have

(M+ AM)(z + Az) h + Ah

z+Az

Z/=
Ac Ad Ag

Now standard perturbation arguments yield

azll _< uC,Ilzl[

where we have used the bounds (4a)-(4f). From this, c) follows. Ul
PRO’OSITION 3.3. Let S be a stable solver for A with stability constant Cs and let, f be the components of( by BEC. Then , exactly satisfy the matrix equality

(14) ( A +c d+b+ b )( (f+ f + ()
where

]IAA]I _--<(2 +Cs)u exp (2u) [IAI[,

]IAcI[ =<(5 +C,,)u exp ((5 +Ctp)u)llcll,

Proof. The computed quantities , , 37, satisfy

15 (A + AvA

(16) (A + AwA)ff= f+ Af,

g-- cOvff
06)----, 06 (3U), 07 6 (Cnu),

d-cO8

09.," 010J, 09E I(U), 010E I(U).

(14a)

(14b)

(14c)

(4d)

(14e)

(4)

(14g)

17 08 (Cn,u),

(18)

Eliminating )7 from 17 and 8) we get

19 06 df+ 06 080 -(J 09 g+ c( 06080 ]-( 07 ,
Combining (18), 15 ), and (16), we get

(20) (A + AA)O-fOg+(b+ Ab))7= f+ Af+[(AA--AwA)+(A + AA)(O-{--I)]ff.
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Now 19 and (20) may be rewritten as

+ W
c+ Ac d+ Ad g U

where bounds for Ilzx/ll, Ilzxbll, IlzXcll, IlzXdll, IlzXfll, 117"11, and Ilgll can be computed
from the bounds in 15 )-(18).

COROLLARY 3.4. Let the assumptions ofProposition 3.3 be satisfied and define

(21a) C (5 + 2Cs+ uCs + 2CIp) exp ((6 + Cl,)u),

(21b) C/=(lO+Ci,+2Cs)exp((5+Cip)u).

Assume that uC’r M) < and define

C’M + Cs (M)
(21c) Cz

UC’MK(M)

C’h K(m)
(21d) C UC’M(M)

Then

(22) - z[[ < uCzll z[[ + uC’ [[.

So ifM is well conditioned, then the accuracy ofthe computed solution Y is determined
by the size of ff.

Proof. Rewrite (14) as

(M+ k/)Y +
g

where bounds for k/l[, Af [[, T[I, UI[ follow from 14a)-(14g).
The result now follows by standard perturbation arguments.
THEOREM 3.5. Let be the x-component obtained by BEM. Let be the y-component

obtained by BEM with step 11 omitted, and 2 the y-component obtained by BEM with
step 11 included. Assume that

23 UC’M(M) < 1.

(24a)

(24b)

(24c)

112- xl] _-< uC []zl[ + u2CC’z[[I (A + AwA)- MII
[lY-y II--< uC[lzll,

l[)72-yl[ <= ue"(C + 1)]]z[[ + uZcC’e"I[(A + AwA)-’IIM[I IIz[],

where we have defined

(25a)

(25b)

(25c)

(25d)

C’= 2e+(1 +uCy)(4e2+Cs(1 + e+ 2e2)),

UC’M(M)

c C’z + c,
C=Cs+Cy+e+(1 +uCy)(2e2+Cs(1 + e"+ 2e2")).
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Proof. Let 37 be the y-component computed in step 3 of BEM. Define

(26a) fl,o f- bfi,

(26b) g,o g- djT,

(26c) y y- 37.

Then

Y \g,o

First note that

(28a) f O,l (f O,2bf),

(28b) g-S=O3(g-O4df),

Applying Proposition 3.3 we get

011,012E I(U),

013,014E (U).

with bounds for zLr, Aft, T, U as in 14a)-(14g). Put

(30a) f =f,o +

(30b) g.0 + Ag.

Then by (26a) and (28a)

(31a) ll,sfll <=ueUllfll + 2ueZu(1 /uCy)llmllllzll,

IIAgll <= uellgll + 2ue2U( + ufy)llMIIIIzll.(31b)

Now rewrite (34) as

(32) (M+ //)
Yl gl,0

By straightforward computation we obtain from c), (14e), and (26a)-(31b)

(33 [1Ah --< uC’’ MI[ z[[ + uC’ [1MI[ v
Using (27), (32), (33), the assumption (23), and lc) again, we obtain

(34)
37 Y

Clearly, the size of v is all-important. By the stability assumption we have

(35) (A + AwA)ff,= f + Aft,

35a) AwA <- uCsl[ A

35b) f, --< ufsll f,

By straightforward computations using (26a), (30a), (3 a), and (28a) we find

(36) I1 II--< Ilxll /Cull(A /AwA)-’I[IIMIIIIzlI.
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Inserting (36) into (34) we get

(37)
1 Yl

This implies (24a). Of course (24b) is just 11 c).
To prove (24c) first remark that

1137= y (1 --) Y

----< 110(7--Y) / 110sY--Yll
----< ell7, y, / ue 11Y II.

Formula (24c) follows by inserting the bound in (37) for 137 YI in this inequality.
DISCUSSION 3.6. The error bounds in (24b) and (24c) suggest that step 11 of

BEM can be omitted. This is indeed true for perfectly well conditioned M. Since in
practice we deal with less extreme cases, we strongly recommend retaining step 11, whose
computing cost is negligible anyway.

(2) The bound in (24a) shows that the accuracy of the x-component computed by
BEM depends entirely on the size of (A / XwA)-’ II. In particular, the x-component is
accurate whenever (A + AwA)-III < u-ll MI1-1. This is the case that typically occurs
in practice because roundofferrors in the computation ofA and in the solution ofsystems
with A tend to produce this bound.

(3) It is possible to construct highly artificial situations where BEM produces x
accurately and (A + AwA)-l is arbitrarily large (provided there is no overflow or
underflow in the computations). This may be achieved by choosing all components of
A, b, c, d, x, y as appropriate integers in such a way that no roundoff error occurs.
Typically, however, BEM will produce a completely nonaccurate x-component whenever
(A + AwA )-ill > u-2 MII -l. This is best seen from 35 ). Indeed,J +/ will probably

contain a vector of size at least u MII Ilzll in the singular direction of(A + ,SwA). Therefore
we expect

This means that may have a relative error of order one.
(4) In the intermediate case

u-Ill MI1-1 __< (A + AwA )-Ill < u-2 MII
we infer from (24a) that x has a relative error of order less than one. In this case itera-
tive refinement of BEM is in practice very satisfactory (cf. Jankowski and Woznia-
kowski 6 ).

4. A series of experiments in an unusual situation. In this section we describe a
series of experiments with four algorithms to solve bordered singular systems.

These methods are BEM, DBE, BEC + 1, and BEC2.
BEM (block elimination mixed) was introduced in 2 and studied in 3.
DBE (deflated block elimination) is the method introduced by Chan [3 ], [4]. We

used the form proposed in [4].
BEC + (block elimination (Crout)) is the BEC algorithm described in with

one iterative refinement. It was studied by Govaerts and Pryce 5 ].
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BEC2 is a modification of BEC + in which step 5 of BEC is replaced by simply
making all components of x zero. In the iteration, however, step 5 is retained.

As remarked before, in most practically occurring cases, the solver has norm bounded
by u-1 MI1-1. This is typically caused by roundoff error even ifA is theoretically singular.

Tests with such solvers are described in [3] (DBE) and [5] (BEC + ). Section 2
of this paper describes a test with BEM in the case of a conjugate gradient solver. These
and similar experiments show that all four methods produce accurate results in the cases
of practical interest (BEC + and BEC2 only for solvers based on decompositions like
LU or QR, not for solvers based on the conjugate gradient method).

Since our error analysis shows that in certain cases of little practical interest BEM
may fail, it is ofinterest to know whether the other methods might do better. Since mildly
pathological cases might also arise, we can further ask whether iterative refinement is
useful in such cases.

To get insight into the critical cases we consider the ill-reputed matrix A

ifi=j,

W,(i,j)= -1 if i>j,

0 ifi<j.

If 2" > u -1 this triangular matrix has a unique small singular value of order 2-""
the near null vector is (2-" + 1, 2-n+ 2, ). Moreover, small perturbations of the
nonzero elements of W, do not essentially change this behaviour and (W, + A W,)-is of order 2" in this case (small random perturbations in all elements of W,, however,
tend to reduce W, + A W,)-11[ to order u-1 ). The solver for W, is forward elimination
in all cases and u 10 -16.

In all the experiments, b, c, d, x, y are chosen uniformly random in [0, 1] and f,
g are computed in the same precision as f Ax + by and g cx + dy. The resulting
system is then solved by the four algorithms and for each ofthem two iterative improve-
ments are performed as well. This is done for n 20, 40, 60, 80, 100, 120, 140, and 160.
Since the computed 37 is always accurate (137 Y l/I]zll is of the order of u), only the
logarithmic relative error log (I]- xll/II x][ in the x-component is represented.

20 4 60 80 O0 120 14

/..
I"

/

BEM:
BEM 1:
BEM 2:

FIG. 1. BEM with an ill-conditioned triangular A.
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20
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/../..

../../.i
40 60 80 I0 120 14b 16

DBE:
DBE 1:
DBE 2:

Fla. 2. DBE with an ill-conditioned triangular A.

The following should be noted.
Figure shows that BEM produces an accurate x-component for n < 60. Since

2 60 1018, this confirms Discussion 3.6(2).
(2) Figure also shows that BEM + produces accurate results for n < 120 and

that more iterations will not further improve the accuracy for higher n.
This is consistent with Discussion 3.6 (2) and 3.6 (3). Actually, the numerical results

are even better than expected from theory. This might be due, however, to the special
nature ofA.

(3) Figure 2 shows that numerically, DBE behaves very much like BEM. In par-
ticular, it is not always a stable method. In the (admittedly rare) cases where it is not, it
may be improved greatly by one iterative refinement.

(4) BEC + as such is an inferior method in the case where (A + AwA)-I >
u -1 MII-l, since it does not improve by iterative refinement. The reason is obviously

4’o

BEC 1:
BEC 2:
BEC 3:

Fla. 3. BEC + k with an ill-conditioned triangular A.
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BEC2 2:

FIG. 4. BEC2 with an ill-conditioned triangular A.

that the large size of, computed in step 5 of BEC, causes catastrophic roundoff error
in the computation of the residual (Fig. 3).

(5) BEC2 avoids this problem by simply omitting the computation of in the
first round of BEC. The results are then strikingly similar to those of BEM and DBE
(Fig. 4).

5. Conclusions. BEC + is implemented very easily. It has the further possible
advantage that it only needs a solver for A, not forA r. The computational cost is minimal:
essentially three solves with A. Next, it fits well in applications like numerical continuation
theory where a solver for a matrix close to A might be available. Therefore it is highly
recommended in most practical cases.

BEC + has the disadvantage that it requires a solver based on a decomposition
like LU, QR, or a similar one. It fails, e.g., for a solver based on the conjugate gradient
method for a symmetric positive-semidefinite matrix A.

BEC2 is an alternative to BEC + and has the same properties. Its one advantage
is that it can be improved by iterative refinement in some exceptional cases where
BEC + fails because (A + AwA)-’II is excessive. Remark that BEC2 + requires five
solves with A.

Now let the solver be general, i.e., not necessarily based on an LU or QR decom-
position. A solver for A T is often also available in practice. Then BEM has the same cost
as BEC + 1. A solver for a matrix close to A can be used only if BEM is iterated once.
Remark that the cost of an iterative refinement is only one solve with A and that
BEM + is also more accurate in the cases with excessive

DBE has roughly the same requirements as has BEM and similar performance as
well. It uses, however, four solves with A and we think BEM also allows an easier im-
plementation (see also Moore 9 for the error analysis of DBE).
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OBSERVABILITY OF LINEAR TIME-VARYING DESCRIPTOR SYSTEMS*

STEPHEN L. CAMPBELL’ AND WILLIAM J. TERRELL"

Abstract. A characterization of observability for linear time-varying descriptor systems E(t)x’(t)+
F(t)x(t) B(t)u(t), y(t) C(t)x(t), is given. E is not required to have constant rank. The characterization
is designed to reduce symbolic computation and has potential advantages even when E is nonsingular. It is also
shown that all observable analytic descriptor systems are smoothly observable even if they are not uniformly
observable. Finally, the external behavior of time-varying descriptor systems is characterized.

Key words, descriptor, singular, observability, external behavior

AMS(MOS) subject classifications. 34A08, 93B07, 93B15, 93C15, 93C50

1. Introduction. In the last decade there has been increasing interest in the utilization
of implicit differential equations

(1) F(x’,x,t)=O,

known variously as descriptor, singular, or differential algebraic (DAE) systems [3 ].
There have been several motivations for this effort ranging from computational advantages
to the fact that most physical systems are originally modeled in this form.

When confronted with an implicit system there are many questions that we can
ask. In this paper we will be concerned with the observability of

(2a)

(2b)

E(t)x’(t) + F(t)x(t) B( t)u( t),

y(t)=C(t)x(t).

Here, u is the control, y is the m-dimensional observation, and x is the n-dimensional
state. For technical reasons we assume that E, F, B, C are infinitely differentiable although
that will not usually be required in practice. We define smooth, then, to mean infinitely
differentiable. The infinite differentiability is only used to make some of our conditions
necessary as well as sufficient. Intervals are always assumed to be nontrivial.

Our goal is to develop characterizations and algorithms that can be reasonably rapid
to apply. In one scenario for the use of our results, the researcher has formulated the
equations (2) and wants to "quickly" know ifthe problem is observable. The coefficients
E, F, B, C are assumed known functions. However, the researcher may want to try
several different formulations of the underlying problem, perhaps by changing what the
choices of control and observation are. Also, there may be design parameters in the
problem description and observability will need to be tested for several values of these
parameters. In this setting we want to reduce the amount of symbolic computation. Our
goal is to develop procedures for which the only symbolic operation is simply differen-
tiation. All other computation, including matrix multiplication, will then be done nu-
merically.
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-Department of Mathematics and Center for Research in Scientific Computation, North Carolina
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With the obvious notation, (2) can be written as a single system

(3) Ffx’+x=Iu 1.y
However, we shall see that there are advantages in keeping the pair of equations (2).

Our presentation is self-contained. The proofs make frequent use of results
from [7].

1.1. Observability. The system (2) is observable on the interval if knowledge of
the output y and the control u on any subinterval 3 ofJ uniquely determines smooth
solutions x of (2a) on 3 If C in (2b) is not full column rank on a dense set, then the
additional information to determine x is gotten (at least theoretically) by differentiating
(2b). Observability has been frequently discussed when E(t) I since the early work in
[15], [19], [23], and [27] and in the descriptor case when E, F, B, C are constant
matrices. However, ours is the first discussion of observability oftime-varying descriptor
systems. While our initial formulation is similar in spirit to that in 15 ], our assumptions,
methods, and goals are different.

For linear time-invariant descriptor systems there is some variance in the definitions
of observability depending on how the authors wish to deal with the potential impulsive
behavior (for example, see ], 12 ], 13 ], 14 ], 16 ], 20 ], 21 ], 26 ). We shall assume
that the controls u are sufficiently smooth and the initial conditions for the descriptor
system consistent so that no impulsive behavior is present.

It was noted early in the observability literature that there are different forms of
observability 23 ]. We have just defined total observability. In some problems a stronger
type of observability is needed.

DEFINITION 1. The system (2) is smoothly observable (oforder (k, l)) on the interval
3, if there exists smooth K;(t), L;(t) on 3 such that

k

(4) x , Ki(t)yi)(t)+ , Li(t)(Bu)i)(t).
i=0 i=0

DEFINITION 2. The system (2) is uniformly observable if it is smoothly observable
of order(n- 1, n- 1).

Uniform observability [23 is usually defined differently. We shall relate the two
definitions later when we discuss the E nonsingular case.

Example 1. The system

(5) x’=x+u,

(6) y- ckx,

where (t) is an infinitely differentiable function such that i)(0) 0 for 0 =< <
and 4(t) 4:0 if 4 0, is observable but not smoothly observable on every interval
containing zero.

Example 2. The system

(7a) x’=x+u,

(7b) y= t2x

is smoothly observable of order (2, since

(8) x (2t2 + 2t + 2)-[y"-- y’ + 2y-- 4tu t2u’].
However, (7) is not uniformly observable on any interval containing zero.
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Using all of the information gotten in differentiating the output can be helpful, as
indicated by the next example.

Example 3. Consider the system

(9) x’=x+u,

(10) y=tx.

Equation (10) implies that x - y, which is not smooth at 0. Differentiating (10)
once and using (9) for x’ gives

(11) x=(1 +t)-(-y’-tu),

which is not smooth at -1. However, if we use the differentiated equation and the
original (10), and solve the overdetermined system that results, we get

(12) x=y’-y+tu,

which is smooth on any interval.
There is a tradeoff here. By allowing extra differentiations ofthe inputs and outputs,

we can obtain extra smoothness of the coefficients in the observation equation (4).
Our definition implies that any portions of the solution x which are completely

determined by the control u are automatically observable.
Example 4. Let E be a constant matrix N which is nilpotent of index v, and let

F -I. Then (2) is observable independent of B, C since
v--I

x Ni(Bu)i).
i=0

1.2. Terminology and background. The system ofalgebraic equations, Ax b, writ-
ten as

(13)
A21 A22 x2 62

is 1-full with respect to x if (13) uniquely determines x for any consistent b. From
basic linear algebra we have Lemma 1.

LEMMA 1. Thefollowing are equivalent for the system ofalgebraic equations 13):
The system (13) is 1-full with respect to x.

(2) The submatrices

A
Azl A2=[AIx]A22

have disjoint ranges andA hasfull column rank.
(3) The row echelon form ofA is

(14) [Inn0]0*
where is a possibly nonzero entry.

(4) The xl entry ofany vector in the nullspace ofA is zero.
To obtain smooth observability we will need the next lemma.
LEMMA 2. Suppose A in 13 is a smooth function oft defined on an interval :

IfA is 1-full with respect to x for each and A has constant rank, then
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there is a smooth O(t) such that OA has theform (14) and A is said to be smoothly 1-
full[7].

(2) IfA has constant rank on and A is 1-full on a dense subset of, then A is
1-fullfor every e .

Proof. The first statement is Lemma 3.1 of [7]. To prove the second statement,
suppose that A has constant rank. Then the nullspace ofA has a smooth basis

([xli(t)]x2i(t) for i=0,--. ,r}.
By assumption, Xli 0 on a dense subset of. Hence Xli 0 by continuity and A is 1-
full for all . D

We need to restrict the class of descriptor systems that we consider.
DEFINITION 3. The descriptor system E(t)x’ + F(t)x f(t) is solvable on the

interval J if
(1) For every sufficiently smooth f on J, there is a solution to the descriptor

system.
(2) Solutions are defined on all of J.
(3) Solutions are uniquely determined by their values at any to in J.
This definition of solvability does not require E to have constant rank nor for it to

be possible to carry out the usual inversion algorithms involving coordinate changes and
differentiations [7], [24]. For a given f, the initial values at time to form a proper sub-
manifold ifE is singular. More detailed exposition on the basic properties of DAEs may
be found in [3], [6], [9], and [17].

2. Observability characterization. In this section we will develop our characteriza-
tion of observability for (2). For simplicity, let b(t) B(t)u(t) and assume that the
descriptor system (2a) is solvable. Differentiating the equation (2a)j times and the equa-
tion (2b) k times gives the system of equations

(15a) [. oj][X]--bj,Xj

(15b)
Xk-

where

F y
F’ y’

Yk--

F’tj) y(k

b
b’

,E 0
E+F E 0

E"+,2F" .2E’+F E :"
IE + iF- , ,

0 0

2C’ C ".

LCqo

Xj
x(j’+
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These equations suggest the following result.
PROPOSITION 1. The descriptor system (2) is observable on the interval if and

only ifthere are j, k, with k <= j + such that the matrix

(16) (gjk [ j ]0+l+
is 1-full with respect to x on a dense subset of.

Proof. It is clear that the 1-fullness of (9,k on a dense subset ofJ implies observability.
The necessity of (gj.,k being 1-full will follow from the proofofProposition 3 where bounds
on j, k are derived.

PROPOSITION 2. If(gj,k is 1-full on a dense subset ofJ and has constant rank, then
(2) is smoothly observable oforder k, j).

Proof. Under the given assumption, using Lemma 2, there is a smooth ) such that

ogJ k [ In0 01"*
Then (4) holds where [L0, Lj, Ko, K] are the first n rows of O.

Propositions and 2 are the types of results we are seeking in that the only symbolic
operations that need to be performed are the differentiation of the given coefficients.
However, since E can have variable rank, calculations need to be carried out in a certain
order to avoid incorrect rank determinations in verifying the observability condition.
Also, we need more precise information on the needed values ofj, k. Finally, ways to
reduce the amount of computation have to be considered.

All ofthese concerns can be carried out simultaneously as we investigate the structure
of (gj,. The key turns out to be the following fundamental result from [7].

THEOREM 1. Suppose that 2a is solvable on the interval and that E, F are 2n-
times differentiable. Then

17 g has constant rank on for n + 1,

18 g is 1-full with respect to x’for n + 1,

19 i oi] hasfull row rank for <= n + 1.

If the coefficients E, F are infinitely differentiable, then Theorem provides sufficient
as well as necessary conditions for solvability. If (19) holds, then the smallest value of
that satisfies the conditions 17 ), 18 ofTheorem is called the index ofthe descriptor
system (2a). For time-invariant descriptor systems, the index is the same as the index
of the pencil XE + F. However, for time-varying solvable descriptor systems, the pencil
hE + F need not be regular, and if the pencil is regular, its index need not be that of the
descriptor system.

Theorem is important since it assures us that if the descriptor system (2a) is
solvable, then gj will have constant rank even if E does not. Thus a computation con-
cerning oj can be well conditioned.

We now need the following technical lemma.
LEMMA 3. Suppose that 2a is a solvable index u descriptor system. Then for any

g >-_ O, the row echelon form of o + el + e lb + is

Opxn(g + 1) 3
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whereR and havefull row rank. Furthermore, the solutions ofglx 3 are independent
ore.

Proof. The independence of the solutions of //x b3 follows from [7]. Index the
n n block entries of gj by 0 =< r _-< j, 0 <- s _-< j. Thus, for example, g0,0 E. Let r >_-
1, s >_- 1. Then for any j >= s, the (r, s) n n block entry of gj is generated by the
recursion

d
(21) j)r,s=( Oj)r 1,s--1 -[-( O’j)r--1,s.

To see (21), note that if the r- block row of oj is

+ + lx(S-1) + 3x(S) +
then, upon differentiation, we get that the coefficient of x(s) in the rth row of g is +
’, which is (21). For j >_- 0 partition g+1 as

(22) g+l ,
Suppose that v is such that , is 1-full with respect to x’ and of constant rank. We first
show that , +1 is 1-full with respect to x’, x". It will be of constant rank from 7 ]. The
nullspace of g, +1 consists of the solutions of

(23)

which implies that

[z0]g.+l =0,
Zv+

[z;](24) g, =0.

By the 1-fullness of f,, we have z0 0. Hence (23) implies that

(25)

But by (21 ),

(26)

[Zl]Zv+

]u-- Ov j- ( Ov*)10(+

where N,, denotes the last v block columns of f,. Note that (24) implies that

(27) g., :0.
Zu

Equations (25) and (26) then imply that

[Zl](28) +
Zu+

(<,)1o =o.
Zv+
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Since . is 1-full with constant rank, there exists smooth Uo, U.] with U,
which are n n such that

(29) [Uo, "", U.]g.= [IO"’Ol

and hence

(30) [Uo, "--, U]. [0 .0].

Differentiating (30) yields

(31) [U, ..., g’lg,+[Uo, "", U]o’.=0.

Multiplying (28) by Uo, U] and using (31 ), we have

ZI--[Uto, ,u’,][#,.10] =0
Zv+

or Zl 0 by (27), and ,/ is 1-full with respect to x’ and x". The o, + e case now follows
by a simple induction argument. Fq

Suppose then that (2a) is solvable and index u. As noted in the proof of Lemma 3,
oi oi 0]b;] is a leading submatrix of[ j o]bj] for every -< j. In particular, g, o,]

has constant rank and is 1-full with respect to x’. Performing a QR (or singular value
decomposition) or using row operations on , o,], as discussed in [4] and [5] gives

(32) 0 H b2
O,o 0 33

The equation

(33) ///x b3
determines the solution manifold of (2a) at time t. Furthermore, (33) shows that there
is a o-dimensional projection ofx that is observable since it is given by b and its derivatives.
Thus we have only to observe the solutions ofx’ -Qx + b on an (n 0)-dimensional
invariant submanifold. From the classical theory for observability, we then have that it
suffices to take k n 0 1. We shall give a rigorous justification of this argument
after summarizing it in the next proposition.

PROPOSITION 3. Suppose that 2a is solvable with index u. Let o n(u +
rank (N,). Note that 0 <= o <= n with o 0 ifand only irE is nonsingular. Then (2) is
observable if and only if (gz is 1-full with respect to x on a dense subset of3 where
(j, k) are any pair ofnonnegative integers satisfying k >= n o ), j >- / k 1. In
particular, since u <= n, we may take k n 1, j 2n 2.

Proof. If we perform the time-varying coordinate changes, x S(t)2, and pre-
multiplication by T(t), the new derivative arrays are related to the old by

(34)

(35)

where

[%o1=[%e o] %o1,

X 0 0
X’ X 0
X" 2X’ X """ 0

for X= S, T.
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Thus for a given k, j, the 1-fullness of (gj-,k is unchanged by time-varying coordinate.
changes. Using the structure theorem for solvable linear DAEs developed in 7 we may
assume that (2) has the form

(36a) x’ +E(t)X’z+G(t)Xl=Bl(t)u,
(36b) N( l)xt2 dr- x2 B2( t)u,

(36c) y= Cx + C2x2,

where Xl is n-dimensional and xz is nz-dimensional. In general, N will have variable
rank and nonsmooth nullspace and range 7 ]. However, the operator N(d/dt) + I is an
invertible operator of the space of infinitely differentiable functions onto itself. In par-
ticular, for each u there is only one solution of (36b). Let //’2 be the /matrix for the
derivative array o] for (36b). But then rank (///2) n2 since ///determines the
solution manifold ofa descriptor system and /// 0 for (36a). Thus O n2. Accordingly,
we have that there exists smooth Li such that

t9--1

(37) xz , Li(t)(Bzu)i)

i=0

and x2 is already observable independent of C.
Thus observability of (36) reduces to considering (36a), (36c), which is a classical

nonsingular observability problem in the form

(38a) x’ -Gx +Pl

(38b) y C1x +p.
We know that the observability of (38) can be determined from the derivative array by
no more than n differentiations of (38b), which requires n 2 differentiations of
G, p in (38a) [23 ]. However, p requires a differentiation of xz so that n n
o differentiations are needed.

COROLLARY 1. Ifthe descriptor system satisfies the assumptions ofProposition 3
and C,k has constant rank, then (2) is smoothly observable.

2.1. Nonsingular systems. Before continuing, we will briefly discuss what happens
when E is nonsingular. In this case, we have that o 0 and u 0 so that

(39) n- 1,n- (9n_ 1]

Since E is now assumed nonsingular, so is oj for any j. Then (gn- ,n-1 is 1-full with
respect to x if and only if

(40) //;,- l--tin l--tin 10"1 ln
has full column rank. If we let A -E-1F so that the differential equation is x’
Ax + E-1Bu, then /g;,_ is precisely the usual observability matrix 2

(41)

C
C’ + CA

Cn- + Cn-zA
where C Ci_ 1A + C}_ and Co C. Ifj > k 1, define
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Uniform observability is defined in 23 to be that /1/,_ has full rank for all
Smooth observability will follow if //j has full rank for all E J for some j that does not
depend on t. Example 2 gives an example where 1/) has full rank for all but only for a

From a theoretical point of view, our approach is not saying anything new about
the nonsingular case. However, there are other considerations that may make it preferable
to utilize (15a), (15b) rather than (41). One such situation is when it is desirable to
avoid the inversion of E. IfE has some simple structure such as sparsity or bandedness,
this structure can be lost in the inversion. Also, if E is time vaffing, then the inversion
has to be done symbolically, and the resulting expressions differentiated repeatedly and
multiplied symbolically. For even moderate-sized problems this can lead to a major
expansion in the complexity of the expressions involved. In these types of problems it is
much quicker to proceed numerically from the array C,, which has been computed with
the minimal amount of expression expansion possible.

Many control problems have a structure that can be exploited in working with
() [8].

Another advantage of working with , directly arises when we are dealing with
problems where ranks, or perhaps even the index, change with parameter values. Many
symbolic packages produce what are sometimes referred to as genetic solutions. That is,
given the equation kx 0, the solution is given as x 0 if k is a parameter. However,
when dealing with descriptor systems, the case where k 0 may be impoant. In the
solution of the complicated nongeneric linear algebra problems that can occur in solving
descriptor systems, this so of behavior may be much more subtle.

2.2. Analytic systems. If the coefficients are real analytic, then we can make a
stronger statement. The key is the following lemma.

LEMMA 4. Suppose tkat H( t) is an m n real analytic matrixfunction defined on
an open interval containing tke closed bounded interval . Let

H

H[j]
H’

Suppose tkat HI k] hasfull column rank at some to e . Tken tkere is a j suck tkat H[j]
kasfull column rankfor all e .

Proof. Suppose that there is a k and a t0 e such that H[ k] has full column rank
at t0. Then the real analyticity ofH on an open set containing the closure of the interval

implies that H[ k] has full column rank at all but a finite number of points t, t
in J. Let ., be the nullspace of H[j] at time t. Clearly, , , if j. Let

0 ,. If 0, let v be a nonzero vector in . Then (t) H(t)v is a
real analytic function, all ofwhose derivatives vanish at t. Thus (t) 0. But this implies
that H[j]v 0 for all t, j, which is a contradiction. Suppose then that 0. But
then , 0 for some u, since is the intersection of a nonincreasing chain of
subspaces of a finite-dimensional vector space. Thus H[up] will have full column rank.
Let u max { k, u, u }. Then H[u] will have full column rank for all

PROPOSITION 4. The solvable system (2) with E, F, B, C real analytic is observable
if and only if it is smootkly observable. Funkermore, it is smootkly observable if and
only if, is 1-full witk constant rankfor some (j, k).

Proof. Assume that (2) is solvable and that E, F, B, C are real analytic. It suffices
to show that observable implies smoothly observable. The real analyticity implies [11]
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that we may take E1 0 in (36) and G, Bi, N, Ci are real analytic, as are the Li in (37).
Another analytic coordinate change gives G 0 in (36a). Thus we can consider the
nonsingular case. The proposition now follows by applying Lemma 4 to (41 with A
0 and C C(i) [-]

If we modify Example by letting y tx where s is a nonnegative integer, and
assume 0 @ , we see that it is impossible to get a general upper bound for the amount
of differentiation needed for smooth observability. However, having to perform a large
number of extra differentiations in order to get smooth observability seems unlikely.

3. External behavior. In the systems theory literature the problem of representing
the external behavior of a system, and of determining the external behavior given a
representation, is frequently discussed ([22], [25], [28]). In this section we shall show
how our characterizations of observability can be used to derive characterizations of the
external behavior for (2). Our results do not follow from those of[22 since that paper
makes a constant rank assumption at intermediate steps of the derivation and we allow
these submatrices to have variable rank.

DEFINITION 4. The external behavior of(2) is the set Z { (y, u) Y, u are functions
satisfying (2) for some state function x(t) }.

An external description is sometimes called an input-output representation
([25], [28]).

DEFINITION 5. An external description of the system (2) is a set of equations

(42) R( t, y, y’, ye), u, u’, bl (r)) 0

with R continuous, such that the external behavior e of (2) is precisely the set of
(y, u satisfying 42 ).

Grimm [18 defines external behavior in terms of the Laplace transforms of y, u.
Alternatively, using the notation of (3), the external behavior can be defined as the set
of (u y) such that

Suppose that Cj,k for (2) is 1-full with respect to the x variable and constant
rank. Then

x (t, y, , y), u, , u))

:o, b

where 71" is the projection onto the first n coordinates. Define the functions R, R2 by

d
(44) R(t,y, ,y),u, ,uJ))=E(t)()-F(t)x-B(t)u,

(45) Rz(t,y,...,yt/’,u,...,u:’) [1- (gj.,k(9,] I bJ ]
PROPOSITION 5. Suppose that the system (2) has (9, 1-full with respect to x and

constant rank so that (2) is smoothly observable oforder k, j). Then the external behavior
is characterized by

R =0, R2 =0,

where R R2 are given by (44), (45).
Proof. That (y, u) e implies (y, u) satisfies RI and R is clear. Suppose then that

(y, u) satisfies R 0, R2 0. Since R2 0, the equations (15) are algebraically consistent.
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Since L0j,k is 1-full with respect to x and constant rank, there is a unique smooth
given by

which satisfies R 0. There remains only to show that y C2. However, R2 0 implies
that (15a), (15b) are consistent and the first block equation in (15b) is y C2. ff]

3.1. Nonsingular ease. To illustrate the previous result, consider (2) with E non-
singular andA -E-F. From (39), (41) and (15a), (15b), we have

(46) Yk //cX + bj.

By the observability assumption, B/ has full column rank for large enough k. The
functions R, R2 are defined by

(47a)
d

R t, y, yk + ), U, uk)) -t [/l/’tk(Yk-- bk) F( t)[/#’k(Yk-- bk) B( t)U,

(47b) R2(t,y, ,yk+),U, ,uk))=[I--//’k#/’tk](yk--bk).
PROPOSITION 6. If(2) with E nonsingular is smoothly observable on the interval

so that t/’ hasfull column rank on, then the external behavior of(2 is characterized
by the external description R O, R2 0 where the Ri are given by (47).

Example 5. For the simple system

x’ bu

we have

Then

d
t2 y,RI=[(I+ )- ty + tbu bu

and

-( +/2)-1/2
R2

-l( + t2)-The equations R, R2 simplify to

--t(1 +/2)- ]
(1 +/2)- y’-- tbu

(t2+ 1)y"+(t3-t)y’+(1-t2)y-[(t4+tz+2)b+(t3+t)b’]u-(t3+t)bu’=O

and

y ty’ + 2bu O,

respectively.
Other 1-inverses [10] can be used besides //’*. For example, (8) used

2t+t2 (212+21+2)-112 -1 1].
2 + 4t + 2
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4. Conclusion. This paper has examined the observability oftime-varying descriptor
systems. Characterizations of different types of observability have been given in terms of
rank conditions on arrays made up of derivatives only of the original coefficients. All
algebra can be carried out numerically.

The concept of smooth observability, which is weaker than uniform observability,
has been introduced. It is shown that every real-analytic system that is (totally) observable
is smoothly observable, even if it is not uniformly observable. This is a new result even
in the nonsingular case when E is invertible. These ideas have been used to develop a
characterization of the external behavior of smoothly observable descriptor systems.

Several problems remain. One is a discussion of how to actually carry out these
procedures in an efficient manner. In the characterization of the external behavior, an
alternative characterization that does not require differentiating the computed if’ would
be desirable. Finally, it would be interesting to establish what the natural dual concept
is to smooth observability.
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IMMITANCE-TYPE THREE-TERM SCHUR AND LEVINSON
RECURSIONS FOR QUASI-TOEPLITZ COMPLEX

HERMITIAN MATRICES*

Y. BISTRITZ’:I:, H. LEV-ARI’, AND T. KAILATH"

Abstract. A comprehensive analysis is made of Schur- and Levinson-type algorithms for Toeplitz and
quasi-Toeplitz matrices that have half the number of multiplications and the same number of additions as the
classical algorithms. Several results ofthis type have appeared in the literature under the label "split algorithms."
In this approach the reduction in computation is obtained by a two-step procedure: (i) the first step is a variable
(or "recursion-type") transformation from the classical (i.e., "scattering") variables to a new (so-called, "im-
mitance") set of variables, which by itself reduces the number of multiplications at the cost of increasing the
number of additions; (ii) the second step achieves control of the number of additions by converting the two-
term recursions into the lesser known (for discrete orthogonal polynomials) three-term recursions. In the Toeplitz
case the new variables turn out to be the odd and even parts ofthe classical variables, leading to the terminology
of split algorithms, but this feature is lost in the quasi-Toeplitz case. Nevertheless, the network-theoretic inter-
pretation of a transformation from scattering to immittance variables can still be maintained. Certain judicious
choices of free parameters have to be made in each case in order to achieve the maximum computational
reduction. It is shown how these results yield efficient procedures for determining the inertia ofa quasi-Toeplitz
matrix and the location of roots of its "predictor" polynomials from the immittance-type three-term recursions.
In particular, connections with the Bistritz stability test, which was the motivation for our study of the Levinson
and Schur algorithms in this paper, are noted.

Key words. Levinson algorithm, Schur algorithm, Toeplitz matrices, fast immittance-type recursions

AMS(MOS) subject classifications, primary 65F05, 65F30; secondary 15A06

1. Introduction. Several recent papers have introduced computationally efficient
(three-term) versions of the well-known Levinson algorithm and the somewhat less well
known Schur algorithm. Bistritz has obtained several tests ]-[4 for the root distribution
of polynomials with respect to the unit circle that involve only the even (or odd) parts
of the polynomials, and needed only half the number of multiplications (and the same
number of additions) as the well-known Schur-Cohn test [5 ]. Since the Schur-Cohn
test is essentially a reverse (degree-reducing) form of the Levinson algorithm, as well as
a particular case ofthe Schur algorithm, it was reasonable to expect that similar reductions
in computational complexity could also be obtained for both the Levinson and the Schur
algorithms. Indeed, Delsarte and Genin derived one such computationally improved
version for both of these algorithms: in [6 and [7] they presented the so-called "split
Levinson" and "split Schur" algorithms for symmetric Toeplitz matrices with real entries.
The adjective "split" arises from the ability to work with the odd and even (or symmetric
and skew-symmetric) parts ofthe polynomials involved in the usual Levinson algorithm.
Such improved algorithms were also obtained, in a slightly different context, by Bube
and Burridge 23 ]. In our previous work 8 ], 9 we proved that: (i) the same approach
applies not only to Toeplitz but also to certain quasi-Toeplitz (or Bezoutian) matrices,
where the polynomials in the improved Levinson algorithm are not symmetric or skew-
symmetric and cannot be viewed as an even/odd split of the polynomials in the usual
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Levinson algorithm, and (ii) there are three computationally efficient and different-in-
form versions of the Levinson algorithm. Finally, we note that the extension of the
Bistritz stability test to the complex case (i.e., to polynomials with complex coefficients)
was derived independently by Delsarte, Genin, and Kamp [10] and by Bistritz [2] and
that Krishna and Morgera 11 ], [12] were perhaps the first to publish complex versions
of the split Levinson algorithm.

This paper explores in detail the possibility ofreducing the computational complexity
of both the Levinson and the Schur algorithms by studying the effects of variable or
recursion-type transformations and of introducing three-term recursions. We believe that
the comparison ofalternative computational procedures should not be carried out solely
in terms of their computational requirements: other attributes, such as numerical ro-
bustness or suitability for parallel implementation, may be more significant in certain
applications. Therefore, we consider in this paper all O(N2) alternatives to the conven-
tional (scattering-type, two-term) recursions. Having established an explicit character-
ization of all efficient alternatives of the Schur and Levinson algorithms, we are in a
position to prove that one so-called balanced immittance-type three-term version of the
recursions (coinciding with the recursion in [11] and [12] in the Toeplitz case) has the
lowest computational requirements. This advantage of the balanced version over all
other alternatives has not been established in previous publications (i.e., in [6 ], [7 ],
[11], [12], [20]), because no comparison to other alternatives was available. Moreover,
we also prove that all efficient three-term equivalents of the Schur/Levinson recursions
are related to each other by scaling.

We present our results in the somewhat generalized context ofquasi- Toeplitz matrices
with complex entries. We do so not only for the sake of extending results otherwise
known for Toeplitz matrices, but mainly to establish the fact that the structural form of
the recursions and the reduction in computational requirements depend not upon the
special (persymmetry) property of Toeplitz matrices, but instead upon their so-called
displacement structure. In contrast, the approaches used in previous publications rely
heavily on the persymmetry property.

Before proceeding to a more specific outline of the background and the contributions
of this paper we may suggest that the reader might also find it useful to scan the remarks
in the concluding section of the paper.

1.1. The Levinson algorithm for quasi-Toeplitz matrices. The Levinson algorithm
is a fast method that recursively solves, for n 1, N, the set of linear equations

(la) [a,...a, 1]R0:=R[0 ...0 1]

for the unknowns a,i, R e }, where Ro: is the (n + (n + leading submatrix of
Ro:. The system matrix Ro: is either a square Hermitian Toeplitz matrix, say

(lb) TO:N {ci_j;O<=i,j-<N},

or a square Hermitian quasi-Toeplitz matrix, i.e., one of the form

c) R0:N HT0:NH *,

where H is a lower-triangular Toeplitz matrix of size (N + (N + ), and the asterisk
(*) denotes Hermitian transpose (complex conjugate for scalars). An alternative char-
acterization of quasi-Toeplitz matrices is that they have displacement inertia 1, ), as
defined in [13], viz., RO:N is such that the displacement matrix R0:u ZR0:NZ* has one
positive eigenvalue and one negative eigenvalue (and N + 2 zero eigenvalues), where



IMMITANCE-TYPE ALGORITHMS 499

Z is a matrix with unity elements on the first subdiagonal and zeros elsewhere. This
means that

d) Ro:N ZR0:NZ* UoU 0(
for some column vectors Uo, Vo. For notational simplicity in further analysis we shall
scale the matrix R0:N { ri,j; 0 <= i, j <= N} so that its top-left element is

(le) ro,0 1.

Therefore, in particular, Toeplitz matrices must satisfy Co and, consequently, the
lower-triangular Toeplitz matrix H in c) must have unity diagonal elements. We may
note that for certain choices of Uo, v0 the matrix R0:N becomes a so-called unit-circle
Bezoutian, familiar from stability theory (see the discussion at the end of 5 ).

Following 14 ], we say that R0:N is admissible if there exists a scalar o such that

(If) Uo-OVo=[1 0...0] T.

If I):N is admissible, then it is always possible to choose v0(z) so that the corresponding
o is real and nonnegative. We should also emphasize that by varying H in c), we obtain
a family ofquasi-Toeplitz matrices Ro:u, all sharing the same reflection coefficients kn ).
Some ofthese quasi-Toeplitz matrices are admissible and can be completely characterized
by specifying the scalar coefficient o >= 0; others are nonadmissible and require a speci-
fication ofN + additional coefficients (see 14 ).

Equation (la) can be solved via the (generalized Levinson) recursions [14]

(2a)
bn(z)

=Ln(z)
bn-l(z)

Ln(z)=
-k*z

where

(2b) an(z) an,izn-i,
i=0

bn(z) is an auxiliary polynomial with coefficients bn,i, viz.,

(2c) bn(z) bn,iz i,
i=0

and

(2d) ao(z) 1, b0(z) o.

If 10:N is not admissible, then its Levinson recursion is a further generalization of (2),
which we shall not discuss in this paper, but which is indicated in 14 ]. For Toeplitz
matrices, 0 and the recursions (2) become the well-known Levinson-Szeg6 recursions

# n -,for the orthogonal polynomials an(z) [151, with bn(z) a,(z) := z [an(z )1 the
conjugate reverse polynomial of an(z). The reflection coefficients kn are computed by
certain inner-product formulas, which we discuss in further detail in 4. We also recall
here the readily verified fact that, by stacking the solutions of (la) for 0, 1, ..., N,
we can get the unique upper-diagonal-lower (UDL) triangular factorization ofthe inverse
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of Ro:N R-l * -1
0:N Ao:NDo:NAo:N, where D0.N. diag { R e’i, 0 < < N} and A0:N is a lower-

triangular matrix whose nth row contains the coefficients of an(z), viz.,

(3) Ao:N

1

a. 1

La,u au,_’’ .1

1.2. The Schur algorithm for quasi-Toeplitz matrices. The Schur algorithm is an
alternative (and more direct) method for computing the reflection coefficients, which at
the same time also determines the unique lower-diagonal-upper (LDU) triangular fac-
torization of the matrix R0:N itself, rather than its inverse [16]. It involves a recursion
that we can rearrange (see Appendix B in [9 in a form that is identical to the Levinson
recursion (2a), viz.,

(4a)
n(z)

where u,(z), vn(z) are power-series in z, viz.,
N N

(4b) un(z) 2 bln,i Zi, l)n(Z) Z l)n,i Zi,
i=0 i=0

and 7n(z) denotes conjugation of coefficients alone in the power series un(z), i.e.,

(4c) fin(z) := un(z* )1 *.

Admissibility is not involved at all in the Schur recursion (4), which can be applied to
every quasi-Toeplitz matrix.

The recursion starts with Uo(Z), Vo(Z). The coefficients Uo,i, Vo,i ofthese polynomials
are the elements of the column vectors Uo, Vo in the displacement representation (ld)
for Ro:u. The representation (ld) of Ro:u is nonunique, as we can replace, for instance,
the two-column matrix [Uo Vo] by [Uo Vo]O(k), where

O(k):=
Vl Ikl 2 -k*

In particular, we can always select Uo, Vo such that the first element of Vo vanishes, i.e.,

5 U0 ///?, 0 :’-"

b/0,N

0

)0.,

/)0,N

where we use the convention e) that ro,o 1. In particular, for a Toeplitz matrix,

N

(6) Uo(z) ci Zi, I.)o(z) blo(Z) 1,
i=o

which satisfies the constraint (5) with Uoi Voi for > 0. Moreover, the recursion (4a)
imposes the same constraint upon all subsequent vn(z), i.e., vn,n 0 for all n. Note that,
in addition, the first n coefficients of both un(z) and vn(z) always equal zero.
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The LDU factorization of R0:N is obtained as follows: the nth diagonal element of
the diagonal matrix D0:N in Ro:N L0:ND0:NL0:u is

(7) dn Un,n=R (1- [k/12), R 1,
i=1

and LO:N is a lower triangular matrix that has the coefficients of un(z)/dn as the elements
in the nth column. The last equality in (7) is well known for Toeplitz matrices (see, e.g.,
15 ]). In fact, it holds also for quasi-Toeplitz matrices because the { R, corresponding

to the quasi-Toeplitz matrix R0:N of (la), (lc) are independent of the matrix H and
coincide with the {R } that would appear in equations c) with the Toeplitz matrix
T0:v. This is so because the lower-triangular matrix H must have unity diagonal elements
in order to conform with the scaling convention e).

The computational costs of the Schur and Levinson algorithms are similar (see
Table 2 for a summary of operation counts). The Schur algorithm is, however, more
advantageous for parallel computation because it does not involve inner products (see,
e.g., [16 ). We shall now see how further computational reductions can be achieved for
both algorithms.

1.3. Variable transformations and three-term recursions. Our approach to the
problem of reducing computational requirements is different from that of Delsarte and
Genin [6], [7] and that of Krishna and Morgera [11], [12], and it follows the method
used in [8] and [9]: first we make a suitable variable transformation and then we
convert the resulting two-term recursion into a three-term form. Thus consider first a
linear transformation of the recursions, viz.,

f(z)
T,, T,,(8a)

g,(z) b,(z) y,(z) ,,(z)

which results in a modified set of two-term recursions. Namely,

(8b)
g(z)

T"L(z)T#-I
g,-l(Z)

and similarly for the Schur recursion. Note that the effect of the (nonsingular) matrices
T, is to transform the degree one polynomial matrices L,(z) into another set of matrices
of the same nature. Thus, the modified recursions (8b) require O(N2) operations for
every choice ofthe transfornation matrices T,; 0 <= n <= N}.

An alternative form of the recursions is obtained by eliminating g(z) altogether
from (8b). This results in a three-term recursion, i.e., f(z) is determined from f_ (z)
andf_ _(z), rather than fromf_ (z) and gn_ (z). The three-term version ofthe recursion
may, in general, involve polynomial division, which significantly raises the computational
requirements. We show in 2 that the only way to avoid this additional computation is
to choose

(9a) r=
-1 0

It might be noted that the work in 6 ], 7 ], 11 ], and 12 deals only with the Toeplitz case, for which
the reduction is obtained by working with the symmetric (or skew-symmetric) parts of the polynomial an(z),
leading to the name "split Levinson," introduced in [6 ]. However, in the quasi-Toeplitz case this symmetry is
not available, though equivalent computational reductions can still be obtained.
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where { n, un are complex scalars, and the ratio

is constrained by the recursion

n.- +k.(9c) n no 1.

Since this recursion completely determines on in terms of the reflection coefficients
{ki; <= <- n} and sincefn(z)= n[an(z)+ onbn(z)], it follows that all efficient three-
term equivalents of the Schur/Levinson recursions are related to each other by scaling
(note that the r/; all have unit modulus). A suitable choice ofthe scaling coefficients { n }
may reduce the number of nontrivial coefficients in the recursion. As will be seen in

2, the most efficient version involves a single complex multiplication 2 per recursion
step, per coefficient. This unique, computationally efficient, version has the form

(10) fn__(z).f,+,(z)=(6nz+6*)f(z) z

For real covariances, 6, 6 *, and this recursion reduces to the so called balanced recursion
of[8] and [9]. Previous publications pointed out that scaling the f(z) polynomials
produces O(N2) equivalents ofthe balanced recursion, but did not show that every three-
term immittance-type equivalent of the balanced recursion is produced in this manner.

It turns out that, in addition to the balanced recursion, there are only four distinct
versions of the recursion with two nontrivial coefficients. They consist of two pairs: the
monic/comonic pair and the dual-codual pair. The monic/comonic recursions have
the form

(lla) f.+,(z) z+ fM (z)--XzfM_,(Z).
"gin-1

fn+,(z)=(lib) CM ’ln z+ 1)fCM(z)--X*zfCM_(Z).
and reduce, for real covariances, to the monic recursion of 8 and 9 ]. The dualcodual
recursions have the form

(12a) )tn + fDn + Z ( z -F
rt, )fD Z zfD Z

(12b) X,+,fCD (nn-1)n+ (Z) Z+ fCD(z)--zfD(z)
\ r

and reduce, for real covariances, to the dual recursion of[8] and [9 ]. Though more
computationally expensive than (10), we introduce (11)-(12) for completeness and
because they may have other applications (e.g., (10)-(12) may have different degrees
of numerical robustness).

More precisely, the equivalent of a single complex multiplication, i.e., a total of four real multiplications.
We remark also that in the real case we have three distinct versions of the recursion with a single nontrivial
coefficient.
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Of course, the recursions 10)-(12) also hold for xn(z) in the Schur algorithm. For
instance, the balanced recursion for xn(z) is

Bx.+ l(Z)= (.z + .*)x’.(z)- zx’._ l(Z),

and similarly for the other four versions.
The analysis in this paper extends the results of 8] and [9 ], including the useful

transmission line interpretation. The ratio vn(z)/un(z) in the Schur algorithm is bounded
by unity (for [z[ < and can be interpreted as the scattering function of a transmission
line consisting of a cascade of (uniform) sections with different characteristic impedances.
On the other hand, the ratio xn(z)/Yn(Z) is positive-real (for [z] < and can be inter-
preted as the impedance (or admittance function of a related transmission line. For this
reason we shall say that the recursions (2), (4) are of the scattering type, whereas the
transformed recursions (i.e., those for (f, gn or for (xn, yn) are ofthe immittance type.
Indeed, if we denote sn(z) := n(z)/,(z), then cn(z) := yn(z)/xn(z) is given by

c.(z) I1-n.s.(z)]/[ +n.s.(z)],

which we recognize as the well-known Cayley transform, mapping bounded functions
into positive-real functions and vice versa.

The derivation of the three-term immittance-type recursions 10)-(12) is carried
out in 2. In order to propagate these recursions, beginning with the given covariance
R0:N, we must also have formulas for computing the coefficients { X;, 6; }, similar to those
used in the scattering-type formulation of the Levinson and the Schur algorithms to
compute the reflection coefficients { k; these calculations, which require the same num-
ber of multiplications as in the scattering-type recursions, are derived in 3 and 4. We
also present, in 4, the relations required to reconstruct gn(z)} from the three-term
recursion for { f(z)}; this makes it possible to reconstruct the predictor polynomials
{ an(z) } when necessary. Finally, 5 briefly considers the relation between the immittance-
type parameters { 6n } and the inertia (i.e., the number of positive, null, and negative
eigenvalues) of quasi-Toeplitz matrices. In particular, we show that any quasi-Toeplitz
matrix Ro:u is congruent to a tridiagonal (Jacobi) matrix 7u whose nontrivial elements
are the parameters { 6n (see (49)). Consequently, both matrices have the same inertia.
This congruence relationship also appears in recent work of Delsarte and Genin (see,
e.g., [20]). We present, in 5, an efficient computational procedure for determining the
inertia of Tu. We also show how to apply this procedure to locate the roots of the poly-
nomial aN(Z) of (2a) with respect to the unit circle.

2. Transformed recursions and three-term forms. We introduced in [8] and [9]
the general linear transformation (Sa), viz.,

(13)
f( z)

Tn
g.(z) b.(z)

where Tn is any constant nonsingular 2 X 2 matrix. This results in a transformed two-
term recursion forf(z), gn (z), namely,

gn(Z) "}"n(Z) n(Z) gn- (Z)

Bode coined the term immittance to denote both impedance and admittance 17 ].
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where

,(z) 6.(z)
T.

-k*z
T1

1,

from which we can obtain a three-term recursion for f.(z). The same transformation
can be applied to the Schur recursions (4). The corresponding transformed Schur recur-
sions are obtained by replacing here (and in the remainder of 2) a.(z), b.(z) by ft.(z),
.(z) and, similarly, f(z), gn(z) by x.(z), y.(z).

Since the three-term recursion forf(z) does not involve g. (z), it should not depend
upon the elements in the second row ofthe transformation matrix T.. We may, therefore,
assume any particular form for the second row of Tn, for instance,

(15a) T. Pn 4:0 :/: u,
-1 0 vn

without affecting at all the three-term recursion for f.(z). Thus,

(15b) f(z)=p.[an(z)+rt.b.(z)],

where

(15c) rtn := Un//n.

When the underlying covariances are real-valued, the choice ft. leads to the simplest
recursions, which we have already analyzed in [9].

Following the general technique for converting two-term recursions into three-term
recursions (see 9 we obtain

(16a) fn+l(Z)={an+l(Z)+tgn+l(Z)(n(Z)}fn(z)--n+l(Z)An(Z)fn_l(Zz) ,(z)

where

(16b) An(z)’=n(Z)n(Z)-yn(z).(z)
,"n

(1- IknlZ)z.n- Pn-

Also,

(16c) g.(z)=
n(Z)L(Z) A,(Z)L_ (Z)

Since cn(z), /.(z), 3’.(z), 6n(z) are all polynomials ofdegree one (see explicit expressions
in Appendix A), it follows that the three-term recursion involves rational coefficients,
which significantly complicates the computation. Thus a simplified three-term recursion
for f(z) is possible if and only if these coefficients become polynomials in z of degree
one, or less. We show in Appendix A that the rational coefficient/3. + l(Z)/(z) becomes
a constant if and only if

?n+ -kn+(17a)
-ft.+ lk*+

r/.,

which can also be written as an ascending recursion in ft., viz.,

n+kn+(17b) r/. + r/o 1.+ rt.k* +
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Our choice of the initial condition r0 is motivated by the observation that for real
reflection coefficients { k. }, this choice leads to r. for all n, while for complex
reflection coefficients it still yields

(7c) Iwl .
With the ratio r/ u/ff being constrained as in (17), the three-term recursion

simplifies to (see Appendix A for derivation)

(18a) fn+l(Z) lPn+l rln+l-kn+l{(rln-1 ) "n 2)z+l fn(Z)- (1-[knl zfn-l(Z)

and the auxiliary expression for g.(z) becomes

(18b) (z- 1)gn(Z)=(nZ+ fn*)fn(z) (1--rlnk*n )(n+ fn*)zfn- l(Z),n--
where

(18c) ’,’=
-rl.k*."

These expressions reduce, for r/, (for real k,), to (16a), (16b) in [8] and [9].
To initialize the three-term recursion for {f(z)}, one needs to know both fo(z)

andfl (z). The definition 8 ), combined with the two-term recursion (2), implies that

(19) fo(z)=o{ao(z)+bo(z)}, fl(z)=k(n-k){zao(z)+bo(z)}
but it will be more convenient to have the initial conditions on f_(z) and fo(z). Both
(18a) and (18b) imply that

/-! ,
zf_,(z)=

1-Ikol 2 {(1 +rt_k;z)ao(z)+rt-(rt-lz+ko)bo(z)}.

These initial conditions involve the undefined quantities if0, if--l, n-, and k0. We show
in Appendix B that a consistent choice for these quantities is

(20) po (1 -ko) -’, 1/-1 -t- ko, n_l l,

where ko is not subject to any constraints. In particular, if we choose ko -1, then

(21a) o 1/2, g/-1 =0, r/_ 1,

which results in

(21b) 2zf_(z)=(1-z){ao(z)-bo(z)}, 2fo(z)=ao(z)+bo(z).

This choice is motivated by the observation that the Levinson recursions for Toeplitz
matrices are initialized with ao(z) b0 (z), which reduces (21 b) to z f_ (z) 0 and
fo(z) 1.

A further reduction in complexity can be achieved by appropriately choosing the
scaling factors .. There is a single choice that leads to recursions with one nontrivial
coefficient, and four choices that lead to recursions with two nontrivial coefficients:

Balanced recursion, obtained by choosing . to satisfy the constraints

B+(22a)
-i n.-k.

(1-1k.12) =1, n>_-0
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and

(22b) (B B >=,)* r/,,, n 0,

resulting in

(23) f+l(Z)=(6,Z+6n*)fn(Z)--Zfn_l(Z),

The special form of the multiplier of fff(z) with
B -kn )tin-

n>-O.

(27)

resulting in

f,+l(z)=(z+ ) )-Xnzfff_(28) 4 n 4fn(z (z) n>0.
r/n-

Note that as a consequence of the initialization (20), X0 7;0( [kolZ)/(0_ff_l)
also. This recursion involves two complex multiplications per recursion step, per coefficient,
and is therefore, in general, inferior to the balanced recursion. The reason for the name

M Z"monic" for (28) is that, with the appropriate initialization, { fn )} in the Levinson
recursion are monic polynomials.

(3) Comonic recursion, obtained by choosing kn to satisfy the constraint

(29) CM(rtn-- kn) 1, n>-0

is established in Appendix B. As a consequence of the initialization (20), 60
k012)-1 (y_ /0) * 1. The remaining 6n } are related to each other by a recursion

derived from the constraint on , viz.,

(24a) 6n6, n 1, n > 1, 6o 1,

where (note that r/* rt ;1 by (17c))

(24b) Xn:= (on- +kn)(On-l-kn-)*, n>= 1.

The reason for the name "balanced" for (23) is that the recursions for ascending and
descending indices are, essentially, identical.

Note that the balanced recursions involve only four real multiplications (i.e., the
equivalent of one complex multiplication) per recursion step, per coefficient. In fact, the
balanced recursion can be carried out as two interlacing three-term recursions that involve
only real arithmetic [2]. Decomposingf(z) into two real polynomials, viz.,

(25) f(z) Sn(z) + jAn(z)

and separating the real and imaginary parts of (23), we obtain

(26a) S+(z)=6I(z+ )Sk(2") + 6(z-
(26b) Ak+I(Z)--61 R

i(z+ 1)Ak(Z)--6k(Z-- 1)Sk(z)-zAk_(z),

where 6 and 6 denote the real and imaginary parts of 6k, respectively. The recursions
(26) involve four real multiplications and eight real additions per recursion step, per
polynomial coefficient. In the Toeplitz case, S,(z) and An(z) are, respectively, symmetric
and skew-symmetric, and only half of their coefficients need to be computed.

(2) Monic recursion, obtained by choosing n to satisfy the constraint

ff( nk*) 1, n->_ 0
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resulting in the comonic recursion 11b), which has the same computational complexity
as the monic recursion (28). The reason for the name "comonic" is that the ft(z) in
the Levinson recursion for Toeplitz matrices are comonic polynomials. However, the
same property does not hold for other (quasi-Toeplitz) matrices.

(4) Dual recursion, obtained by choosing t/n to satisfy the constraint

nll/nD( k. 12) n,- lff- 1, n=0>(30)

resulting in

(31) ,n+,fn+(Z) Z+ fnD(Z)-- zfnD_ l(Z), n>=0.
r/n-

This recursion also involves two complex multiplications per recursion step, per coefficient.
(5) Codual recursion, obtained by choosing fin to satisfy the constraint

(32) ffcz( 1- IknlZ)--@ , n>_-0

resulting in the codual recursion (12b), which has the same computationalcomplexity
as the dual recursion (31).

Remark. Note that, in view of(15b), f(z), f(z), fcI(z), f(z), feaZe(z) are
all proportional to an(Z) -t- nnb,(z) and, therefore, to each other. The coefficients of
proportionality can be determined by comparing the leading coefficients in these poly-
nomials. Since fn(Z) is monic, it follows, for instance, that f(z)/f(z) I-I:7d 6i.
We show in Appendix B that

(33a)

(33b)

where

fMn(Z)=n-lfn(Z),

f(z)=f(z),
fct( z) n*- f(z),

fCnZ( Z) ; *f(z),

(33C) ’=
i=0

The same proportionality coefficients also relate the various versions of x,(z) in the
immittance-type Schur algorithm.

The recursions just described are incomplete because we have not given methods
for computing the coefficients h, 6n in them from the given matrix R0:u. There are two
genetic methods of doing this--what we call the Schur-type, where these coefficients are
computed as certain ratios, and the Levinson-type, where their computation involves
certain inner products. Besides the fact that Schur-type algorithms are better adapted to
parallel computation, we also note that the functions propagated in the Schur-type re-
cursions yield the Cholesky factors of R0:u, while those in the Levinson-type recursion
yield the factors ofR6:v. We could also use the Schur recursions to compute the coefficients
and then, under the assumption of admissibility, use the coefficients to compute the
polynomials in the Levinson recursions.

3. Immittance-type Schur algorithms. We first review the Schur method for com-
puting the scattering-type reflection coefficients { kn }. From (4) we note that since
[z-"v(z)]z=O 0, it follows that k is the ratio of two known coefficients, viz.,

(34) kn= z--__ ii3 z=0 /’/n-1,n-I
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TABLE
Immittance-type three-term Schur recursions for real covariances.

Balanced Monic Dual

zx_,(z) 1/2(1 z)[uo(z)- Vo(Z)]

Xo(Z) 1/2[uo(z) + Vo(Z)]

io l=X0

forn =0, 1,2, ,N- do

. [zx._ (z)/x.(z)l z-_o

x.+ ,(z)= .(z + )x.(z) zx._ ,(z)

x. [x.(z)/zx._ ,(z)] z_-o*

x.+ ,(z) (z + )x.(z)
X.ZXn-I(Z)

.+ ,(Z):= (Z + )X.(Z)
ZX._ ,(Z)

X.+ [Z -c"+ l)y.o+ I(Z)I z=O

XnD+ 1(2)= XI+ ~D
lXn+ 1(2

(*) Skip this step for n 0.

A similar approach can be used for the three-term immittance-type Schur recursion and
it yields, for instance, the expression 6n* [ZXn-I(Z)/Xn(Z)]z=O. Combining such
expressions with the recursions and initial conditions (21 )-(32), we obtain a family of
complete Schur algorithms, which we summarize below.

3.1. Real covariances. The analysis of 2 yields three computationally efficient sets
of recursions, which are summarized in Table 1. Note that all three versions begin with
the same initial conditions x_ (z), Xo(Z). Also, all three versions require a single real
multiplication and two real additions per recursion per each coefficient of xn+(z), as
compared to two real multiplications and two real additions for the scattering-type Schur
algorithm (4) for real quasi-Toeplitz covariances.

3.2. Complex covariances. The analysis of 2 yields a single computationally ef-
ficient recursion (the balanced version), viz.,

(35a) XBn+I(Z)=(tnZ"-In*)XBn(Z)--zxBn_I(2), n>-_O,

where

(35b) xg(z)’=1/2{ffo(Z)+o(Z)}, zx-l(z)’:1/2(1-z){to(Z)-o(Z)}
Band, with the notation x(z) 7] iN= 0 X..iZ,

(35c) 6n* "--ZXBn-I(Z)[ xnB- 1,n-1

XnB(i z:0 XnB,

We emphasize again that even though 35a) seems to involve two nontrivial coefficients,
namely, 6. and 6*, it can be carried out by two real three-term recursions, similar to
(26), and requires, in fact, only four real multiplications and eight real additions per
recursion step per each coefficient ofx+ l(Z). This is halfthe number of multiplications
and the same number of additions as compared to the scattering-type Schur algorithm
(4) for complex covariances. The relative efficiency of the immittance-type algorithm
over the scattering-type one is, therefore, the same for both real and complex covariances
and for all quasi-Toeplitz matrices (see Table 2).
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TABLE 2
Computation counts.

Schur
Real
Complex

Levinson: quasi-Toeplitz
Real
Complex

Levinson: Toeplitz
Real
Complex

Scattering

Mult. Add.

O(N2) O(N2)
O(4N2) O(4N2)

O(1.5N2) O(1.5N2)
O(6N2) O(6N2)

O(N2) O(N2)
O(4N2) O(4N2)

Immittance

Mult. Add.

O(0.5N2) O(N2)
O(2N2) O(4N2)

O(N) O(I.5N2)
O(4N2) O(6N2)

O(0.5N) O(N)
O(2N) O(4N2)

We use the notation m O(aN’) to mean that m is a polynomial of degree p in N, viz., m aNp +
bNp- + ....

4. Immittance-type Levinson algorithms. The scattering-type Levinson recursions
(2) involve the reflection coefficients { kn }, which are usually computed via an inner-
product formula4

(36) kn=an-l[C "cn] T,
R,_

where an- := an- 1,n- an- , is a row vector consisting ofthe coefficients ofthe
polynomial an-(z), and R is updated by

(37) Re k 12)Re , R Co 1.

Similarly, the immittance-type Levinson recursions 10)-(12) involve the recursion coef-
ficients { n ), { n }, which can also be computed via suitable inner-product formulas, as
we presently show.

Let RO:N be the quasi-Toeplitz covariance associated with the pair Uo, Vo via (5). If
this covariance is admissible, i.e., if Uo(Z) 4- o Vo(Z) for some scalar o, then, as we
have shown in Appendix B of[9] (see also [22]),

(38a) an Uo,"" Uo,n] T= 0,

(38b) bn[1 Uo, l" "Uo,n]= ORe,,

for all n >= 1, where an, bn are row vectors consisting of the coefficients of an(z), bn(z),
respectively. Consequently,

(39a) rn nrlnOR, n >= 1,

where

(39b) 7"n := fn[1 U0,1"" "lgO,n] T

This expression for k. has to be slightly modified for quasi-Toeplitz matrices-(see 9 ]).
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and f. is the row vector consisting of the coefficients of the polynomial f(z). We may
extend (39a) to n 0 and. define ro as

P(39c) r0 poTioR .
It turns out that the recursion coefficients { 6n }, { Xn } can always be computed as

ratios of subsequent rn. For instance, the coefficients of the balanced recursion (23) are
given by (see Appendix B)

!n + Tin + kn / Tin-1 g/n-1 Tin-1n’-- - Tin kn Tin nTin(1-- kn 2)
which, by comparison with (39a), implies that

(40) 6n- B, n->l.
Tn

Combining such expressions with the recursions and initial conditions (21)-(32) we
obtain a family of complete Levinson algorithms, which we summarize below.

4.1. Real covariances. The analysis of 2 yields three computationally efficient sets
of recursions, which are summarized in Table 3. Note that all three versions begin with
the same initial conditions zf_(z) 1/2 z)( o), f0(z) 1/2 + o), which are
the initial conditions presented in [9] (but differ from those in [8] in also allowing
0). All three recursions require a single real multiplication and two real additions per
recursion per each coefficient off/ l(Z), as compared to two real multiplications and
two real additions for the scattering-type Levinson algorithm for real quasi-Toeplitz co-
variances. The computation of the recursion coefficients via (39b) requires one inner-
product and one division per recursion, which is the same as in the scattering-type Lev-
inson algorithm. In the Toeplitz case the (conjugate) symmetry of the polynomial f(z)
results in a further reduction of the computational requirements (see Table 2).

TABLE 3
Immittance-type three-term Levinson recursions for real covariances.

Balanced Monic Dual

zf_,(z) 1/2( z)( p)

fo(z) 1/2( + o)

to= p, /o ho

forn 0, 1,2, ,N- do

]’.+ ,(z)
(z + 1)f(z) zf_ ,(z)

n,l

X,, 20- ., f+ ,iuo,i

f+ ,(z)= X ,f+ ,(z)

*) Skip this step for n 0.
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4.2. Complex covariances. The analysis of 2 yields a single computationally ef-
ficient recursion (the balanced version), viz.,

(41a) f+l(Z)=(rnz+6*)f(z)-zfn_(z), n>=O,
where

(41b) f(z)’= 1/2(1 +p), zf_l(z):=1/2(1-z)(1-p),
and

B
7"n_

(41c) 6n:-- n>= 1,
"/’n

where r, is computed via the inner-product (39b), viz.,

p
(41d) rn f,[1 u0,1""u0,n] T, n>_-l, 0=.
We emphasize that (41 a) can be carried out by (26) and requires, like the corresponding
Schur algorithm, only four real multiplications and eight real additions per recursion
step per each coefficient of fff+ (z). This is half the number of multiplications and the
same number of additions as compared to the scattering-type Levinson recursion for
quasi-Toeplitz complex covariances. If the covariance matrix is not Toeplitz, the inner
product formula has the same efficiency as in the scattering-type formulation for both
the complex and real cases. Consequently, the relative efficiency of the immittance-type
Levinson algorithms is the same for both real and complex quasi-Toeplitz covariances
(a factor of 1.5, see Table 2) and is less than the (factor of two) relative efficiency of the
corresponding Schur algorithms.

In the Toeplitz case, however, the symmetry in f(z) can be exploited to simplify
the computation of n, viz.,

"l’n blo,o + blO,n U0,1 + blO,n- 1" blO,[n/2] + U0,[(n + 1)/2]] Sn,o an,1 Sn,[n/2] T

(42)
+j[Uo,o--Uo,n Uo, l-Uo,n-’"Uo,[n/2]-Uo,[(n+l)/Z]][An,o An,’"An,[n/2]] T,

where Sn(z) and An(z) are the real polynomials obtained from the real and imaginary
parts of the coefficients off,(z) (see (26)), and [x] denotes the integer part of a real
number x. If the Toeplitz covariance matrix is real, all An(z) vanish, and the simplified
formula (42) can be used for the three efficient versions of the Levinson algorithm for
real Toeplitz matrices, as already mentioned in 8 and 9 ]. In summary, since both the
inner-product formula (42) and the recursions (4 a) have half the complexity of the
corresponding scattering-type equivalents, the relative efficiency of the immittance-type
algorithm is the same (i.e., a factor of 2) for both real and complex Toeplitz covariances,
and is comparable to the corresponding efficiencies of the Schur algorithms (see Ta-
ble 2).

4.3. Recovery of the orthogonal polynomials. The orthogonal polynomial a,,(z)
can always be recovered from fn(Z) and gn(z) by inverting the recursion-type transfor-
mation (8), viz.,

an(z) (2,)- {fn(z)+gn(z)},

which suggests the more convenient expression

fn(z)+g,(z)
(43) an(z)

fn Ct3 -k- gn OO

wherefn( indicates the leading coefficient of the polynomial f(z).
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In order to recover g,(z) from {f(z); 0 _-< _-< n}, we observe that the balanced
version of (18b) is

(44a) z- )g( z) ,,z + * )f(z)- 2#,zf

_
(z),

where

+f.(44b) #n:-

This is so because

6._1 " l[B l[, Bn 1"Ink*(1_ ik,,l:)= ik] 2

n-- lff- ff-1 -nk,
(1- ),

and combining this with the identity (A.5b) simplifies the coefficient of zf_ l(Z) in
(18b) to

2 1+._ n. )( f. + fY 6.( n.
An alternative expression for g(z) can be obtained by using the balanced recursion 4 la)
to eliminate zf_ (z) from (44a). This results in

(45a) (z 1)g(z) e2.f. + (z)-(z+ 1)f(z),
which also implies that the coefficient u can be computed directly via the expression

f()
(45b) " f+(1)

Note that the coefficient u, is real, even though both f and 6 are, in general,
complex. This follows from comparing (A.5a) with (B.3). As a consequence, the eval-
uation of (z )g(z) via (45) involves a single multiplication of a complex-valued
vector by a real scalar. In comparison, using (44) for the same puose involves an
additional multiplication of a complex-valued vector by a complex scalar. Fuhermore,
using (44) requires us to also compute f itself, in addition to . It follows from (45)
and the balanced recursion (23) that

-1 26n /-n(46) + f
which provides the real multiplier in the fight-hand side of (44) and also, since 6n is
known, gives ’ itself for (44).

5. Inertia and stability. As is well known, a Hermitian Toeplitz matrix is positive
definite if and only if the magnitude of its reflection coefficients is strictly less than one.
More generally, the inertia of a Hermitian Toeplitz matrix coincides with the inertia of
the diagonal matrix D0:N diag R,; 0 =< n =< N} and can therefore be conveniently
determined from the reflection coefficients via the relation (7). The same holds for quasi-
Toeplitz matrices because all matrices congruent to a common Toeplitz matrix (as in
(10)) share the same inertia [14].

The real coefficients #) that were introduced in (44)-(46) contain the same
information as the {R }, because (see Appendix B for proof)

(47) #o= 2 ]-I 16i12"( Iki]2).
Nn
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e. 0 n _-< N} and z diag { u, 0 < n < N}In other words, the matrices R0:N, diag { R n,

are all congruent to each other and, consequently, have the same inertia. Therefore, in
particular, a quasi-Toeplitz matrix is positive definite if and only if the ratios n//0 }
are all strictly positive. Notice that this result is independent of the choice of initial
conditions.

The most convenient way to compute the { zn) coefficients is via the recursion
(46), viz.,

(48) /.t 26R --/-tn- l,

which is the immittance-type "analogue" ofthe recursive relation R, R kn 12).
This relation also implies that there is yet another matrix with the same inertia as RO:N.
Indeed, (48) implies that

(49)
1 2 Re8

1

1

2 Re6u_

which proves that (with #0 > 0) the tridiagonal matrix 7NiS congruent to diag { #xl; 0 _-<
n =< N} and hence to Ro:u.

We note that the principal minors of7N are given by { fn; 0 < n =< N} where

(50) f_ 1, f0 2, fn 26R fn- fin-2, n 1, ,N,

and by comparison with (48),

(51) n an-1/fin.

Therefore, the inertia of Ro:N can be determined from the signs of the u, computed by
(48) or from the sign changes in the fn sequence computed by (50). In conclusion, the
matrix Ro:u is strongly regular if and only if all fn 4:0 (equivalent to all knl 4:1 ); in
such a case the number of its negative and positive eigenvalues is/)U and N vu where

(52) I/N: iv/-{ "N, l/’l Var { u, o },
where n_ and Var stand, respectively, for the number of negative terms and the number
of sign variations in the indicated sequences.

The magnitudes of the reflection coefficients { kn } of a Toeplitz matrix T0:N also
provide information about the location of the roots of the corresponding orthogonal
polynomials { an(z)} with respect to the unit circle. As is well known (see, e.g., [19 ]),
aN(Z) has all its roots strictly inside the unit circle if and only if T0:N is positive definite,
which by the foregoing discussion is equivalent to 7u > 0. When T0:N is indefinite, the
magnitudes of { kn } determine the number of roots of aN(Z) inside and outside the unit
circle.
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To be more specific, assume that we wish to locate the roots ofp(z), a given poly-
nomial of degree N, with respect to the unit circle, and that p(z) and p#(z) do not have
a common divisor, where p#(z) := zn[p(z-* * denotes the conjugate reverse polynomial
of p(z). Then the Schur-Cohn test amounts to carrying out Levinson’s recursion for
Toeplitz matrices in reverse order, viz.,

a,(z)+kna#n(Z) a,(O)
(53a) za,_(z)= k-1- Iknl 2 a#(O)

with the initialization aN(Z) p(z). This determines the reflection coefficients kN,
kN-l, kl; the classical result of Cohn is that the number of roots of p(z) inside
(respectively, outside) the unit circle equals the number ofpositive (respectively, negative)
Pn, _-< n -<- N, where

N

(53b) Pn := I] (1- Ik;IZ).
i=n

If we use the balanced immittance-type recursions (10), then we shall have the
coefficients { n } or, equivalently, { Ix instead of the reflection coefficients { k, }. The
identity (47) implies that

(54a) sgn Pn sgn Ix" for n N,N- 1,
IXN

and consequently, the number of roots of p(z) inside (respectively, outside) the unit
circle equals the number of positive (respectively, negative) elements in the sequence

(54b) {IXN-1IXN-2 IXO ]
In particular, p(z) is a stable polynomial (i.e., it has all its roots within the unit circle)
if and only if all Ix, are positive (which will happen if and only if 7N is positive definite).

The balanced polynomials fB(z) are related to the orthogonal polynomials a,,(z)
of the Schur-Cohn test via the Toeplitz version of (15b), viz.,

fB,(z) [a,(z)+
where r/, and B have to satisfy the constraints 17 and (22), respectively. These con-
straints leave the parameters r/N, , and

_
partially undetermined. Nevertheless,

observe that { ix, } are determined via (45b), viz.,

fB(1)
(54C) IX. fB+,(1),

n N,N-1, ,0

and that (54a)-(54c) hold regardless of the freedom in selecting the initialization.
The symmetric polynomials fB(z) are determined by propagating the balanced

recursion (10) in reversed order, viz.,

(55a) zfB_,(Z)=(6.Z+b*)fB(z)--f+,(Z), <=n<-N-1,

where

f.+ (0) *
(55b) n y-nB-(
This recursion is initialized by fv(z) and BfN-(Z) which, in turn, are determined by
the parameters r/N, ff, and ffN-. Note that these three parameters determine all r/, for
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n < N (via (17a)), as well as all ffff for n < N (via (22a)). The only constraint
imposed on our initialization is (22b) i.e. (ff)* N-1.

A particular choice that is consistent with this constraint is 1, 6 1, which re-
sults in

(56a) f(z) p(z) +p#(z),

where we used the fact that for Toeplitz matrices, b(z) a#,(z), and where we set
aN(Z) p(z), as in the Schur-Cohn procedure. Furthermore, we still maintain the prop-
erty In, 1; in particular, rt for matrices with real-valued elements.

Further simplification ofthe initial conditions for (55 may be achieved by ajudicious
choice ofv- , leading to a simplified expression for f_ (z). An even simpler approach
is to initialize 55 with n N rather than with n N 1. This requires us to introduce

fN+ I(Z), which depends, via (55), on f(z), f_(z), and the com-the polynomial
pletely unconstrained parameter 6N. The flexibility in selecting f_ (z) and N makes
it possible to obtain a relatively simple expression for f+(z). Indeed, letting

ffo_=zul- [kNI 2 +k
kN 6N k + ,

where ,, u are arbitrary positive constants, we find that

(56b) fv+,(z)=q(z)+q#(z), q(z)’=[(z+ 1)+ u(z- 1)]p(z).

Moreover, these choices result in U (2k) -1 > 0, SO that (54b) can be replaced by
the sequence

(57a)

The number of negative elements in this sequence (i.e., the number of roots outside the
unit circle) is also given by the number of sign changes in the sequence

(57b) {/N(1),/BN-(1), ,fff(1)},
which is always real-valued because: (i) f( p( + p#( 2 Re p( is real, (ii)
the remaining f( are obtained via f_ ( tZn-f( ), and (iii) u, are real.

Since #N (respectively, f+ )) does not appear in (57a) (respectively, (57b)),
we can allow the limiting case , -- 0 (with u ). This results in q(z) (z )p(z)
so that

q(z)-q#(z)B #fN(Z)=p(z)+p (Z)
Z--1

This is precisely the initialization that arises when the root-location procedure of Bistritz
], 2 is applied to the augmentedpolynomial q(z), which has the same root-distribution

as p(z) and an additional zero at z 1. According to and 2 ], the number of roots
of q(z) outside the unit circle equals the number of sign changes in the sequence

{/N+,(1),f(1), ,fg(1)}.

Since the initial f+( 0 accounts for the zero at z 1, we conclude that the
remaining elements of this sequence determine the root-distribution of the polynomial
p(z). This coincides with our criterion (57b).

6. Conehlding remarks. The Levinson and Schur algorithms showed how the
Toeplitz (and quasi-Toeplitz) structure of linear equations could be used to provide an
order of magnitude reduction in the amount of computation, from O(N) to O(N2).
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Normally we would not be too concerned with further reductions that do not affect the
order of magnitude; however, the work of Bistritz ]-[4 showed an alternative structure
that achieves a reduction of exactly one-half in the number of multiplications. Such an
improvement cannot be accidental, and that has been the motivation for the studies
reported in this paper and our earlier paper [8 ], [9 ]. The first results of Bistritz (on
stability tests) and of Delsarte and Genin (on the split Levinson algorithm) obtained this
reduction in the amount ofcomputation by carefully exploiting the persymmetry property
of Toeplitz matrices. We were not completely satisfied with this approach because our
earlier work on the Levinson algorithm showed that the algorithm could be generalized
to close-to-Toeplitz matrices, and that this generalization was very simple for the class
of (admissible) quasi-Toeplitz matrices, amounting essentially to a change in the initial
conditions (see (2d)). Even though such non-Toeplitz matrices were not persymmetric
and do not yield immittance symmetric polynomials, we were able to obtain a corre-
sponding reduction in the number of multiplications, which seems to indicate that the
persymmetry property does not fully explain the improved efficiency (this notwithstanding
the fact that, at least in retrospect, the Levinson recursions for admissible quasi-Toeplitz
matrices can be obtained from the usual Levinson algorithm by using the congruence
(lc) and some algebraic manipulation).

The key to reduction in computation is really the proper use of two additional
degrees of freedom that were always known but never fully exploited. These are:

(i) The possibility of linear transformations of the variables propagated in the
Levinson and Schur algorithms, and especially the transformations (well known in circuit
theory) between wave variables and immittance (voltage, current) variables;

(ii) The use of the three-term recursions (already noted in the classical work of
Geronimus 18 ], 19 ).
This is the approach developed in the present paper and in [8] and [9]. We may note
that besides enabling a simple extension for Toeplitz to quasi-Toeplitz systems, our ap-
proach has also served to delimit the whole set of efficient Levinson and Schur algorithms.

Returning to the complexity reduction, we may remark that for us the main interest
is not so much the reduction itself, which need not be significant in actual applications
(e.g., studies of robustness and stability still need to be made), but more the reasons for
the exact factor of two of reduction and the scope for its extension beyond the Toeplitz
case. The simplicity of the two-step approach used in this paper showed that the same
reduction in complexity could also be achieved for Hermitian quasi-Toeplitz matrices.
How much further can they go? This is hard to say. However, our method of proof has
recently enabled us to show that the reduction does not extend to non-Hermitian Toeplitz
and quasi-Toeplitz matrices 21 ].

Appendix A. Derivation of general three-term recursions. It follows from
(14b) that

(A.la)

. n-kn }(A.lb) 3,,(z)
2p,,_ Tin-1

1 + nk*. )z(A. lc) 7n(Z)--2/n_ Tin-1

r/n+ k.}/n + nnk* )z +(A. ld) 6n(z)-
2pn_ ’n-1
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Consequently,

/3.+l(Z) .+1.-7,,- 7.(1-7,,+k*.+)z-(7.+-k.+l)
,,(z) 2.7. 7.- (1-7.k*. )z-(7,,-k.)

This expression is independent of z if and only if

7,,-(1-7,,k*.)
7n-kn

#

where is a constant independent of n. Therefore, { 7, are recursively determined via
the recursion

(A.2) 7,, + k* #7.-
which involves only two undetermined constants (# and 70). To be consistent with the
real case, where 7, (see, e.g., [8], [9]), we choose 7o 1, 1, which results in the
recursive relation (17). Note that we always get 17, with this choice of 70, .

Incorporating the constraint 17 into the expressions (A. simplifies them to

7.k*. )(z + ),(A.3a) a.(z)
2.

(1-7.k*.)(z-1),(A.3b) fl.(z)
2n-1

(A.3c) Tn(Z)
2n_

(-n,k*,)(,z-2).

Cn(A.3d) n( Z)
2Pn_

where

(1- 7,,k*. )( f,,z + f.* ),

+7.k*.
(i.4) " 7.k.*"
The expressions (18a), (18b) for f. + (z) and g.(z) are obtained by substituting (A.3)
into (16a), (16c) and using the following easily established identities:

1+’. 7.-
(i.5a) + 2 ,.
(A.5b) ]n.-k.[2(.+ 2)= 2(1

Appendix B. Properties of recursion coecients. The constraint (22a), which
characterizes the balanced recursion, implies that

B
n-I

7n + (-- 7n- B,+)* (,- )*

where we have used 17 and the fact that [7, 1. Therefore, (22b) follows for all n if
we assume that it holds for n -1, 0. Thus we must have

--1 * 7-1B-1 (8) * 0"
It will be convenient, though by no means necessa, to have the same initial conditions
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for all versions of the recursions. Taking this approach we conclude, via (27) and
(29), that

ffo=(1-ko)-l=(1-ko*) -I,
so that ko must be real and, consequently,

1-ko
n_- l_k 1.

This also proves that b-1 is real. In fact, (30) and (32) imply that

_l "0(1- Iko12) /ko.

In summary, we can initialize all versions of the recursions with the same set of initial
constants, viz.,

(B.la) Po ko) -1, lp_ + ko
and

(B.lb) r/_l rio, 60 ,o.
The only undetermined parameter is ko, which can take any real value except unity. In
particular, the initial conditions (21 are obtained by choosing ko -1. Other simple
choices of ko, such as ko 0, are also feasible.

Returning to establish the form (23) of the balanced recursions we denote the coef-
ficient of zf(z) in (18a) by i, and substitute into the latter (22a), (22b), viz.,

Bn+l(’qn+l--kn+l)’qn-1 //nB- Tin (nB- 1) *
(B.2) 6,= Bn(rln_kn)rln -b(1-Ik,12)n, (k)*(1-Ik.12)
so that the coefficient off.(z) in (23) is. indeed. 6z + 6*. This also implies that

(B.3) 6.* ,n ,6.
r/n-1

and, consequently, that

(a.4) n* ln
where n := I-I i"= 6 1, as in (33c). Similarly,

namely,

_16_ "On-1 ’Y]n- 2
6nXn* =(6 n_l) *=

n ]n-

(B.5) X*
]n- 2

kn.
r/n

The relations 33a), 33b) are established by a comparison ofthe leading coefficients
in the polynomials f(z), f(z), etc. Since fo(z) is the same for all versions of the
recursion and since f(z) is monic, it follows, for instance, that

n-1f(z) ]-[ 6,= klfy(z) i=0
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as well as

n-l,fy(z) i=1 i=1

which implies that

f(z)-.f(z)
The rest of the relations in (33) can be obtained in a similar manner.

In order to establish (47), we observe from (18b) that gn- f_(1)/f(1) is
given by

.-, =._ -where the second equality invokes (17a). Consequently, we obtain, using (B.2),

*’"-’(’-k’)-(1 Ikl ) 6n.(.-k.)

and, therefore,
n

(B.6) tim= 1-I 16i12( 1- Ikil2)
n i=m+l

This result does not depend on the choice of initialization.
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NESTED EPSILON DECOMPOSITIONS OF LINEAR SYSTEMS:
WEAKLY COUPLED AND OVERLAPPING BLOCKS*

M. E. SEZERf AND D. D. ;ILJAK:I:

Abstract. A graph-theoretic algorithm is proposed for decomposition of a linear system of equations into
subsystems having a prescribed size of mutual interactions. The algorithm generates a whole range of nested
decompositions with an apparent trade-offbetween levels of coupling and sizes of the subsystems. Both disjoint
and overlapping subsystems are considered. Having a linear time complexity for a selected strength of coupling,
the algorithm is suitable for conditioning large systems and achieving fast convergence rates in block-iterative
computations via parallel multiprocessor schemes.

Key words, linear systems, block partitions, weak coupling, overlapping blocks, block-iterative solutions,
bigraphs, VLSI circuits

AMS(MOS) subject classification, 65

1. Introduction. In solving large systems of linear equations, parallelism can be
introduced by a suitable preprocessing of the equations. Powerful graph-theoretic algo-
rithms are available for restructuring the equations into desirable forms for parallel com-
putations. Efficiency of these algorithms depends heavily on the degree of sparsity of the
coefficient matrix (e.g., Duff 198 a)). The objective of this paper is to present a graph-
theoretic method for decomposing dense matrices into weakly-coupled blocks, which
can then be assigned to individual processors. The proposed method allows for choice
ofthe threshold e of the interconnection strengths between the blocks, which determines
the amount and frequency of communication between the processors.

The proposed algorithm for epsilon decompositions is remarkably simple. The idea
initiated in (Sezer and ;iljak (1986)) is to associate a graph with the given matrix, dis-
connect the edges of the graph which correspond to elements ofthe matrix with absolute
values less than a prescribed threshold e, and identify the disconnected subgraphs of the
resulting graph. The subgraphs represent the blocks of the matrix which have mutual
couplings smaller than e. Ifdigraphs are used, then symmetric permutations are obtained
to sort out the rows and columns and arrive at a partitioned matrix. By applying bigraphs
we determine more general nonsymmetric permutations to get epsilon decompositions
of a given matrix. In either case, the essential part of the algorithm is enumeration of
disconnected components of a graph that has linear time complexity.

An important feature of epsilon decompositions is their nestedness. When we obtain
a decomposition of a given matrix for one value of epsilon, then for a larger value of
epsilon a decomposition is performed on the diagonal blocks only. This results in great
computational savings. A full range of epsilon decompositions can be obtained with
different epsilon values within each block providing for considerable flexibility in setting
up multiprocessor schemes for parallel computations in blockwise solutions of linear
problems.

An additional freedom is provided by including overlapping decompositions. This
type of decomposition has been introduced in the context of dynamic systems (iljak
(1979), Ikeda and ;iljak (1980), iljak 1991 )) and has been used for graph-theoretic
partitions ofmatrices into weakly coupled blocks (Arabacioglu, Sezer, and Oral 1986 )).
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The idea is to decompose a given matrix into overlapping diagonal blocks in such a way
that when the matrix is expanded into a larger space the diagonal blocks appear as
disjoint. When such a decomposition is performed using the epsilon technique, the ex-
panded matrix has diagonal blocks with mutual couplings smaller than a chosen threshold.
In this way, we can take advantage ofweak coupling in the expanded space which otherwise
would not be available in the original space. For example, we can establish stability by
diagonal dominance ofoverlapping blocks where disjoint diagonal blocks fail to be dom-
inant (Ohta and ;iljak 1985 )).

The organization of the paper is as follows. In the next section we define nested
epsilon decompositions of linear equations and describe a procedure for generating all
such decompositions using bigraphs (nonsymmetric permutations) and digraphs (sym-
metrical permutations). Utility of epsilon decompositions in block-iterative Jacobi
schemes is indicated. In 3, we introduce expansions of linear systems using binary
transformation matrices and use bigraphs to interpret the expansion process. Using a
simple example we show how a matrix can be expanded into a larger matrix having
noninteracting blocks. In 4, we outline a general procedure for overlapping epsilon
decompositions that is based upon bigraphs. Finally, in 5, a VLSI circuit is used to
illustrate how the expansion-decomposition algorithm can be applied to partition a matrix
into blocks having mutual coupling smaller than a prescribed threshold.

2. Nested epsilon decompositions. Let us consider a system of linear equations

(2.1) S’Ax= b,

where A (a) is a given nonsingular n n matrix, b is a given n vector, and x is
an n vector of unknowns. Our interest is to determine permutation matrices P and
Q, which produce an equivalent system

(2.2) ;’.? ,
where

(2.3) A PAQ, b Pb,

and the new matrix A has a block partition

(2.4) / [ eAzx A22 eA2N
/

In (2.4), e is a prescribed (fixed) number and elements of each submatrix Ao, 4: j, are
all less than one in absolute value. In other words, a choice of the threshold e induces a
partition (2.4) having N diagonal blocks, and off-diagonal blocks have elements smaller
than e. The number N is not fixed and depends on the choice of the threshold e. This
choice is guided by our desire to have weakly coupled and, at the same time, nonsingular
diagonal blocks ofA.

For convenience, we rewrite A of (2.4) in a compact form

(2.5) A Az + eAc,

with

(2.6) A diag {.,l ,A-22, ,A-NN }, C (i)"
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To come up with a procedure which produces (2.4), we associate a bigraph B
(c, ; r) with the matrix A of(2.1 such that Irl I1 n, and (xj, yi)e ifand
only if a0 4: 0, i, j 1, 2, n. Consistent with our assumption of nonsingularity of
A, the bigraph B contains a perfect matching. For a selected value of13 we form a subgraph
B (, ; g’) by removing the edges of B that correspond to those elements aii ofA
such that al < e. Let us assume, for a moment, that B has a perfect matching. Obviously
this implies that each component ofB is a bigraph, which itselfcontains a perfect match-
ing. In this case, each component B of B identifies a block Aii of the matrix Az, which
is genetically nonsingular. The permutation matrices P and Q, which relate the decom-
posed system S to the original S, are obtained automatically. By regrouping the terms
ofA, which were thrown away in forming B from B according to P and Q, we recover
the second term 13Ac in the epsilon decomposition (2.5).

If for a fixed epsilon, B does not contain a perfect matching (either some of the
components are not bigraphs, or they do not contain a perfect matching), then an obvious
remedy is to reduce epsilon and try another decomposition. This reduction process adds
edges at each step and may result in a satisfactory decomposition before the process
reaches a connected bigraph B.

Example 2.7. Let us use a simple example to illustrate the above arguments. Consider
a matrix

(2.8) A

0 0.3 0
0 0 0.2

0.2 0 0.1 0.1
0.1 0.4 0

Obviously, for 13 > 0.2, the bigraph B has x4 as an isolated node and, therefore, lacks a
perfect matching. On the other hand, for 131 0.2, the bigraph B- shown in Fig. (a)
has a perfect matching indicated by heavy lines. The two components of B’2 contain
the nodes { xl, x4; Y3, Y2 } and x2, x3; Yl, Y4 resulting in a matrix

(2.9) A
0 0
0.1 0

0 0.1
0 0

1 0.3
0.4 1

We can now increase epsilon in the lower diagonal block to t32 0.5 to get a finer
decomposition into three components, which have two values of epsilon, namely, 131
0.2 and 132 0.5.

Xl Yl

x2 Y2

x3 Y3

x4 Y4

Xl Yl

x2 Y2

x3 Y3

x4 Y4

(a) (b)

FIG. 1. Bigraphsfor Example 2.7.
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Let us now consider a situation where we choose e 0.5 to start with, and obtain
the bigraph B5 shown in Fig. (b). Although B5 has no complete matching, we can
identify a subgraph of B5, which contains a perfect matching, and remove it from the
original bigraph B. Then, we check the remainder of B for a perfect matching which, if
present, would correspond obviously to an epsilon smaller than 0.5. Referring to Fig.
(b), the subgraph we remove from B is determined by the vertices {

Y4 }. In the remaining subgraph we can get a perfect matching by using e2 0.1. The
corresponding partitioned matrix A is

1 0 0 10.2
0 1 0.3 0(2.10) A=
0.1 0.4i 1 0
0.2 0 0.1 0.1

The upper diagonal block is obtained from the removed subgraph and is itself divided
into three components identified in Fig. (b).

We note an important property of epsilon decompositions, which is that vertices
that are connected in B’ are also connected in B2 whenever e2 < el. This means that
the epsilon decompositions are inherently nested. This nestedness property is observed
not only for the entire graph, but also for each component of the graph independently,
which results in considerable computational savings; for el we decompose only the blocks
corresponding to e:, not the overall system. Furthermore, nestedness provides us with
the flexibility ofchoosing two or more different values ofepsilon in a single decomposition.
The general structure of for K values of epsilon, e > 2 > > eK, is

(2.11) A Ao + elA + e,2A2 + at- eKAK,

where Ao, A1, A2, A are all partitioned matrices with compatible blocks, A0 is
block diagonal, and any nonzero block of A appears in one and only one matrix Ak,
k 0, 1, 2, ..., K, and none of the elements of any Ak is larger than one in absolute
value..A typical situation is illustrated in Fig. 2 for two values of

We note that in solving linear equations (2.1) by a block-iterative method on parallel
processors, the nested epsilon decomposition (2.11 induces a hierarchy of processors.
For speeding up the solution process, the grouping of the processors according to the
amount ofintercommunication should be compatible with the decomposition in (2.11 ).
In this way, the effect of the term eA is computed more frequently than the effect of
the term

To illustrate this idea, let us consider the case of Fig. 2, which is a decomposition:

(2.12) A=Ao+elA + ezA2,

A two-level block-iterative procedure for solution of (2.2) proceeds as follows:

(2.13) Fast Iterations:

(2.14) Slow Iterations: A-o)?(0,k+ 1)= b--($1l -]- 22)) (’k2),

where the superscripts kl and k2 refer to the fast and slow iteration steps, respectively,
)2 o,) is the limit of the fast iterations at the kzth slow iteration step, and

(2.15) bk2)=
b, k2=0,

D_ e2A-2x(O,k2-1), k2>0.

Since (A0 + eAl is block diagonal, the fast iterations are decoupled. This means that
only the processors that are assigned to the individual blocks of (.0 + e) should
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k+l

FIG. 2. Nested epsilon decompositions.

exchange the corresponding parts of2 (kl’k2) during fast iterations. Communication of all
processors is required only once at every slow iteration step. For a sufficiently small
slow iterations converge in few steps resulting in communication overhead, which is
mainly due to the local exchanges; it should be far less than in the single-level block-
iterative scheme.

We also note that a multilevel scheme involving a hierarchy of processors can take
advantage of sparsity of A. If A is sparse, then so are A0, A1, and A2, resulting in a
reduction of both the communication overhead and the number of operations involved
in the backward-forward substitutions at every iteration step.

An important special case of epsilon decompositions takes place when we use sym-
metric permutations, that is, Q pT in (2.3). The ordering of the columns is the same
as the ordering of the rows of A, and we can associate a digraph D (&c; q) with the
matrix A of S in the standard way (Harary (1969)) to achieve a decomposition. An
important advantage in this case is that we do not need to be concerned with obtaining
a perfect matching in the components ofB, nor with the components ofB" being bigraphs
themselves. However, the diagonal blocks ././- of should be checked for genetic nonsin-
gularity using known algorithms (Duff (198 b)), because all one gets from D" is con-
nectivity of its components.

An essential feature of epsilon decompositions is that they are conducive to con-
vergence of iterative procedures for solving linear equations. For example, if we use the
block Jacobi method (e.g., Hageman and Young 1981 )), the iteration matrix J (Jj)
corresponding to A of (2.4) has the blocks

(2.16) jij {0,.
-1

i=J’
-eA ii Agj, 4=j.

The iterative process is convergent if the matrix W (wij), with

(2.17) wij
1, i=j,

-1A i4=j-e[IAii o

is an M-matrix (e.g., Robert 1969 )). The smaller the value of e, the better is the chance
for the matrix W to be an M-matrix, and the faster is the convergence of the iterative
process. These facts follow readily from a stability analysis of the iterative process via
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vector Lyapunov functions (Sezer and giljak (1988), Kaszkurewicz, Bhaya, and giljak
1989 ), iljak 1991 )).

3. Expansions of linear equations. A considerable increase in flexibility ofthe epsilon
decomposition can be achieved by allowing diagonal blocks of the coefficient matrix to
overlap. By expanding the matrix, the overlapping blocks become disjoint with coupling
smaller than the threshold value ofepsilon. To illustrate this idea, let us consider a simple
example.

Example 3.1. Let A be given as

(3.2)

where (R) denotes an element with magnitude smaller than a given e and * an element
larger than e. The corresponding bigraph B is connected and A has no disjoint e decom-
position. It has, however, an overlapping e decomposition as indicated in (3.2). By re-
peating the second row and splitting the second column, we obtain an expanded matrix

(3.3)

0 (R)

which has an e decomposition where the overlapping blocks ofA appear as disjoint. The
expansion process and its justification are explained next.

With the system S of (2.1), we associate another system of equations

(3.4)

where J (dij) is an matrix, and b and are ri vectors. Our crucial assumption
is that the order of g is larger than the order of S, that is, g > n.

We denote the solution sets of S and g as and ,, and state the following
definition.

DEFINITION 3.5. A system is said to be a left expansion (right expansion) of the
system S if there exists an ri n matrix V (n matrix U) with full rank such that
re___ (u =_ ).

A sufficient condition for to be an expansion ofS is given by the following theorem.
THEOREM 3.6. A system is a left expansion of S ifthere exist n matrices V

and I7" with full column rank such that

(3.7) 17= VA b Vb

and is a right expansion of S ifthere exist n matrices U and ( such that

(3.8) (JJ A U, 8D b.

Proof. Suppose (3.7) holds and let 9 be a solution of S. Then, A9 b VA9
Vb .I79 b, so that 179 is a solution of g and, therefore, I?

___ . The second part
of the theorem is proved likewise. [3

At this point we should mention that expansions of linear equations have been
considered by Calvet and Titli (1989) in the context of linear quadratic control. Their
expansion procedure is based upon the expansion scheme of Ikeda and iljak (1980),
which is devised for linear dynamic systems. This fact severely restricts the procedure to
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symmetric partitioning ofthe coefficient matrix; if the kth equation is repeated, then the
kth unknown has to be split into two parts as well. We also note that the condition of
Proposition 2.1 in the paper by Calvet and Titli (1989) is not necessary and sufficient,
but only sufficient.

Of special interest in this paper are left expansions which are obtained using binary
matrices V and I7, because such expansions have useful graph-theoretic interpretations.
We do not consider fight expansions of the same type since, by duality, their properties
can be derived from those of left expansions.

In generating appropriate left expansions P} of S, we make use of the bigraph B
(e, ; ) associated with the matrix A. For this purpose, we need the definition of a
left expansion ITI of B, which we formulate using the following.

PROCEDURE 3.9. Let M be a one-to-one correspondence between the nodes e and
of B with M(x;) Yqi; i, qi 1, 2, n. Let each xi be associated with an integer

k; >_- such that ki > for at least one i. Let ITI (, 0; ), where , @, and are
defined as follows:

~(2) (ki)’’-" U {.1) Xi Xi

(3.10)
i=

qi qi
i=1

.) z)) 2, ki,For each (x, yu) e g, contains exactly ki edges x q,

Using the above procedure, we obtain from B by simply repeating nodes and
edges of B. Which nodes and edges are repeated is uniquely determined by our choice
of M, ki, and Pl. Once we obtain a from B using Procedure 3.9, we can produce the
corresponding left expansion g. For this we need Theorem 3.11.

THEOREM 3.11. Let be obtainedfrom B using Procedure 3.9. Then there exists
a matrix corresponding to , which is the matrix ofa le expansion of S.

Proof. The proof is by construction. Let (i) which is an n X n block matrix.
The block qiJ (J) is a ki kj matrix with elements defined as

J
aqj, s Pr,

3. 2
0 otheise.

In other words, rows and columns ofA, are associated with the veaices {p),
() (k)and x x }, respectively, and the element in the position (r, s) is nonzero and

s) r)) NOW, let P be the matrix obtained from the n nis aqd if and only if (x Yqi
identity matrix I, by repeating the ith row ki times, and let V be obtained from I, by
repeating the qith row k times. Obviously, VA, and the proof follows upon setting
b= Vb.

We note that Definition 3.5 does not presume existence or uniqueness of solutions
of S and g. We describe here a class of expansions that preserve genetic nonsingulafity
ofA.

THEOREM 3.13. Let M in Procedure 3.9 be a pe(ect matching in B. Then, for any
choice ofthe integers k, k2, k,, there exists a corresponding left expansion of B
which also contains a pe(ect matching.

(pt) (l))Proof. By assumption (xi, Yqi) g, 1, 2, n. In defining edges (xi
of, choose p 1, 1, 2, ki. Then, obviously, defined as ()) t)is a
perfect matching in .
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Xl Yl

x2 Y2

x3 y3 3(2) 3(1)

(a) (b)

FIG. 3. Bigraphs for Example 3.14.

Example 3.14. To illustrate the concept of expansions and their use in decompo-
sitions of linear equations, let us consider a matrix

ail 0 al3]
(3.15) A 0 0 a).3/

0 a3 a3.1

The corresponding bigraph B is shown in Fig. 3 (a), where a (unique) perfect matching
is indicated by heavy lines. Since B is connected, A cannot be permuted into a block-
diagonal matrix. An expansion 1 of B which has two disjoint components can easily be
constructed. For this, we follow Procedure 3.9, where we choose M to be the perfect
matching indicated in Fig. 3 (a), and kl k2 1, k3 2. The resulting bigraph 1 in Fig.
3 (b) has two components each containing a perfect matching, as indicated. The expanded
matrix and the expansion matrices lY and V are obtained from 1 as

(3.16)

all a13’,, 00 a231

0 ’1a32 a3
0 a2

100

9= 001 V=
0 1 0
0 0 1

1 0 0
0 1 0
0 0 1
010

It is interesting to note that if we replace the zeros in A of (3.15) by small numbers of
order e, so that A becomes afull matrix, the expanded matrix would retain the epsilon
decomposition along the same lines as in (3.16). We next consider how to perform an
expanded epsilon decomposition on a given matrix.

4. Overlapping epsilon decomposition. In obtaining overlapping decompositions
of a matrix A, we require that all diagonal blocks ii of be smaller than A, and that
no ii is further expandable into two or more diagonal blocks. The reason for the first
requirement is obvious. The second requirement guarantees that the decomposition is
maximal.

To simplify the decomposition procedure, we first provide the following result.
THEOREM 4.1. Let M in Procedure 3.9 be a perfect matching and consider a left

expansion as in Theorem 3.13. Let B contain a simple alternating cycle. Ifa component
of contains a replica ofany one ofthe vertices appearing in the cycle, then it contains
at least one replica ofeach ofthe other vertices in the cycle.
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Proof. Without loss of generality, assume that M(x;) Yi and that B has a cycle
(Xl, Yl ), (x2, Yl ), (x2, Y2), (Xp, yp), (Xl, yp)}. This can always be achieved by a

bipartite labeling of the vertices of B. Let B be the subgraph of B which consists only
of the vertices and the edges that appear in the cycle, and consider an expansion [Is of
B. Any component of 1 which includes a replica of x, should also include a replica
of Yl because (xl, Yl e N. On the other hand, since each replica of y is connected to
a replica ofx2 (by construction of 1), the same component includes a replica ofx2 and,
therefore, a replica of Y2. Proceeding in this way, we observe that any component of ls,
which contains a replica of Xl, also contains at least one replica of each xi and Yi, 1,
2, p. The proof then follows from the fact that addition of vertices and edges to
complete Bs to B only results in larger components in 1.

Theorem 4.1 simply states that cycles ofB cannot be split in the process ofexpansion;
they should be treated as a whole. This suggests that the cycles can be condensed to form
an acyclic bigraph B*, which can be used as a basis for expansion. The condensation
process consists of collapsing the x and y nodes of each cycle into a single pair of super-
nodes. The lines from the x nodes of one cycle to y nodes of another are similarly
collapsed into a single superline between the corresponding supernodes.

PROCEDURE 4.2.
Identify and condense successively the cycles of B to form the condensation
B* (c,, ,; *) ofB.

(2) Identify the unique perfect matching M* of B*, and let M*(x/*) Yq*i, 1,
2, n*, n*

3 For some unflagged x* (first time at this step, all x/-* are unflagged), construct
the sets 5e/.* and /.* as follows:
(a) x’

_
[’[, yq*.

_
o-if?.

(b) For all xj.* e /.* add y. to i*.
(c) For all y* e [ add all x; such that (x*,

(4) If ,.* e., then stop. No suitable left expansion of B * exists. Otherwise, flag
all x* e o/... If xi* are not all flagged then go to step 3.

(5) Eliminate all c [ and their corresponding [, such that [ c c* for some
j 1, 2, n*. The remaining sets have the property that

(6) For each x*, let kj be the number of remaining sets /.* which include x,
j 1, 2, n *. Expand B * into I * using Procedure 3.9 under the conditions
of Theorem 3.11.

(7) Decondense 1 *, and form 1.
It is easy to see how Procedure 4.2 can be used to obtain an overlapping epsilon

decomposition of a given matrix A. All one has to do is select e, form B", and expand
B to get 11. In generating 1, Procedure 4.2 provides the expansion matrices 17" and V,
which are then used to get the expanded matrix A having the epsilon decomposition:

(4.3) J=Jz)+eJc.
Here, zz) diag { Zl, z22, ANN } where the blocks zi,. correspond to the components
of 1, and the elements ofc have magnitudes smaller than one. The disjoint decom-
position (4.3) of A is what is meant by an overlapping epsilon decomposition of the
original matrix A.

It is understood that Procedure 4.2 requires B to have a perfect matching, that is,
the matrix A should be generically nonsingular after the removal of epsilon elements.
Then, generic nonsingularity ofz) and, therefore, of, is automatic.
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Xl

X2

X3

X4

X5

X6
(a)

Yl

Y2

Y3

Y4

Y5

Y6

FIG. 4. Bigraphsfor Example 4.4.

(b)

2(1)

Example 4.4. Let us consider a matrix

2 3 4 5 6

(4.5) A

(R) (R) (R)
(R) (R) (R) (R)

(R) (R) (R) ,
(R) (R) (R) (R)

(R) (R) (R)

(R) , (R)

2
3
4’
5
6

where (R) denotes an element with magnitude smaller than a given e, and an element
larger than e. The bigraph B" is given in Fig. 4(a). We apply Procedure 4.2 to B" as
follows:

Since B is acyclic, we set B* B and drop superscript ,.
(2) The unique perfect matching M is indicated by heavy lines in Fig. 4(a).
(3) er, {x,},
(4) Flag xl. Not all xi are flagged.
(3) = {Xz, X3, Xs, Xt}, z {Y6, Yl,Y5, Y2}.
(4) Flag x, x3, and xs. Not all xi are flagged.
(3) e4= (Xa, Xs, xl}, 0-to/a= (Y3, Y, Y:}.
(4) Flag x4. Not all xi are flagged.
(3) ’6 { X6, X3, Xl }, 06 { Y4, Yl, Y2 }.
(4) Flag x6. All X are flagged.
(5) Discard t.
(6) k 3, k2 k4 k6 1, k3 k 2. Expanded bigraph I is shown in Fig.

4(b).
(7) Since no condensations took place, B is the final product. It has three com-

ponents, each containing a perfect matching.
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Using the expanded bigraph 1, we form the expanded matrix

(4.6)

4 5 1 3 6

(R) (R):

(R) (R)
,

2
6
1
5
2
3
5
2
1
4

Finally, we note that no diagonal block of is further expandable.

5. VLSI circuit simulation. Efficient computer simulation of VLSI circuits con-
taining a large number of dynamic and nonlinear components is a challenging problem
with both conceptual and numerical difficulties. Due to a very large number of state
variables (typically, over 10,000), standard circuit simulators like SPICE (Nagel 1975 ))
may require excessive computer time. Recently, a new simulation method based on
model reduction using moment matching has been proposed by Pillage (1989). The
method requires a solution of a resistive d.c. network for every piecewise linear region
ofthe nonlinear components, and for as many times as there are moments to be matched.
Since a typical VLSI circuit consists of several subnetworks, which are interconnected
by components having very small or very large values, they are ideal candidates for
application of (overlapping) epsilon decompositions.

To illustrate the application of epsilon decomposition to network equations, let us
consider the simple network of Fig. 5, where N1 and N2 are two subnetworks driven by
a r-circuit. Suppose that the network elements are normalized so that most ofthem have
values close to unity except Rl, R2, and G, which are ofthe order e. The network equation
can be written (e.g., Chua, Desoer, and Kuh (1987)) for N1 and N2 as follows:

Terminal equations: MVt+ NtI O,

(5.1) Circuit equations: FVt +fv gv

Cut-set equations: Hth+hi=O;

+ 1

*
1 G

,,_. .--

+

R1

i2

V2 V

FIG. 5. Overlapping decomposition.
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1, 2, and for the interconnecting r-circuit as

Terminal equations:

(5.2)

5.3 Circuit equation:

(5.4)
Cut-set equations:

v -Ri =0,

1)2 R2i2 =0,

ia- Gva O;

I)G I) - )2 O;

i +i + ia=O,

i2+i-i=O.
If the networks N1 and N2 are irreducible and contain n and n2 components, re-

spectively, then (5.1) and (5.2) form a set of 2(nl + n2) + 8 equations, where the
coefficient matrix is irreducible. However, keeping in mind that R1, R2, and G are ofthe
order ofe, the graph-theoretic procedure of 5 gives an overlapping epsilon decomposition
indicated in Fig. 5, which results in an expanded matrix:

(5.5) A

V1
Mx
Fx

11 i vl il ic, vl Vc, v: iv i: 02 l’ h V2

H1 hi
1

1 1 1
1

1
1 1 -1

1
G

h2 92
Fz

N: Mz

The matrix consists of three square blocks of sizes 2n + 4, 3, and 2n2 + 4.
To compare the efficiency of a block-iterative method based on an overlapping

decomposition such as 5.5 and that ofa direct method, let us assume that for a network
containing n components, LU-decomposition has a time bound k,n ’, while backward-
forward substitutions take additional ksn time. Ifthe network consists ofKweakly coupled
subnetworks, each containing n components, then a direct method requires k,(Kn) d +
ks(Kn) time. When a block-iterative method with parallel processor is used, which con-
verges in N steps, it requires k,n + Nksn time for completion. It has been reported
(Atalar (1989)) that for a typical VLSI circuit, d 1.5 and s 1.2 (due to sparsity of
the network equations). Thus, for K 100, up to N 1001.2 250 iterations are due
to substitutions alone. Because of sparsity of the off-diagonal blocks of in (5.5), the
communication overhead is negligible. Ife is sufficiently small, few (typically 10) iterations
are enough for convergence. As a result, even if a dominating factor is the operation
count involved in substitutions, a block iterative solution based on an overlapping de-
composition proves to be considerably more efficient than a direct solution procedure.
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6. Conclusions. We have presented a decomposition algorithm that can be used to
generate a whole range of nested partitions of a given matrix. The most attractive property
of the algorithm is its simplicity in offering a trade-off between size of diagonal blocks
and level oftheir mutual coupling. The decomposition scheme is suitable for partitioning
of linear equations for block-iterative computations on parallel-pipeline multiprocessor
architectures. In this application, assignments of subsystems having appropriate size and
mutual coupling to individual processors is essential for a fast convergence ofthe solution
process. Other applications of the proposed decomposition scheme are considered in
partitioning and clustering of models in fields as diverse as economics (Simon and Ando
1961 )) and computer systems (Courtois (1977)), aggregation ofMarkov chains (Kemeny
and Snell (1960)), and decentralized control and estimation (Sezer and iljak (1986),
iljak (1991)).
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A VARIANT OF THE GOHBERG-SEMENCUL FORMULA
INVOLVING CIRCULANT MATRICES*

GREGORY AMMAR? AND PAUL GADER:[:

Abstract. The Gohberg-Semencul formula expresses the inverse of a Toeplitz matrix as the difference of
products oflower triangular and upper triangular Toeplitz matrices. In this paper the idea ofcyclic displacement
structure is used to show that the upper triangular matrices in this formula can be replaced by circulant matrices.
The resulting computational savings afforded by this modified formula is discussed.

Key words. Toeplitz matrix, circulant matrix, Gohberg-Semencul formula, displacement, cyclic displace-
ment, fast Fourier transform
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rt--I1. Introduction. Let M [#j-k]j,k=0 be a real symmetric positive-definite Toeplitz
matrix of order n. There are several well-known O(n 2) algorithms for solving the linear
system of equations Mx b, and more recently, several O(n log2 n) algorithms have
been developed. See, for example, 16 ], 12 ], ], 9 ], ], and 2 and the references
contained therein. Algorithms from both of these classes often rely, either implicitly or
explicitly, on the Gohberg-Semencul formula 8 ], which provides a decomposition of
M-l into the sum ofproducts oflower triangular and upper triangular Toeplitz matrices.
Although we will consider M to be a real positive-definite Toeplitz matrix, formulas
presented by Gohberg and Semencul apply to the inverse of any invertible Toeplitz
matrix.

Given x n, let L(x) denote the lower triangular Toeplitz matrix whose first
column is x. Let e0, e, en_ be the columns of the identity matrix I of order n,
and let Z, L(el be the downshifi matrix of order n. Since the Toeplitz matrix M is
positive definite, the last column of M-1 can be written as M-1 e_ r/6_ l, where
t3,_ > 0 and r [pj]j’_--o with p,_ 1. The Gohberg-Semencul formula is then
given by

m-l=L(rl)L(rl) T L(ro)L(ro) ’,(1) n-1
where r0 Z,r and rl [p,-j.- i]3 -l See, for example, [7] and [10].

Many algorithms for the solution of a Toeplitz system can be considered as a two-
phase procedure:

Phase 1: The computation of r and 6n_ 1.

Phase 2: The computation of M-lb using the Gohberg-Semencul formula ).
Algorithms for Phase include the Levinson-Durbin algorithm (see, e.g., 9]), the split
Levinson algorithm 3 ], and the generalized Schur algorithm ], 2 ]. If n is sufficiently
large, Phase 2 can be efficiently implemented in O(n log n) operations using fast Fourier
transform techniques [11].

We note in passing that the components of r are the coefficients ofthe monic Szeg6
polynomial x,_ l(h) Y]yo pU of degree n determined by M, and 6,_ is the
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norm of Xn-1 in the inner product determined by M. Furthermore, the Gohberg-Se-
mencul formula is a manifestation of the Christoffel-Darboux formula for Szeg6 poly-
nomials. See, for example, [13] and [1] for more details.

The notion ofdisplacement structure underlies many techniques for solving Toeplitz
systems of equations, and the Gohberg-Semencul formula fits naturally into this frame-
work. Moreover, displacement structure can be used to extend algorithms for Toeplitz
matrices to other classes ofmatrices 12 ], 5 ]. In fact, every square matrix can be written
as the sum of products of upper triangular and lower triangular Toeplitz matrices. Fur-
thermore, the number of terms in this sum is small if the matrix is "close" to a Toeplitz
matrix in the sense that its displacement rank is small. Matrices of small displacement
rank can then be treated using extended versions of algorithms for Toeplitz matrices.

The notion of displacement structure has been generalized to include circulant ma-
trices and other group matrices in [6]. In 2 we show how the circulant displacement
representation of the inverse of a Toeplitz matrix can be used to derive the following
factorization of the inverse of the positive definite Toeplitz matrix M.

PROPOSITION 1.

(2) 6,,_ iM-1= L(rl)C(rl)T-L(ro)C(rl),

where C( r) denotes the circulant matrix whosefirst column is r.
In 3 we discuss the computational savings resulting from the use of this formula.

We obtain a computational savings ofmore than 35 percent over the Gohberg-Semencul
formula in the second phase of a Toeplitz solver when n is a power of two.

Toeplitz inversion formulas involving circulant matrices have also been presented
by Lerer and Tismenetsky [14].

2. A circulant Gohberg-Semencul formula. In the following, all matrices are as-
sumed to be real and n n. If the displacement of a square matrix A is given by the sum
of a outer products,

A ZAZ7= , XmYT
m=l

where Xm, Ym E n, then

A , L(xm)Z(ym) T.
m=l

This is the displacement representation ofA developed in [5] and [12]. The usefulness
of this representation for Toeplitz matrices stems from the fact that a Toeplitz matrix
and its inverse have displacement rank a =< 2. In particular, the Gohberg-Semencul
formula follows from the fact that

M- ZM-IZ T rr-- ror).n-
The circulant analogue of displacement structure is based on replacing the downshift

matrix Z above with the cyclic downshifi matrix E C(e ). In particular, we will need
the following result from 6 ].

PROPOSITION 2. Ifthe cyclic displacement ofA is given as the sum

(3) A-EAE7= XmyT

m=l
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then

(4) A=C+ L(xm)C(ym) r,
m=l

where C1 is the circulant matrix with the same last row as that ofA.
Given (3) and (4), the derivation of the corresponding analogue of the Gohberg-

Semencul formula is straightforward. Let M be a real positive-definite Toeplitz matrix
M-l Then the cyclic displacement ofA is given byand A 6n-1

A -EAEr= A ZAZ- eor- roeg- eoeg

rlrrl rorg-- eo(eo + ro)- roeg
since E Z + T

C0en and ZAen_ ro. Proposition 2 then yields

A L( rl )C(rl) T_ L(ro)C(ro) T__ C(rl) L(ro) + C(rl)

because C(eo + to) r C( rl and L(eo) C(eo) I. Hence,

A L(rl)C(rl)r-L(ro)(C(ro)+I) r

(5)
L( r C( r T_ L(ro) C( r ),

which is the desired formula.

3. Computational implications. We now show how the analogue of the Gohberg-
Semencul formula derived in 2 leads to a more efficient way to calculate M-b. The
increased computational efficiency is due to the fact that multiplication by a circulant
matrix is roughly twice as fast as multiplication by a triangular Toeplitz matrix of the
same size. In fact, the efficient multiplication ofa Toeplitz matrix and a vector is achieved
by embedding the Toeplitz matrix in a circulant matrix of twice the size.

We first recall some fundamental facts regarding fast Fourier transforms and efficient
circulant-vector multiplication. Let w, e2/" denote the principal nth root of unity.
The discrete Fourier transform (DFT) of the n-vector x is defined by y F,,x, where
nF, [wjk n-1]j,k=0, and the inverse discrete Fourier transform (IDFT) of y is x =Wny,
where W F (.oJk] F/Fn" The computation ofFx and Wx can be performed
in O(n log n) arithmetic operations using any one of many well-known techniques, col-
lectively called fast Fourier transforms (FFTs). Let r(n) denote the amount of compu-
tation required to perform one real FFT of order n.

Recall that the circulant-vector product z C(x)y is equal to the cyclic convolution
of the vectors x and y, which we denote by x,y. Moreover, z x,y if and only if
Fz (Fnx).(Fy), where x.y denotes the componentwise product of x and y. Con-
sequently, z W,((F,x).(Fny)), so z can be computed in 3r(n) + O(n) arithmetic
operations.

Let us now write the Gohberg-Semencul formula as

fin- M-I=A TT1 ToT,

where T( L(rl) and To L(ro). Let u Tgb, v Tlb, r Tou, and s TrlV. Then
Ab s- r. Note that

T1 To eo [rg TT1 o
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are circulant matrices of order 2n. The following convolution formulas can therefore be
used to calculate r and s. The symbols denote n-vectors that are irrelevant in
the computation:

u b

x eo 0

X ro b

[]:=[0],[0].rlv

In terms of FFTs, the computations can be performed as follows:

t:= F2n
0

P F2n
ro

q:= Fzn
eo rl

u ].= Wzn(q’t),
X

z’=F2n
0

]’= W2n(p’t),

W f2n

Is- r].= W2n(q.w-p’z).
X

Thus, x M-lb can be computed in 8r(2n) + O(n) computations. This is the imple-
mentation described in [11]. However, one of these FFTs can be eliminated using the
observation that p 4. This follows from the fact that

and FnKn Fn, where K, [e0, en-, e] denotes the reflection matrix of order
n. Thus, the implementation of the Gohberg-Semencul formula requires at most
7r(2n) + O(n) 14r(n) + O(n) arithmetic operations.

Let us now write (2) as

M-1 =A T(C1 ToCon-
where T1 and T0 are as above, C0 C(rl and C C C(K, rl). Define u Cob,
v Cb, r Tou, and s Tv. Then the following convolution formulas can be used
to calculate r and s:

u’=rl,b, v’=(Knrl)*b,

u s

Note that Fn(Knrl Fnr, so in terms of FFTs, we have

Fnb, p’= Fnr, u := Wn(p" t),

(6) q’=F z’=F w’=&
rl 0

[s--rl’=W2n(q’w--’Z)’x

v’= W(. t),
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These computations require 4r(n) + 4r(2n) + O(n) 12r(n) + O(n). However, we
can reduce this operation count further as follows.

Define the permutation matrix P2n by Pfny [!], where y [nzlg -’ and y’
[n2j+ 1]g- are the even- and odd-indexed parts of y [j]g’-i, respectively. Let y
F2n[xx,], where x0 and x are n-vectors. Then it is easy to see that

Y’l F,D -F,D’ X F,D’(Xo Xl)

where D diag [ok]-. Thus,

[F,Dx]’
x -F,Dx

It is shown in 2 ], and easily verified, that F,Dx, where x e Nn, can be computed using
one complex FFT of order n/ 2, which requires r(n) + O(n) operations.

These formulas allow us to reduce the computation of the FFTs in display (6) as
follows:

1. The jth component of p is the 2jth component of q, so only q needs to be
calculated, saving r(n).

2. z can be obtained from p. t and u using r(n) + O(n) operations, saving roughly
r(n) operations. The same observation holds for the computation of w from fi-t and u.

Consequently, the computation ofx M-b using our modification ofthe Gohberg-
Semencul formula requires at most 5r(n) + 2r(2n) + O(n) or 9r(n) + O(n) compu-
tations. This represents a computational savings of over the implementation of the
Gohberg-Semencul formula as described above, neglecting the O(n) terms.

Numerical experiments show that a savings of (about 36 percent) in CPU time
is indeed achieved. The results are summarized in Table 1, which shows average CPU
times for the implementations ofthe Gohberg-Semencul formula (GS) and our circulant
variant of the Gohberg-Semencul formula (CGS), as described above. Also displayed
are the ratios of the average time used by CGS to those of GS. The experiments were
performed on the VAX 11/750 at Northern Illinois University.

Our modified formula (2) can be used to achieve over 35 percent computational
savings in the second phase of any two-phase Toeplitz solver. Of course, since efficient

TABLE
Timing comparison (CPU seconds).

Gohberg-Semencul (GS) versus circulant variant (CGS).

n CGS GS CGS/GS

64 0.130 0.202 0.646
128 0.265 0.414 0.639
256 0.558 0.877 0.636
512 1.184 1.855 0.638
1024 2.499 3.908 0.639
2048 5.284 8.256 0.640
4096 11.167 17.394 0.642
8192 23.695 36.825 0.643
16384 50.858 79.182 0.642
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TABLE 2
Operation counts.

Algorithm

a. The Levinson-Durbin algorithm

lb. The split Levinson algorithm
c. The generalized Schur algorithm

2a. The Gohberg-Semencul formula (1)
2b. The circulant Gohberg-Semencul formula (2)

Number of real
arithmetic operations

2n

n
8n log2 n 2n log2 n

28n log2 n
18n log2 n

algorithms for Phase require a higher-order amount of computation than O(n log n),
the amount of computation for Phase 2 relative to Phase will decrease as n increases.
Closer inspection shows that this ratio is not insignificant for moderately sized n. More-
over, the computational work of Phase 2 relative to that of Phase decreases slowly as
n increases.

In Table 2 we list the number of real arithmetic operations (multiplications and
additions) required by the algorithms for Phase mentioned in the Introduction, as well
as operation counts for the implementations of formulas and (2) described above.
We have neglected O(n) terms in these operation counts. For Algorithms a, 2a, and
2b, we have assumed that n 2", and that the Fourier transforms are performed using
split-radix FFT algorithms [4], [15], which require r(n) 2n log2 n + O(n) real arith-
metic operations.

From Table 2 it is easy to see that the amount ofcomputation for Phase 2 compared
with Phase is significant for moderately sized n. For example, if n 128 the Gohberg-
Semencul formula requires 86 percent of the work required by the Levinson-Durbin
algorithm, and 102 percent of that of the split Levinson algorithm. If n 2,048 the
Gohberg-Semencul formula requires over 32 percent of the computation of the gener-
alized Schur algorithm, and the formula (2) will result in about a 10 percent overall
savings in the solution ofMx b. Even for n 224, the 35 percent savings in Phase 2
results in a 5 percent overall savings.

The value ofour more efficient formula increases dramatically in situations in which

M-b is to be obtained for several different vectors b. One instance of this situation is
in the iterative improvement of solutions. Another instance in which several systems of
equations with the same Toeplitz coefficient matrix arises is in the calculation of multistep
predictors in time series analysis. (The Yule-Walker equations are used to calculate
single-step predictors; multistep predictors are calculated using the same matrix and
different fight-hand sides.) In these cases the improved efficiency in the computations in
Phase 2 will be of great benefit.
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PROPERTIES OF THE INVERSE OF THE GAUSSIAN MATRIX*

M. J. C. GOVERn-

Abstract. The Gaussian matrix is a symmetric Toeplitz matrix and in addition the elements in its first
row form a pattern. This enables a specific formula to be obtained, in the nonsingular case, for the elements in
the first row of the inverse. Recurrence formulae are then obtained which enable this inverse to be obtained in
n flops, as against 2n flops, for a general symmetric Toeplitz matrix using the Trench algorithm.

Key words. Gaussian matrix, Toeplitz matrix, inverse
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1. Introduction. It is well known that in applied problems involving matrices, the
elements of these matrices often form patterns and many of these special matrices are
named after mathematicians ofthe past such as Toeplitz, Hilbert, Markov, Gauss, Hankel,
and Vandermonde. All the above types of matrices occur in statistical applications and
are, in fact, related as follows:

(i) IfM and G are Markovian and Gaussian matrices, respectively, then they are
special cases of an nth order symmetric Toeplitz matrix T, where

T]i+ 1,j+ T]ij, i,j 1,2, ,n- 1.

This matrix Tis defined by its first row [tl, tin] and M and G have first rows

(1.1) [1,a,...,an-l] and [1,a l,...,an-1)2],
respectively.

The interest in the Markovian and Gaussian matrices in statistics is because M is
derived from the covariance function e-Ixl and G is derived from the Gaussian covariance
function e-x2/2

(ii) A Hankel matrix L with its rows reversed becomes a Toeplitz matrix. Specif-
ically, if the reverse unit matrix is J [6i,n-j+], where 6ik is the Kronecker delta, then
LJ T.

The Hilbert matrix H [hij] is a special case of a Hankel matrix and is defined by

(1.2) hi=i+j- 1’
i,j 1,2, ,n.

2 -1(iii) If thejth column ofthe Vandermonde matrix Vis 1, aj., a, a’ ], then
V VT is a Hankel matrix.
Properties of most of the above-named matrices are well known and can be found in
various papers and books such as ], 2 ], 6 ], 7 ], and 10 ]. For statistical applications,
5 ], 8 ], 9 ], and 1] will be found useful.

Because ofthe special pattern ofthe generating elements ofthe Hilbert, Markovian,
and Gaussian matrices, it might be expected that special efficient numerical techniques
could be developed for them and that the elements of their inverses in the nonsingular
case could be found explicitly. For the Hilbert and Markovian matrices some results are
well known.
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The Markovian matrix M defined in 1.1 has a tridiagonal inverse, M-l [/ij],
given by

i=j= 1,n,
-a2’

2l+a
2, i=j=2,3, ,n-l,

1-a(1.3) }d,ij--
a

li-jl 1,
-a2’

0 otherwise.

Thus its inverse is found in O( flops and the solution of Mx b can be found in
O(n) flops.

The elements of the inverse of the Hilbert matrix H, defined by (1.2), can also be
given explicitly as

(-1)i+J(n+ i- )!(n+j- )t
(1.4) [H-]o=[(i_l)!(j_l)!]2(n_i)!(n_j)!(i+j_l), i,j 1,2, ,n.

It is well known [12] that H is very ill conditioned so that solving Hx b accurately is
difficult.

The above results can all be found in 4] and [9], where it is stated that there do
not seem to be explicit formulae for the elements of the inverse of a Gaussian matrix.

Formulae equivalent to the results of Theorems 2.1 and 2.4 can be found in 3 for
the case of a positive-definite Gaussian matrix, although this matrix is not referred to by
name. The derivations in this paper, however, are different and use only very elemen-
tary ideas.

The purpose of this paper is to obtain, in an elementary way, some results on the
less well known Gaussian matrix. We begin by obtaining its determinant, from which
we can obtain criteria for nonsingularity. We then give an explicit formula for the elements
in the first row of the inverse of a nonsingular Gaussian matrix. However, as far as
efficient calculation is concerned, this form is not used. Some recurrence formulae are
obtained, both for this first row and for the interior elements that enable the inverse to
be found in approximately 1/2 n 2 flops, as opposed to the usual 2n 2 flops required for the
inverse ofa general symmetric Toeplitz matrix of order n using the Trench method 13 ].

2. Gaussian matrices. We consider the Gaussian matrix G based on the Gaussian
covariance function e-x/2. Thus it is a symmetric Toeplitz matrix with the first row

(2.1) [1,a,a4,a 9, ,a ’- )].
We can easily see that a 0 gives G, I and a + gives two real symmetric Toeplitz
matrices of rank one. However, the first theorem in this section will show that there are
other values of a for which G, is singular.

After finding a recurrence relationship between the minors of G, and G,_ , we
obtain an explicit form for these minors and hence for the elements in the first row
ofG

This explicit form is not particularly suitable for numerical calculation and hence
two recurrence formulae are obtained that give an efficient numerical method for finding
the first row ofG in O(n) flops, as opposed to O(n2) flops for a general Toeplitz matrix
inverse.
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Finally, a recurrence formula is derived so that the internal elements ofG can be
found in approximately 1/2 n 2 flops. The complete inverse is thus also found in approxi-
mately 1/2 n 2 flops compared with 2n 2 flops for a general symmetric Toeplitz matrix.

We begin by finding an explicit formula for the determinant of
THEOREM 2.1. The determinant ofGn oforder n is

n-1

(2.2) IGI ]-I (1--ak)-k.
k=l

Proof. If

a a4 a(n- 1)2

a a a( _)2

a4 a a (n- 3)2

a(n" 1)2 (n" 2) (n" 3)a a

then carrying out the column operations

column i- a2i- column (i- ), n,n- 1, ,2

on G,, gives

a(n" l)

n-I

0

a(1-a4)

a(n- 2( a2n- 2)

(1--aZk)lG.-, I.
k=l

a( --a2) a(n- 2)2( -a2)
a4) a(n- 3)2( a4)

atn-3)2(l’_a2n-2)... 1_2n-2

Continuing this reduction, ending with [GI 1, we obtain (2.2).
We can now easily obtain criteria for the singularity of
COROLLARY. Gn is singular if a is an lth root of unity for some 1, l 2, 4,

2n- 2.
Proof. If G, 0, then, from (2.2), a 2k for some k, k 1, 2, n 1.
Remark 2.1. Theorem 2.1 is proved in different ways in [3] and [9].
Remark 2.2. Since the leading principal minor of order k is [Gkl, it is easily seen

that if Gn 4: 0, then so is Gkl, k 1, 2, n 1, so that if Gn is nonsingular, then
it is strongly nonsingular. Also, in the statistical case, if al < and a is real, then Gn is
positive definite.

We next determine a recurrence formula for the minors ofthe first row of Gn, before
finding an explicit form of these minors.

THEOREM 2.2. If la’)l is the minor formed by omitting the first row and jth
columnfrom Gn l, then

n-1

(2.3) IG’)l=a I- (1-a2)lG-)l, j=2,3,...,n
k=l

k4=j-I

with
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Proof. First, it is obvious that G1’) G,_ 1. Now to find Gl’j), j 2, 3, n,
consider the matrix G,_ 1,, formed from G, by omitting its first row. Thus

(2.4) G,_ 1,,

a a a (n- 2)2

a 4 a a (n- 3)2

a 9 a4 a a (n 4)

a(n’-l)2 (n" 2) (n" 3)a a

If we now consider a formal determinant [Gn-1,n and carry out the row operations

row i- a 9-i row (i ), n 1, n 2, 2,

we obtain

(2.5)

a
0 a( -a2)
0 a4(1-a2)

6 a "-2)2il-a)
n--1

a a (n- 1)2

-a4 a(n- 3)2( --a2n-2)
a( a4) a(n- 4)2( a2n- 2)

a n- 3)2( a4) a 2n- 2

=a ]-I (1-aZ)lGn-e,n-, I.
k=l

In order to find al’J) we omit the jth column from an,n-11 in (2.5). This is
equivalent to removing the (j )th column from [Gn_ 2,.- 1[ and omitting the factor

a2- 2) from (2.5), which proves the theorem.
From the previous theorem we can obtain an explicit form of IG’9) and hence

an explicit form of the elements in the first row ofG
THEOREM 2.3. If GI’J) is defined as in Theorem 2.2 then, with I-I- for

a orn,

a -1H- a2’) k-1H : -j +1 a2k)
2.6

G(nl’J) I-I J-_- a2)
j=l,2,...,n.

Proof. Setting j in (2.6) gives
n-1 n-2

IG(.’") I- I] (1--a2i)n-i-l= H (1-a2i)n-i-1.
i=1 i=l

Since we know that [G(nl’l) [Gn_ 11, this agrees with (2.2) when n is replaced by
n-1.

For j 2, 3, n, repeated use of (2.3) gives

n-2 n-j+

G")I a (1 -a2k)a I-[ (1 -a2k)...a
k=l k=l k=l

k#j- k#j-2 k#l

a2) Gn)+

and with I--,-j+ll IG,-j I, found from (2.2) with n replaced by n -j, we obtain
(2.6) as required.

The elements in the first (defining) row of G are (-1)J- IGI’J) I/IG, and so
we have the following result immediately from the Theorems 2.1 and 2.3.
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THEOREM 2.4. If G; ]ij flO and I-I o= 1, then

(--1)J-la j-1
(2.7) fllj=l-Ijk___(l_aak)]_]_(l_a2k) j= 1,2, ,n.

Remark 2.3. Since we have already stated that a is nonzero, then all fllj, and in
particular , are nonzero.

Remark 2.4. In [9] it was stated that it did not appear possible to find an explicit
form of/3j.. Equation (2.7) is also given implicitly in [3 ].

Although (2.7) gives an explicit way of calculating , it is certainly not the most
efficient since a simple recurrence formula can be found as given below, the proof of
which follows immediately from Theorem 2.4.

THEOREM 2.5. If G; ]lj /lj, then

-a( a 2n 2j)
(2.8) /l,j + a 2 J) fllj, j 2, 3, n

with

(2.9)

In fact, even this result can be improved for about half of the coefficients with use
of the next result.

THEOREM 2.6. Using the notation ofthe previous theorem, we have

(2.10) fllj__ (_ )n_la2j_n_lfll,n_j+l, j=[n+3]2
,...,n.

Remark 2.5. The use of Theorems 2.5 and 2.6 enables the first row of G to be
found in O(n) flops as opposed to the usual O(n 2) flops for general Toeplitz matrices.
This is because it is calculated directly without having to carry out the iterations in the
Levinson algorithm 13 ], which determine not only the first row ofGS1 but also the first
rows of G{,k= 1,2,...,n- 1.

Example 2.1. Let n 7 and a / V. Then the first row of G is

[ ](2.11) 1, f’4’24V’28’22f’2 8

To find the first row ofG we first use Theorem 2.5 for j 1, 2, 3, 4. From (2.9),

37 15 31 63
fl=l 248 16 32 64"

From (2.8),

63/l/12 64/ fill,

15 /7ill4 16]f fl13"

31/3ill3-- 3V fl12,

For the other first row elements we can use (2.10) to obtain
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and the first row ofG is given by

(2.12) 34.5.72.31 [2 21, -2163V, 2 2.651,-21. 1395V, 2 ’1651,-21363/, 218].

Remark 2.6. It is worth noting that, although there is a wide range in the values of
the elements of the first row of Gn in (2.11 ), all the elements in (2.12) are of a simi-
lar order.

Since G is both symmetric and persymmetric, then so is G and so only just over
a quarter of its elements need to be found. Explicitly, we require/3o for 1, 2,
[(n + 1)/2],j i, + 1, .--, n + 1, which is [(n + 1)/2][(n + 2)/2] elements
compared with the total of n 2.

From Remark 2.3,/311 4: 0, and so the following well-known equation [13] can be
used to calculate 30 for the second and subsequent rows:

(2.13) i+l,j+l--ij-ll(l,i+ll,j+l l,n-i+ll,n-j+l).

Thus each element requires three flops, giving a total of /72 + o(n 2) to find G This
can, however, be improved upon by using the following result.

TH.OZM 2.7. IfG [/30], i,j 1, 2, n, then
i-2

i,j + i-- Z a2"- 2j- 4k)/l,k + 1/l,j + k +/1/"
k=O 11 /11

l’j+i- 1’

(2.4)

/=2,3, [n+l 1"’ 2
j= 1,2, ,n-2i+2.

Proof. If 2, then from (2.13 we have

(2.15) 2,j+l-lJ+ll(12l,j+l lnl,n-j+l).

Since from (2.10),

ll,n (--1)n an- tl and 31,n_j + (--1)n an 2j + fllj,

then (2.15 becomes
1 2,/2, / /1 +/311 (/31231, + a 2j/31

which agrees with (2.14) when 2.
Now suppose that (2.14) is true for 1, 2, l- 1. Again from (2.13

(2.16) l,j+l-l--l-l,j+l-2"-ll(lll,j+l-I l,n-l+2l,n-j-l+3).

If we write/3_ , +

_
2 as the fight-hand side of (2.1 4) with replaced by l- and use

2.1 0 to give different forms of/3,_ + 2 and 31,,-_ + 3, then (2.1 6 becomes
l-3

l,j+l-1-’- (1--a2n-2j-4k)l’k+ll,j+k+l’l--ll,j+l-2
k=0 /11 11

_---- a2,,- 2j + 8-4l/+ (llil,j+l ,1-ll,j+l-2)
11
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Collecting together the terms in fl,t_ /1,j + l- 2 and combining into the summation gives
(2.14). Thus the theorem is proved by induction. D

Remark 2.7. It should be noted that (2.14) holds for all i, j 1, 2, 3, -.., n,
although for calculation purposes only the range of and j given in (2.14) is required.

We now show that use of (2.14) enables each required internal element ofG to
be calculated from the previous row, using two rather than three flops, using (2.13).

We begin by supposing that a 2k, k 1, 2, n 1, and 5i/, 2, 3,
(n + / 2 are known.

If we set
i-3

i-l,j+i-2-- (1--a2n-2j-4k)fl’k+ll,j+k+l’i-1
k=0 11 11

l,j+i-2

Xi-l,j+ Yi-l,j,

where the sum on the fight-hand side is denoted by X,._ ,j and the second term by Yi- l,j,

then it is easy to see that with X 0 when 2,

(2.17 Bi,j + i- Xi- ,j + a2n- 2j-4i + 8) yi_ 1,j + S1---Li
11

l,J +i-1’

which involves two sums and products as required.
We have thus found G in 1/2 n 2 + o(n2) flops using (2.9), (2.10), and (2.17).
Example 2.1 (continued). To find the other elements of Gfi where Gn is defined

by (2.11 ), we use (2.17) to give

[/3_,/3,/34, 5,/36 215985, -26.72261/r, 2 . 166005, -25/-.80073, 28.7875 ],

[/333,/34, 35] [23.1158129,-2.3056445V, 22.1048761],

[B,4] [10363455 ],

ij
3 4.5.72.31/3j.

3. Conclusion. In 2 a special matrix occurring in statistics, called Gaussian, has
been considered. It is a Toeplitz matrix and, in addition, has a pattern in its generating
row. This extra condition enables us to find an explicit formula for the elements of the
first row of the inverse and to improve on the efficient Trench method for determining
this inverse by a factor of four.

Acknowledgment. The author is grateful to one of the referees for bringing 3 to
his attention.

REFERENCES

G. H. GOLUB AND C. F. VAN LOAN, Matrix Computations, Second Edition, The Johns Hopkins University
Press, Baltimore, MD, 1989.

2 M. J. C. GOVER, Analysis and application of Toeplitz-like matrices, Department of Mathematics, Ph.D.
thesis, University of Bradford, Bradford, U.K., 1984.

3 W. B. GRAGG, Positive definite Toeplitz matrices, theArnoldi processfor isometric operators and Gaussian
quadrature on the unit circle, in Numerical Methods in Linear Algebra, E. S. Nikolaev, ed., Moscow
University Press, Moscow, U.S.S.R., 1982, pp. 16-32. (In Russian.)

4] R. T. GREGORY AND D. L. KARNEY, A Collection ofMatrices for Testing Computational Algorithms,
John Wiley, New York, 1969.



548 M.J.C. GOVER

5 F. A. GRAYBILL, Matrices with Applications in Statistics, Wadsworth, Belmont, CA, 1983.
6 G. HEINIG AND K. ROST, Algebraic Methodsfor Toeplitz-Like Matrices and Operators, Akademie-Verlag,

Berlin, GDR, 1984.
[7] A. S. HOUSEHOLDEr,, The Numerical Treatment of a Single Nonlinear Equation, McGraw-Hill, New

York, 1971.
[8 J. R. MAGNUS AND H. NEUDECKER, Matrix Differential Calculus, John Wiley, New York, 1988.
[9] K. S. MILLER, Some Eclectic Matrix Theory, Krieger, Malabar, FL, 1987.
10 P. A. ROEBUCK AND S. BARNETT, A survey of Toeplitz and related matrices, Internat. J. Systems Sci., 9

(1978), pp. 921-934.
11 S. R. SEARLE, Matrix Algebra Usefulfor Statistics, John Wiley, New York, 1982.
12 J. H. WILKINSON, The Algebraic Eigenvalue Problem, Oxford University Press, Oxford, U.K., 1965.

[13] S. ZOHAR, Toeplitz matrix inversion: The algorithm of W. F. Trench, J. Assoc. Comput. Mach., 16
(1969), pp. 592-601.



SIAM J. MATRIX ANAL. APPL.
Vol. 12, No. 3, pp. 549-551, July 1991

(C) 1991 Society for Industrial and Applied Mathematics
012

NEW STOPPING CRITERIA FOR SOME ITERATIVE METHODS
FOR A CLASS OF UNSYMMETRIC LINEAR SYSTEMS*
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Abstract. When the iterative procedure xk GXk g for the linear system Ax b is considered, one
ofthe important items for the method is the stopping criterion. Usually one kind of norm is used as a measure,
and if the norm of the pseudoresidual vector 6, Gxk + g Xk is small, then the iterative procedure is
terminated. However, this does not guarantee that the norm of the error vector ek Xk X* is small. In this
short note it is shown that if there exists a nonsingular matrix Z such that ZGZ- is skew-symmetric, then
][e,[[z --< [[6k]]Z where Ilyllz []Zy[[2. The relative error bound is also given.

Key words, stopping criterion, pseudoresidual vector, error vector, relative error vector, symmetrizable
and skew-symmetrizable

AMS(MOS) subject classifications. 65F10, 6JN20

1. Introduction. Suppose we have a linear system,

(1.1) Ax b withA=M-N,

where A and M are nonsingular. The iterative procedure

(1.2) x, + GXk + g,

is convergent if and only if S(G), the spectral radius of G, is less than unity where Xo is
the initial guess, and

(1.3) G=M-1N, g=M-b.

If we let the error vector ek and pseudoresidual vector 6 be defined, respectively, by

(1.4) e x- x*, 6 Gxk +g- x,

then it can be shown that

1.5 e, (G I)-6.

Here x* is the exact solution of 1.1 ).
For the iterative procedure 1.2), the iterations are to be terminated whenever some

measure of the error vector e becomes sufficiently small, i.e., whenever

(1.6)

where []. I], denotes some vector norm and e is the desired accuracy. Since x* is not
known in advance, ]]ek]], cannot be computed directly, so an alternative choice must be
made. Usually we use the pseudoresidual 6 to approximate e. But sometimes, even
though 6]l is small, e may be very large.

However, if the iterative procedure (1.2) is symmetrizable, i.e., there exists a non-
singular matrix Z such that Z( I- G)Z - is symmetric positive definite (SPD), then we

Received by the editors February 9, 1988; accepted for publication (in revised form) June 8, 1990.- Parallel Algorithms Research Centre, Department of Computer Studies, Loughborough University of
Technology, Loughborough, Leicestershire, United Kingdom. The work of the second author was supported
by the Chinese Academy of Science, the People’s Republic of China, and by an Overseas Research Student
Scholarship of the United Kingdom.
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have (cf. Hageman and Young 1981

(1.7) I111 z < 11 z,=(1-S(G))
where Y z zy I1=. It is obvious that if

(1.8)
(1 -S(G)) IIllz-< ’

then [lellz --< e. Hence, for the symmetrizable case, inequality (1.8) as a stopping criterion
is quite safe according to (1.7), which, in fact, is used consistently in the literature (Hage-
man and Young 1981 ).

To our knowledge (also see Elman [1982]) for the nonsymmetrizable procedure
1.2) there is no simple relationship between e and 6k given in the literature. It is normal

to use

(1.9) I111_-<,
instead of (1.6), as a stopping criterion. However, when it is satisfied, we still cannot
guarantee that (1.6) is satisfied.

In this short note, first we want to show that if the iterative procedure 1.2) is skew-
symmetrizable, i.e., there exists a nonsingular matrix Z such that ZGZ -l is a skew-
symmetric matrix, then IIllz =< on the condition that IIllz --< . Hence, for such a
case, if the pseudoresidual vector is small, then we can guarantee that the error vector is
small, based on the concerned norm. Second, the relative error is also considered. Finally,
we give some remarks concerning the application of the results.

2. Main results. Let G be the iterative matrix of the procedure (1.2).
THEOREM 1. Ifthe iterative procedure (1.2) is derivedfrom the system 1.1 ), Z is

the skew-symmetrization matrix, and ife and 6 are defined by (1.4), then

(2.1) IIllz--< IIllz,

where Y z I1Zy 112.
Proof. By 1.5 we have

Zek= Z(G-I)-Iz-1zrk=(G’-I)-Zb,
where G’ ZGZ -1 is skew-symmetric. Thus we have

I111 z--< (I- a’) -111=llallz--< Ilallz,

since the minimum eigenvalue of the symmetric matrix (I- G’)r(i_ G’) I- G’- is
not less than unity, thus concluding the proof.

Now we consider the relative error. Note that since x* satisfies (I G)x* g, then

ell z--< I- a’l12 x* z.

It follows from I1- a’ll= I1 / s=(a’)] / I1 / s=(a)] l/- that

(2.2) Ilx*llz>= Itgllz/[ / S2(G)] 1/2.

Combining (2.2) and (2.1) gives Theorem 2.
THEOREM 2. Under the conditions of Theorem 1, we have

(2.3) x-x*llz =<[1 + S2(G)] 1/2 IIllz
IIx*llz Ilgllz

The left-hand side ofthe inequality above is usually called the relative error.
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Note that [1 + 82(G)] 1/2 plays the role ofthe condition number. The pseudoresidual
vector may be magnified by as much as a factor of[1 + S2(G)] 1/2.

It follows from (2.3) that if

(2.4)

then II  llzlllx*llz <= . Thus (2.4) can be used as a relative error stopping criterion.
However, for the use of (2.4) it is necessary to know some information about the

spectral radius S(G) of G as in the symmetrizable case. If we have to use the relative
error and S(G) (or even an approximation) is not available, the following,

can be an alternative choice since xk may be near to x* and Ilxllz may be approxi-
mately x* .

3. Concluding remarks. IfM and N, defined in 1.1 ), satisfy

(3.1) M 1/2(A +AV), N 1/2(A-At),
then it can be shown that procedure (1.2) is skew-symmetrizable with the skew-sym-
metrization matrix Z m1/2, the square root of M, if M is SPD. In certain cases, a
number of problems of the form Mx y can be solved with less computational effort
than the original system Ax b, such as the large sparse system arising from elliptic
problems (cf. Widlund [1978]) and the systems arising from the least squares problems
(cf. Li [1989 ]). In such a case, the generalized conjugate gradient method of Concus
and Golub 1976 and Widlund 1978 ], and the Chebyshev acceleration in the nonsym-
metrizable case (cf. Chapter 12 of Hageman and Young [1981 are quite applicable. It
is believed that the new stopping criteria can make these methods more attractive.
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Dedicated to Richard S. Varga on the occasion ofhis 60th birthday.

Abstract. Let f and g be functions defined at the real and distinct nodes Xk, and consider the inner product
(f, g) , ’= f( xk)g(xk)w with positive weights w. The present paper discusses the computation of ortho-
normal polynomials r0, rl, , rn- l, n _-< m, with respect to this inner product, and the use ofthese polynomials
in a fast scheme for computing a QR decomposition of the transpose of Vandermonde-like matrices. Two
methods are compared for computing the recurrence coefficients for the polynomials 7rj and their values at the
nodes xk: the Stieltjes procedure and a method in which an inverse eigenvalue problem for a tridiagonal symmetric
matrix is solved by an algorithm proposed by Rutishauser, Gragg, and Harrod. The latter method is found to
generally yield higher accuracy than the Stieltjes procedure if n is close to m, and roughly the same accuracy
otherwise. This method for solving an inverse eigenvalue problem is applied in an algorithm for computing a
QR decomposition of the transpose of n m Vandermonde-like matrices. The algorithm so obtained requires
only O(mn)arithmetic operations. This operation count compares favorably with the O(mn2) arithmetic op-
erations necessary for the QR decomposition if the structure of Vandermonde-like matrices is ignored.

Key words, orthogonal polynomial, polynomial least squares approximation, Vandermonde-like matrix,
QR decomposition

AMS(MOS) subject classifications. 65F25, 65D05

1 Introduction. Let ( xk } ’= be a set of distinct nodes on the real axis, and let
{ w, } -- be a set of positive weights. Introduce the inner product

(1.1) (f,g)’= f(xk)g(xk)w
k=l

for functions f and g defined at the nodes. Let (r)-_-o be a family of orthonormal
polynomials with respect to this inner product, where we assume that r is of degree j
and has a positive leading coefficient. The r satisfy a three-term recurrence relation

fl0-o(X) 1, /31rl (x) (x- al )r0(x),
(1.2)

j.r(x) (x- a;)rj_ (x)- flj_ lr;- 2(x), j= 2, 3, rn 1,

where the coefficients a; and flj > 0 satisfy

/30--( 1, )1/2, /31--((xTro,xro)-o) 1/2,

(1.3) a (xr_ 1, r_ 1), j= 1,2, ,m,

2 2 1/2=((x_,,x_,)--_) j=2,3,-.. ,m-1.

In the Stieltjes procedure we combine formulas (1.2) and (1.3) in order to compute
coefficients aj. and/3j, and the values of the polynomials r at the nodes x for increasing
values ofj as follows. First/3o and r0 are computed, and then we can determine a and
/31 from 1.3 ), and the value of rl at the nodes from (1.2). Now we can compute c_ and

Received by the editors May 1, 1989; accepted for publication (in revised form) May 23, 1990. This
research was supported in part by IBM Bergen Scientific Centre, Air Force Office of Scientific Research grant
AFOSR-87-0102, and National Science Foundation grant DMS-8704196.

? Department of Mathematics, University of Kentucky, Lexington, Kentucky 40506.
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/2 from (1.3), and 71"2 at the nodes from (1.2), and so on. The Stieltjes procedure has
recently been discussed by Gautschi 10], [12 ]. It has also been advocated by For-
sythe 9 ].

However, the Stieltjes procedure can be sensitive to roundofferrors (see below) and
we therefore propose a different method for computing the r. This method is
suggested by a matrix interpretation of the Stieltjes procedure. Such an interpretation
shows that the Stieltjes procedure for a discrete inner product 1.1 is equivalent to the
Lanczos procedure for determining a symmetric tridiagonal matrix which contains
the recursion coefficients and which is orthogonally similar to the diagonal matrix A
diag [x, x2, Xm] (see de Boor and Golub [5], Gragg and Harrod [15], or the re-
cent survey paper by Boley and Golub [4 ]). In fact, the Lanczos procedure solves the
following inverse eigenvalue problem: determine a symmetric tridiagonal matrix T
[tgk],mk of order rn, and an orthogonal matrix Q q]j’,mk_- of order rn, such that

TQT=QTA,

(1.4) A=diag [x ,x2, ,Xm],

[w,w, ,Wm]
Qe, ,= w}) ,/2

Here and below, ej. [0, 0, 1, 0, 0] v denotes thejth axis vector of appropriate
dimension. The matrices T and Q are uniquely determined by 1.4), and, moreover,

tj= a, <j< m,

(1.5) tj + l,j tj, + flj, <=j < m,

qj= Trj- (Xk)Wk, <=j,k<=m

(see [5], [15 ], or [4] for details). Hence, given a set of nodes {x}= and a set of
positive weights { w }= , we seek to compute the unique symmetric tridiagonal matrix
T with positive subdiagonal elements and the unique orthogonal matrix Q, which satisfy
(1.4). Then the recurrence coefficients and the values of the orthogonal polynomials at
the nodes are determined by (1.5).

It is known that the Lanczos procedure for solving the inverse eigenvalue problem
1.4) can be sensitive to roundoff errors, and that computations in finite precision arith-

metic can yield matrices Q that are far from orthogonal (see [5], [15]). Equivalently,
the polynomials computed by the Stieltjes procedure in finite precision arithmetic can
be far from orthonormal with respect to the inner product (1.1). This is illustrated in

2. We therefore propose to determine the polynomials rj by solving the inverse eigenvalue
problem (1.4) by an algorithm described by Rutishauser 20] and more recently by
Gragg and Harrod 15 ]. This algorithm proceeds by applying a carefully chosen sequence
of Givens rotations to the diagonal matrix A in order to transform it into tridiagonal
form. We therefore refer to this algorithm as the Givens rotation (GR) algorithm. Like
the Stieltjes procedure, it determines the recursion coefficients in (1.2) and (1.3) in
O(m2) arithmetic operations. Details and computed examples illustrating the accuracy
of this scheme are presented in 2.

Let h(x) be a continuous function which is explicitly known at the nodes xk, _-<
k =< m. Consider the approximation ofh by polynomials and measure the approximation
error by the seminorm ]lh]12 := (h, h) /2. It is well known that the polynomial

n-1

(1.6) r_(x):= (h,rj)rj(x), n<-_m,
j=0
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is the best polynomial approximant to h ofdegree less than n with respect to the seminorm
112. Introduce the vectors and diagonal matrix

c: [(h,cro),(h,r),"" ,(h,r,-)] ,
(1.7) h:= [h(x),h(x2), ,h(xm)] T,

D:=diag [w,w2, ,Wm],

where w := (wj2. /2. Then the vector c of coefficients of r,_ (x) can be computed by
the GR algorithm as

(1.8) c= QrDh

in O(mn) arithmetic operations. This operation count uses the fact that only the n first
columns of Q have to be determined (see Algorithm 2.1 of 2). We remark, in passing,
that recently Elhay et al. 8 presented several algorithms for modifying the polynomials

r9 when a weight w, is modified in the inner product 1.1 ), for instance, when a node
x is added or deleted.

In applications in which the polynomial r_ has to be differentiated or integrated,
it can be convenient to express r,_ in a polynomial basis different from { r9 }9=0 This
gives rise to the solution of overdetermined linear systems of equations with matrices
V, where V is a Vandermonde-like matrix defined as follows. Following Higham [16],
[17], we say that a matrix V= [)jk]l<=j<=n,1 <=k<=m is Vandermonde-like, ifvg p_ l(Xk),
wherep_ is a polynomial ofprecisely degreej 1. In the present paper, we are primarily
interested in the case wherep_ l(X) x for allj (Vthen is a "classical" Vandermonde
matrix) and in the case where the pj._ satisfy a three-term recurrence relation

bopo(x) 1, bp (x) (x- a )po(x),
(1.9)

bp(x)=(x-a)p_(x)-b_lp_2(x), j=2,3, ,m- 1,

with given recurrence coefficients a; and b9 > 0. Vandermonde-like matrices with elements

v p_ (x), where the p_ (x) satisfy a three-term recurrence relation, were first
studied by Gautschi 11 ], who has shown that these matrices often have a smaller condition
number than classical Vandermonde matrices (see 11 ], 13 ]).

Example 1.1. The choice b0 := b f, bj. := for j >_- 2, and aj. 0 for j >- 0,
yields p0(x) 2 -/2T0(x/2) and pj-(x) T.(x/2) forj >= 1, where T(x) cos (j arccos x)
is the usual Chebyshev polynomial.

Example 1.2. The choice b0 2, b 2j/(4j2 )/2 forj >_- 1, and a 0 forj >=
0, yields the orthonormal Legendre polynomials for the interval [-2, 2], i.e., the p;
defined by 1.9 satisfy

p( x)p(x) dx=
2 O, j:/:k.

Consider the overdetermined dual Vandermonde-like system of equations

(1.10) DvTe’= Dh,

where Vis an n m Vandermonde-like matrix whose elements Vjk p- (Xk) are defined
by polynomials p_ that satisfy a three-term recurrence relation (1.9), and where the
diagonal weighting matrix D is given by 1.7 ). Introduce the fight triangular n n matrix
R [rk]j.n,k= , defined by

k

(1.11) Pk-l(X) rjkTrj-l(X), <-k<=n,
j=l
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i.e., R expresses the given polynomial basis { pj }’=-o in terms ofthe computed orthonormal
basis { rj }_--0 From b > 0 and 3 > 0 for all j, it follows that r > 0 for all j. By 1.5 ),
(1.7), and 1.11 we obtain

(1.12) DVr= QR,

i.e., (1.12) is the unique QR decomposition ofDVr such that rj > 0 for all j. The least
squares solution of (1.10) can now be written, using (1.12),

(1.13) C’ VD2 V T )-1 VDh R-1QrDh R-it,

where e is defined by 1.8 ). The recurrence relations (1.2) and 1.9 make it possible to
determine the elements of R, as well as of R- in O(n2) arithmetic operation. We
therefore can compute the solution e’ of (1.10) in O(mn) arithmetic operations by first
determining the vector e := QVDh by the GR algorithm, and then computing e’ R-e.
This solution method requires only O(rn) storage locations (see 3 for details and com-
puted examples). This operation and storage count is also valid ifQ were to be determined
by the Stieltjes procedure. However, numerical experiments show that the sensitivity to
roundoff errors of the Stieltjes procedure make it unsuitable for the present application
unless rn )) n (see 3 for an illustrative example). Also note that in order for this
operation and storage count to hold, it suffices that the polynomials pj-_ defining V
satisfy a recurrence relation in which the number of terms is bounded independently
of j.

For comparison, we note that O(mn2) arithmetic operations and O(mn) storage
locations are required to determine a QR decomposition of a general rn n matrix (see,
e.g., 14, Chap. 5 ). We remark that the data used by our fast algorithm is different from
the data for schemes for the QR decomposition of a general matrix; the latter require
the matrix elements, while our scheme requires the nodes xk, weights w, and recursion
coefficients (1.9). This affects the sensitivity to perturbations.

The factorization (1.12) can also be used for the solution ofprimal Vandermonde-
like systems

(1.14) Vc"=d,

with an rn rn Vandermonde-like matrix V, and with c", d R We can choose w9
for all j. This yields D I in (1.12), and we can compute the solution of (1.14) as

e" QR-rd in O(m2) arithmetic operations if the polynomials pg_ defining V satisfy a
recurrence relation in which the number of terms is bounded independently of j.

Vandermonde-like linear systems of equations (1.10) and (1.14) arise in polynomial
interpolation and polynomial least squares approximation problems, as well as in nu-
merical quadrature. They may also be a part ofmore complicated approximation schemes
(see [1] for an example). If rn n and the polynomials defining V satisfy a recurrence
relation with a bounded number of terms, then there are also other methods available
that require only O(m2) arithmetic operations for the solution of(1.10) and (1.14), such
as the Bj6rck-Pereyra algorithms (see [3 ], [14, Chap. 4.6 ]), and modifications thereof
[16 ], [17 ], [19]. These algorithms factor a square Vandermonde-like matrix into tri-
angular matrices. The case rn >_- n is also discussed by Demeure 6 ], who uses the Stieltjes
procedure to determine an orthogonal matrix Q, and computes an upper triangular
matrix R- such that VrR- Q.

We finally remark that algorithms analogous to those described in the present paper
can also be derived if all the nodes xk lie on the unit circle in the complex plane. The
GR algorithm is then replaced by an algorithm described in [2 for the calculation of an
inverse eigenvalue problem for unitary upper Hessenberg matrices (see [18]).
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2. Least squares approximation. Let h(x) be a function defined at the nodes xk.
Given a vector h [h(x), h(x2), h(xm)] T, we seek to compute the vector c
c, c2, c,] r defined by 1.7 ). This section describes how c can be determined using

the GR algorithm. We first outline the GR algorithm. Computed examples comparing
our approach with the Stieltjes procedure conclude this section.

The GR algorithm is defined recursively. Introduce the symmetric tridiagonal Jacobi
matrix

containing the recurrence coefficients for polynomials orthogonal with respect to the
inner product

(f,g)[’= f( xk)g(xk)w.
k=l

Then T has spectral resolution

T= QfAQ,

where Qt R, QfQ I, At diag [x x2, x], and

[WI’W2’ ’wilT (Qze=
0

/3=
,=1

Now consider the following matrix that has Tz as a submatrix:

ao /3o, 0 0

w+l 0 0 X+

where co e R is arbitrary. The GR algorithm proceeds by carrying out an orthogonal
similarity transformation of T+ 2 in order to obtain a symmetric tridiagonal matrix,
which we denote by T’+ 2. The similarity transformation is done by applying a sequence
of Givens rotations

Gy,’=I+(eyef+e,e[)(’y l) + (ej.e/- ekef)aeRt+2)2), j<k,

where ej, e R + 2 2 2
,3’ + a 1,-1 _-<-y_-< 1, and a >_- 0. The Givens rotations are

chosen to "chase" the element wt / 1, in position (1 + 2, of T} + 2 along the last row to
position (l + 2, + ). By symmetry, the element wt / in position 1, + 2) of T}/ 2 is
chased along the last column to position (l + 1, + 2). Moreover, the rotations are
selected so that the element a0 of T}+ 2 is neither used nor changed. The desired "chasing"
is obtained by applying Givens rotations for rotation in the planes (2, l + 2), (3, +
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2), (l + 1, + 2). See [15] for a detailed description. We obtain the symmetric
tridiagonal matrix

ao /to,+ 0 0
)1+

T/’+2 0 Tt+l
0

R(t + 2) (t + 2)

whose trailing principal (l + X (l + submatrix TI +l contains the recurrence coef-
ficients for polynomials orthonormal with respect to the inner product

/+1

(f,g)l+ , f(x,)g(xk)w2.
k=l

The spectral resolution of Tl+1 is

TI+ =Qf+ IA/+ 1QI+ 1,

where Qf+Ql+ I, Al+l diag [x, x2, Xl+l], and

Ql+lel
[Wl,W2, ,Wl+l]7 (1)1/2o,+, w

/0,l+ k=

Thus we can compute T1+1, Q1+1,/3o.1+1 } from TI, QI,/3o.l, xl+1, w+, } in O(l)
arithmetic operations. This operation count assumes that QI and Qt+ are stored in
factored form as a product of Givens rotations.

Starting with

T T=[% Wl] T1 =[Xl]
WI Xl

we compute T[+ 2 T’+ 2, Tt+l, andQ+lforl= 2 m- until we obtainT"
Tm and Q Qm. It follows that we can determine T and Q from { xk ’= and

{w,}’= in O(m2 arithmetic operations. This operation count assumes that we deter-
mine the whole matrix Q Rmm. However, ifthe degree n ofthe desired polynomial
r_ is less than m 1, then only the recurrence coefficients 0/}11 and {/3}_--11 and
Fourier coefficients cj. (h, r_ 1) for _-< j =< n have to be computed. This can be done
by using the first n columns ofQ only, and then requires just O(mn) arithmetic operations,
as is demonstrated by the following algorithm.

ALGORITHM 2.1. Polynomial least squares approximation.
Number of nodes: m >= 2. Highest degree of approximating polynomial: n < m.
Input: m n x ’= ’=,,{w) ,,{h(x)} ,.
Output: { aj } 7---11 { /J } 7---o c (h, 7r_1 ), =< j =< n.
* z is used as a temporary variable *
* 0, initialize T[ *

a x o w c wh(x );
* 1, add pair {x2, w22), compute T *

o; 0 (o2 + w)/; /0; -w/o;

c2 sign (-)(ac + w2h(x2)); c "yc aw2h(x2);
0/2"-- O’20/1 q- "y2x2; 0/1 ,y20/1 q- 0"2X2

* l > 1, add pair { x+ 1, w+ ), compute T’+ 2

forl=2,3,...,m- ldo
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to; o ( + wT+ )/; := /o;- -w+ /o;
c#+ := ac + 3’w+ h(Xl+ ); c := c wt+ h(xt+ );

the variables v, v2, and v3 contain nonzero elements of the last row
of GTT’+ 2 G where G is a product of (at least one) Givens rotations

:= ya + aZxt+; := y;
fork= 1,2,-..,min{l-2, n- 1)do

&; ( + v)/; y /&; -v,/;
r aCk+l + TCI+; Ck+ TCk+ aCl+; Cl+ z;
z ak+; ak+ 72z + aZv3
v ( a)(y + a)v2 + y(z v3); v3 yv3 + 2v2 + 2z;
v2 + ; + :=+;

ifl- <nthen
r := _;

_
:= (_ + v)/; /&_, -v,/_,,

:= ( )( + )v= + (l- v3); z I1;
z sign (z)(act + 7c+ ); c 7c ac+ ct+ := z;
al+ a2al + 2Tar2 + 2v3; al := 7al- 27av2 + a2V3;

The operation count for the algorithm as presently coded in FORTRAN is 20mn + O(m)
multiplications or divisions and 10mn + O(m) additions or subtractions. Furthermore,
mn + O(m) square root computations are required. It might be possible to reduce this
operation count slightly by a more careful implementation. Having determined the re-
currence coefficients aj and/3j., and the Fourier coefficients c, by Algorithm 2.1, we can
evaluate the polynomial rn_(x) Y’= crg-l(x) for arbitrary x e R by Clenshaw’s
recursion formula (see, e.g., Smith 21 or Higham 17 ).

We turn to some computed examples that compare Algorithm 2.1 with the Stieltjes
procedure. All computations ofthe present paper have been carried out on an IBM 3090
VF computer in single or double precision arithmetic, i.e., with 6 or 15 significant digits,
respectively.

Example 2.1 Let { X m) } r= , m 2, 3, 4,.’’ be sets of equidistant nodes in
[-2, 2] defined by

(2.1) xm)’= 2-4
k-
m-1

l<k<m"

Let all the weights w] be unity, and define the function h(x)"= exp (x). We let cj. denote
the approximation of the Fourier coefficient (h, 7rj_ ) obtained by Algorithm 2.1 in
single precision arithmetic, and we let d denote the corresponding approximation obtained
in double precision arithmetic by the subroutine DQRDC of LINPACK 7 ]. This sub-
routine computes a QR decomposition of Vr without using the structure of the matrix.
Introduce the vectors e := [Cl, c2, Cm] r and d := [dl, d2, dm] r. The norm

(2.2) [Ic-d[Ioo: max c-dl
l<=j<--m

yields an estimate of the largest error in the computed coefficients cj..
We also compute Fourier coefficients by the Stieltjes procedure. The Stieltjes pro-

cedure has been implemented for the computation of monic orthogonal polynomials
as described in [9], [5], and [15, p. 323]. The monic orthogonal polynomials are
then normalized to yield orthonormal polynomials. These computations are carried
out in single precision arithmetic, and due to roundoff errors, we only obtain approxi-
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mations of orthonormal polynomials, denoted by ’j. We evaluate the inner products
sj := (h, ’_ l), _-< j -_< m, in single precision arithmetic, and define the vector s
[SI, $2, ..-, Sm] T.

Figure 2.1 shows m -- log0 lie d (continuous curve) and m -- log0 IIs d
(dashed curve) for 2 =< m =< 100. The figure shows that if all m Fourier coefficients are
required, then Algorithm 2.1 yields higher accuracy than the Stieltjes procedure. The
poor accuracy obtained with the Stieltjes procedure depends on the fact that the computed
polynomials are far from orthonormal for j close to m. Computation of fewer than
m coefficients is discussed in Example 2.4 below.

Example 2.2. This example differs from Example 2.1 only in the selection of nodes
X(km). We now choose

(2.3) X(km) -2+4(k- 1)2

l<k<m.
m-1

There are more nodes close to x -2 than to x 2. For instance, we have xm) <
x(m)k+ for all k and x,/2 < -1. Figure 2.2 shows the error in the computed Fourier
coefficients. The error is measured in the same way as in Example 2.1, and shows that
clustering ofnodes at x -2 makes the Stieltjes procedure perform worse than in Example
2.1. The error obtained with Algorithm 2.1 is roughly the same as in the previous example.

Example 2.3. This example differs from Examples 2.1-2.2 only in the selection of
nodes. We now let the nodes xm) be zeros of Chebyshev polynomials for [-2, 2 ], i.e.,

2k-l) l<=k<=m.(2.4) X(km):= 2 cos r
2m

For these nodes the errors in the coefficient vector e obtained by Algorithm 2.1 and the
coefficient vector s computed by the Stieltjes procedure are roughly the same.

A comparison ofFigs. 2.1-2.3 suggests that the error in the Fourier coefficient vector
e obtained by Algorithm 2.1 is fairly independent of the distribution of the nodes xk, but
the error in the coefficient vector s obtained by the Stieltjes procedure is not. Moreover,
the error in the vector e is never much larger than the error in the vector s, but it can
be much smaller. Similar behavior has been observed in numerous other numerical
experiments with other distributions of nodes x and other functions h. In particular, if
the analytic function h in Examples 2.1-2.3 is replaced by the very nonsmooth function

-1

-2

-3

-4,

FIG. 2.1. logo lie d 11o (continuous curve), loglo [Is d II (dashed curve), h(x) exp (x), equidistant
nodes (2.1).
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-1

-2-

-3-

-4-

0 25 50 75 100

FIG. 2.2. log0 lie dll (continuous curve), log0 IIs dll (dashed curve), h(x) exp (x), nodes (2.3).

-4-

-5-

-6-

1""

25 50 75 100

FIG. 2.3. log0 lie d]l (continuous curve), log10 Ils dl] (dashed curve), h(x) exp (x), nodes (2.4).

h(xk) := (-1 )k+l for =< k =< m, then the graphs look almost the same as in Figs. 2.1-
2.3. We now show an example when fewer than rn Fourier coefficients are computed.

Example 2.4. In the computed examples above, the differences sj dj[ are largest
for indices j close to m. This suggests that it may be possible to compute the first n
Fourier coefficients of a function h(x) accurately by the Stieltjes procedure, provided
that the degree n ofthe polynomial rn- is sufficiently much smaller than the number
of nodes m. We illustrate this by modifying Example 2.2, which is the one of the above
examples in which the Stieltjes procedure performed most poorly. Let the function h (x),
the nodes X(krn), the weights w, and the vectors e, s, d E R be the same as in Example
2.2, but now measure the length of vectors u E R by the seminorm

Ilu Iloo,m/2 max ujl.
<= j <= m/2

Figure 2.4 shows that [Is d 11o,m/2 is somewhat smaller than [[c d oo,m/2 for m =< 46.
Hence, in this example the Stieltjes procedure determines the first n Fourier coefficients
accurately, if n is sufficiently much smaller than m. The accuracy of the first n Fourier
coefficients depends on the distribution of the m nodes. Numerical experiments suggest
that the Stieltjes procedure yields high accuracy if among the m nodes there are n nodes
that are distributed roughly like the zeros of an nth degree Chebyshev polynomial for
the interval between the smallest and largest nodes.
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-2-

-3

-6

25 50 75 100

FIG. 2.4. log10 lie d II,m/2 (continuous curve), lOgl0 Ils d II,m/2 (dashed curve), h(x) exp (x), nodes
(2.3), rn 2, 4, 6, ..., 100.

Turning to Algorithm 2.1, we find that the differences cj djl, =< j _-< m, are in
the Examples 2.1-2.3 largest for small values ofj. In particular, for the nodes, weights,
and function h of the present example, we have that lie d I[ lie d [Ic,m/2.

In the examples shown, as well as in many other computed examples, Algorithm
2.1 performs sometimes much better, but never much worse than the Stieltjes procedure.
We therefore find it to be a viable method for computing Fourier coefficients when the
inner product is discrete. The next section applies Algorithm 2.1 to the QR decomposition
of Vandermonde-like matrices.

3. QR decomposition of Vandermonde-like matrices. We consider the remaining
details of an algorithm for computing a QR decomposition of the rn n matrix DVv

and discuss applications to the solution of linear systems of equations. In Algorithm 2.1
the fight-hand side vector h [h(x), h(x2), h(Xm)] is multiplied by a sequence
of Givens rotations, which form Qv. These rotations are defined by the as and fs in the
algorithm. If n < m, then only the Givens rotations forming the first n columns of Q are
computed. Thus, we obtain Q by storing the Givens rotations used by Algorithm 2.1.
An economical storage scheme is described by Stewart [22].

We turn to the computation of the fight triangular matrix R r]/,k in (1.12).
Assume that V has elements v/k p/_ (x), where the pj_ are defined by 1.9). Having
determined the sets ofcoefficients { aj. } ’_11 and {/3 }__-0 by Algorithm 2.1, we can compute
the elements ofR in O(n2) arithmetic operations, as described by Algorithm 3.1 below.
This algorithm is derived by combining 1.11 with the recurrence formulas for the
and p;.

ALGORITHM 3.1. Computation of fight triangular matrix R rjk];k from recurrence
coefficients for the polynomials p. and
Input: n, { aj. }Y11 { j } _f-J, { aj } 7_--11 { bj }’Y0
Output: elements rj, <= j <- k <= n, of matrix R.
rl := fl0/b0;
1"22 :’- r/b; r2 := r (a a)/b;
forj:=2,3,...,n- ldo

r: + l,j + :--" r::flJ b:;
r:,: + r: / + r:: a: a: / b:
fork’=2,3,.’.,j- do
[_ r,y+, (r_,,fl_, + r(a,- aj) + r,+,,yi3- ro_,bj_,)/by;
r,a+ ,’= (r,,j(a a) + r2,jt, r,,a_ ba_ ,)/ba;
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The algorithm requires 25-n 2 + O(n) multiplications or divisions and 2n 2 + O(n)
additions or subtractions.

If the at and ct, as well as the bt and fit, are interchanged in Algorithm 3.1, then the
algorithm computes the elements ofR -1 This follows from the fact that interchanging
the coefficients corresponds to interchanging pj._ and rj._ in (1.11 ). Hence, we can
compute the elements ofR- in O(n2) arithmetic operations. When computing R- in
the manner described, the elements of R -1 are determined columnwise. This makes it
possible to compute e’ := R-e, for any e e Rn, using only O(n) storage locations, i.e.,
without storing R- In view of the fact that e := Q’Dh can be computed using O(m)
storage locations by Algorithm 2.1, we find that (1.10) can be solved using only O(rn)
storage locations.

If V is a classical Vandermonde matrix, then the polynomials Pk- in (1.11 are
replaced by monomials. It is straightforward to modify Algorithm 3.1 accordingly. In
order to solve primal Vandermonde-like systems (1.14), we have to store the Givens
rotations defining Q. This requires O(m2) storage locations. The following example il-
lustrates the application of our scheme to the solution of dual Vandermonde-like linear
systems of equations (1.10).

Example 3.1. The main advantage ofour solver for Vandermonde-like linear systems
of equations, when compared with other fast solvers presented in 3 ], 16 ], 17 ], and
19 ], is that our scheme is applicable to the least squares solution of overdetermined
Vandermonde-like systems. It is of interest to compare the accuracy of our solver with
the accuracy ofother fast solution methods when Visa square matrix. This is the purpose
of the present example. Let rn >_- 2 and let the set of equidistant nodes { X(km) ) n= be
defined by (2.1). Assume that all the weights are unity, i.e., D I in (1.10). Let the
square Vandermonde-like matrix V [vjk]j,m= be defined by vj, pj_ (xm)), where
p._ are the scaled Chebyshev polynomials of Example 1.1. We consider the solution of

(3.1) VTc’= h, h’= [exp (xlm)), exp (xzm)), exp (xmm))] T.
Figure 3.1 compares the accuracy obtained with our scheme with the accuracy achieved
by a fast solution scheme for Vandermonde-like linear systems of equations with square
matrices recently proposed by Higham [16 ], 17 ]. The latter method factors Vr into
triangular matrices. Both Higham’s scheme and ours require O(m2) arithmetic operations,
but the constant multiplying m2 is smaller for Higham’s method.

Let z denote the computed solution of (3.1) obtained by the QR decomposition
method ofthe present paper using single precision arithmetic, and let ] denote the solution

2

FIG. 3.1. Errors in computed solutions of( 3.1 ).



FAST QR DECOMPOSITION 563

of (3.1) computed in double precision arithmetic by the LINPACK [7] subroutines
DQRDC and DQRSL. These subroutines solve an overdetermined linear system ofequa-
tions by QR decomposition of the matrix, without using the structure of the matrix.

2 1/2Introduce the Euclidean norm Ilu[12 (Y?= u) for U [Ul, /’/2, "’’, blm] T E

Rm. Then I1 d 112 yields an estimate of the error in :. Figure 3.1 shows the growth of
log0 I1 112 with m (continuous curve).

We now replace Algorithm 2.1 by the Stieltjes procedure in the computation of
the QR decomposition of VT and solve (3.1). Let denote the computed solution ob-
tained in this manner using single precision arithmetic. Figure 3.1 shows the growth of
logo I1 all2 with m (dotted curve). Clearly, QR decomposition based on Algorithm
2.1 yields higher accuracy than if the Stieltjes procedure is used.

The remaining error curves in Fig. 3.1 are for a scheme proposed by Higham 16 ],
17 ]. Let denote the computed solution of (3.1) obtained by Algorithm in 16 using

single precision arithmetic. The dashed curve of Fig. 3.1 shows m -- loglo I1 a 112. Let
S, { 2 4(k /(m } ’= . Higham 17 proposed that the nodes be ordered
to satisfy

Xm)[ max xl,
xSm

(3.2)
k-1 k-1

l’-I [X(km) (m) (m)
-xj =max II Ix-.xj l, 2 <-k<=m,

j=l x-Sm j=

because this ordering corresponds to partial pivoting during the factorization of VT into
triangular matrices. Assume for the moment that the nodes X(km) satisfy (3.2) with
xlm) 2, and let I denote the computed solution of (3.1) obtained by Algorithm in
16 using single precision arithmetic. The dash-triple-dotted curve of Fig. 3.1 shows
m -- lOgl0 IIl -d 112.

Figure 3.1 and other computed examples suggest that when solving systems ofequa-
tions with m m Vandermonde-like matrices by the QR decomposition scheme of the
present paper, the accuracy achieved is often roughly the same as the accuracy obtained
by methods based on computing a triangular factorization of V T.

4. Conclusion. Polynomials orthonormal with respect to a discrete inner product
of the form 1.1 can for many problems be computed accurately by using an algorithm
proposed by Rutishauser, Gragg, and Harrod for the solution of an inverse eigenvalue
problem for a symmetric tridiagonal matrix. This algorithm can also be used to rapidly
compute a QR decomposition of the transpose of Vandermonde-like matrices. This de-
composition gives rise to new fast solution methods for Vandermonde-like overdetermined
systems of equations.
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FACTORIZATION PROBLEMS FOR NONMONIC
MATRIX POLYNOMIALS*

MAITE GASS0" AND VICENTE HERN/NDEZ:I:

Abstract. In this paper, it is proven that the problem of the nonlinear factorization of a nonmonic matrix
polynomial, L( X L k)La( X )..- Lk(k), where La(X), Lk(X) are regular, is related to the strict equivalence
between two appropriate pencils. These pencils are then obtained from the comonic companion matrices of
matrix polynomials M(k), M(), Mk() associated with L(k), L (X), Lk().

Key words, matrix polynomials, factorization problems, companion pencils, strict equivalence

(1.2)

AMS(MOS) subject classifications. 15A23, 15A22

1. Introduction. Consider the matrix polynomial

(1.1) L(X)-- Asxs,
j=0

where As Cmx m, j O, 1, n, and the factorization problem given by

L(X)=LI(X)L2(X)... Lk(X),
ni

Li(X)= AiXj, 1,... ,k,
j=0

(1.3)
k, ni=n.

i=1

This problem has been studied in [2]-[7] in the case where L(X), Li(X), 1, 2,
k, are monic matrix polynomials. Two different approaches appear in these papers. One
is based on the spectral properties of L(X), L/.(X), 1, 2, k, [2 ], [3 ], [5 ], [7 ],
and the other on a similarity condition between appropriate matrices obtained from the
companion matrices of L(X), Li(X), 1, k [4 ], 6 ]. For example, in Theorem
3.2 of[ 2, p. 85 ], it has been proved that ifa matrix polynomial L(X) admits a factorization

L(X)=L2(X)LI(X),

where LI (X) and L2(X) are monic, then the standard triples of L(X) can be obtained in
terms of standard triples of LI(X) and Lz(X). This is an example of the first approach
and the above result gives only a sufficient condition. A necessary and sufficient condition
has since been obtained by Hernfindez and Incertis [4] using the second approach.

In the nonmonic case, it has been proved [1] that the factorization problem de-
fined by

(1.4) L(X)=(AnX T1)(IX-- T2)’" .(IX- Tn)
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is related to the strict equivalence between the pencils CL(X), J()k), where CL(),) is the
companion pencil of L( ),)"

C(X) diag (I, ,I,A,)X--CL,

with

0 I 0 0
0 0 I 0

(1.5) C
0 0 0 I

-Ao -AI -A2 -An-1

J(X) is the upper bidiagonal pencil defined by

J(X) =diag (I, ,I,A,)X-
I

I
T1

and diag (I, I, A,) is a block-diagonal matrix formed by matrices I, I, A,.
In this paper we extend this result to the more general factorization problem given

by 1.1 )-( 1.3 with the regularity condition

(1.6) det Li(X) 0, =2, ,k.

Note that we do not assume anything about the regularity of L(X). Particular cases of
(1.6) are

ni--

(1.7) Li(X) A0XJ+IX"i, i=2,...,k
j=0

and

(1.8) Li(X)=I+ ., AoX, i=2, ,k.
j=l

Associated with factorization 1.1 )-(1.3), (1.7), we consider two pencils: the companion
pencil ofL(),), CL(),);and the upper-bidiagonal pencil defined by the companion matrices
of L(X), Lk(X)"

E X diag I, ..., I, A, X

where Ji, 2, k, are block-matrices with the identity in the southwest corner and
zeros elsewhere.
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Related to factorization 1.1 )-(1.3), 1.8 ), we consider the comonic companion
pencil of L(X)

(1.9) RE(3‘) diag (I,

0 I 0 0
0 0 I 0

0 0 0 I
-An -An-1 -An-2 -A

and the upper bidiagonal pencil defined by the comonic companion matrices of
L,(3‘), ’’", Lk(X)"

REk Jk
REk_, Jk-

(1.10) F(3‘) diag (I, I, Ao 3‘

Rc J2

In this paper we prove that the strict equivalence between CE (3‘) and E(3‘) is a necessary
and sufficient condition for the existence of factorization 1.1 )-(1.3), (1.7). From this
result we obtain that L(3‘) can be factorized into the form 1.1 )-( 1.3 ), 1.8 if and only
ifRE(3‘) and F(3‘) are strictly equivalent. As a consequence, we prove that factorization
(1.1)-(1.3), (1.6) is related to the strict equivalence between two pencils of the type
1.9 ), 1.10 ). These pencils are defined by matrix polynomials M(3‘), Ml (3‘), Mk(3‘)

obtained from L(3,), L (3‘), L(3‘).

2. Necessary condition for nonlinear faetorization. First, we prove the following
necessary condition for the existence of factorization 1.1 )-( 1.3 ), 1.7 ), with k 2. A
unit lower block-triangular matrix is a lower block-triangular matrix where all the diagonal
blocks are equal to the identity matrix.

THEOREM Let L( 3‘ ’= J
0 Aj3‘ be a nonmonic matrix polynomial (not nec-

essarily regular) with Ai Cm m, O, 1, n. IfL(3‘) can befactorized into theform
(2.1)

p

Lp(3‘)= Z Bj3‘j,
j=O

(2.2)
q-I

j=O

then there exist unit lower block-triangular matrices P, Q C x such that

with

CE(3‘) diag (I,

E(3‘)=diag(I I,A,)3‘-[ CEq
[ 0
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where CL, CLp, Cq are the companion matrices ofL(X), Lp( X ), Lq( X and

0 0..0

(2.3) Jq E Cmq x mp,
0 0..0
I 0..0

First, we prove the following proposition, which will be needed in the proof of
Theorem 1.

PROPOSITION 1. If L(X) ,.= o Aj can be factorized into the form (2.1),
(2.2), then

, AXEJ=(I-A/7)[O, ,O Bo,B,, ..., Bp_ 11,
0 mq mp

where

(2.5) X=[XI,O]=[I,O, ,010, ,0]
mq mp

and

(2.6)
CIq Jq ] mqE=
0 Czp mp

mq mp

Proof. From (2.6) we obtain that

and from (2.5),

j-1

Cj cJ-l-hjqChLpLq Lq

E= =o j- 1,2, ,n,
0 CG

(2.7) AjXEj-- Ajx1CJLq, AjX, CJL l-hjqChLp
j=O j=0 j=l h=0

We consider the standard triple of Lq(X) given by (Xl, CLq Yl ):

0

Y1 6 mq

I

By Proposition 5.4.1 of 3 ],

(2.8) Z AjX1Cj O.Lq
j=O
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In order to obtain (2.4), in view of (2.7), (2.8), we only need to prove that

j-l-h_, AjXI

_
CLq JqChLp _, AjXI CJL-o hL-

(2.9) j=l h=0 h=lj

=(I-An)[Bo,B, ,Bp-1].

We use an argument similar to the proof of the above-mentioned proposition. If L(X)
can be factorized into the form (2.1), (2.2), then

L(X)Lq(X) --’= Lp(X).
From (2.2) and the resolvent form of L(X) given by (X, Cc, Y ), we obtain

AjX j X(IX-Go)-Y BjXj.
j j=0

For Xl large enough,

)k j Xl CJLqk-j y , Bjxj.
\j=O ! j=O

Equalizing the coefficients of the positive powers of X, we get

Bo=AXY1 +A2XCLqY + +AnX1CL Y,
B A2X YI + A3XICLqY1 + +AnX1C 2yLq

Bp_ =ApXlg +Ap+ 1X1CLqY1 + +AnX1CnL-PY1,
(2.10)

Bp Ap+ 1Xl Y1 - Ap+ 2XICLqY1 -t-- nt- AnXlCn-p- Y1Lq

O Ap+ 2XI Y1 + Ap+ 3X1CLqY1 +"" nt-AnX1Cn-p- 2ylLq

0 A,X Y.
The matrix Jq, given by (2.3), can be factorized into the form

Jq= YiX2, X2 [I,0, ,0].
mp

Then, from (2.10), we deduce that_
AjXl CJLq- jq= AjXl CJLq- Y1 X2 B0[ I, 0, ,0 B0,0, ,0

j=l j

E AjXlCj- 2j, j- 2

Lo qCL, AX1CL Y X2CL,=BI[O,I,O, ,0]=[0,B1,0, ,0],
j=2 j

E AX,CL- PJqCp-ILp AjX1 cJ-PY1Lq x2CPL-
j=P j
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B,_,[O, ,O,q [0, ,O,B,,_,l,

AjXl CJL- p 1jqCPLp E AjXIC
p -1 gl x2CPLp

j=p+l j=p+l

Bp[ Bo, B, BI,_ 1,

XC--2Lq JqC Z AjX1CjLq- p 2
Y1 X2C O,

j=p+2 j=p+2

AnX1JqCL- (A,,X1 Y, )X2CnL- O.

From these expressions and taking into account that Bp An, we conclude that (2.9) is
true.

Proof of Theorem 1. If L() can be factorized into the form (2.1), (2.2), and
A, I, we know from [6] that

(2.11) Q-’CLQ=E,
where Q is the unit lower block-triangular matrix given by

(2.12) Q=cI[XEJ]’}2)=
Q1 Q2 mp

mq mp

with

(2.13) X=[X,, 0 ], XI=[I,0, ,0],
mq mp

(2.14) Q1 col IX1CqlT=-q
and Q2 is the unit lower block-triangular matrix defined by

I
I

0 0 Cq_ I

(2.15) Q2-

n-1., AXE
j=O

(2.16) CLQ Co [XE XE2 XE

The notation col UV]’2d is used to represent matrix UT, (UV) T, (gvn-l) T] T.
We will prove that in the nonmonic case we obtain the equivalence between CL

and E by substituting for Q- 1, in (2.11 ), another unit lower block-triangular matrix P,
which we construct from the coefficients of the fight divisor Lq()t) and matrix An.

From 1.5 and (2.12) we obtain that
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and from (2.6) and 2.13

X [I,0,0, ,0’,0,0, ,01,

XE= [0,I,0, ,010,0, ,0l,

(2.17)

XEu- [0, 0, 0, ,I10, 0, ..., 01,

XEu= [-Co,-C1, ,-Cu-l] 1,0, ,0].

We thus have the following expressions:

q-1

Z CjXEJ+XEq=[O,O, O, ,011,0,0, ,0],
j=O

q-1

E CjXEj+’+XEu+I=[O,O, O, ,0’,0,I,0, ,0],
j=0

(2.18)

2 CjXEj+p-1 -[-XEn-1 =[0,0,0," ,010,0,0,""" ,II,
j=0

q-I, CyXEJ + P + XE" O, O, O, O -Bo, -B, -Bp_
j=O

If L(X) can be factorized into the form (2.1), (2.2) then, by Proposition 1,

(2.19) Z AyXEJ=[O,O,O, ,OI(I-A,,)Bo,(I-A,)B,,...,(I-A,)Bp_].
j=O

From (2.19 and the last expression of (2.18 ), we obtain that

(2.20)
q-1 n-1_, AnCjXEj+p- _, AjXEJ= [O,O, ,0-Bo,-B1, ,-Bp-1].
j=o j=o

Consider now the unit lower block-triangular matrix defined by

I O]mq(2.21) P=
Pl P2 mp

mq mp

where

(2.22) [Pl, P21--
0 O 0
0 O 0

I 0 0 0
Cq-1 I 0 0

0
0

AnCq-
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We then note that matrix P is related to matrix Q, given by (2.12)-(2.15), by
means of

P=diag (I, ,I, An)Q- + diag (0, ,0, I-An)

and P Q-1 when An I.
Premultiplying (2.16) by P and taking into account the expressions (2.17 ), (2.18 ),

and (2.20), we obtain that

PCLQ

Furthermore, from (2.21), (2.22), and (2.12), we have

Pdiag (I, ,I,An)Q
I

X
XE

XEq

q-1

CXE +XEo

j=0

q-1_, CjXE + p 2 +XE 2

j=o

q-1

AnCjXEj + p +A,XE
j=0

From (2.17 ), (2.18 we then conclude that

Pdiag (I, ,I,An)Q=diag (I, ,I,A,,)

X
XE

AnXE

and the pencils C(X) and E(X) are strictly equivalent. []

We now prove the necessary and sufficient conditions for the factorization problems
stated in the Introduction.

3. Necessary and sufficient conditions for nonlinear factorization.
THEOREM 2. Let L(X) ’= o A/X be a matrixpolynomial (not necessarily regular)

with Ai Cmm, O, l, n. L( X) is factorizable in theform
(3.1) L(X)=L(X)L2(X)...Lk(X),

where Li(X) is a matrixpolynomial ofdegree ni, 1, k, Y. ki= ni n andL2(X),
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Lk(X) are monic if and only if there exist unit lower block-triangular matrices P, Q e
cmn x mn SblCh that

(3.2) PCL(X)Q=E(X)

with

and

where

CL(X) diag (I, I, An X CL

E(X) diag (I, ,I, An)X-

0 0..0

(3.3) Ji e Cmni mni- i=2,---,k
0 0 0
I 0.-0

and CL, C are the companion matrices ofL(), Li( X ), 1, 2, k.
Proof. We will prove the necessity by induction on k >_- 2. The result was proved

for k 2 in Theorem 1. Let us assume that the result is true for k 1; then we will
prove that this assertion also holds for k.

We consider the nonmonic matrix polynomial

p k-1

(3.4) Lp(X)=LI(X)L2(X)’"Lk-I(X) BjXj, p= ni.
j=0 i=1

By Theorem 1, and from (3.1), (3.4), there exist unit lower block-triangular matrices
R l, S1 C such that

C J ]S,C=R
0 C.(3.5)

diag (I, ,I,An)= R1 diag (I, ,I, An)S1,

where Jk is an mn mp block matrix with the identity in the southwest corner and
zeros elsewhere.

From 3.1 ), (3.4) we note that Bp An and, according to the induction hypothesis,
there exist unit lower block-triangular matrices R2, $2 Cmpmp such that

CLk_ Jk-

(3.6)
Cop R2

diag (I, ,I,A,)= R2 diag (I, ,I, An)S2.
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From (3.5) and (3.6) we conclude that

C,, J
C,,_, J_

Cz= R
(3.7) CL2

diag (I, ,I,A,)= R diag (I, ,I,A,,)S,

where R and S are unit lower block-triangular matrices given by

R R1 diag (I, R2),

S= diag (I,$2)S.

The necessity now follows from (3.7).
We prove the sufficiency using the same idea that appears in 1] for the linear

factorization problem given by 1.4). Let Pand Q be unit lower block-triangular matrices
such that

c,. J
CL,_ Jk-1

PCIQ
(3.8) c, J

c,
P diag (I, ,I,A,,)Q=diag (I, ,I,A,,).

From (3.1), let H(X) be the nonmonic matrix polynomial given by
n-1

(3.9) L(X)L2(X)’"L,(X) , Hj,J+A,,’=H(,).
j=0

Then, as has been shown in the first part of the proof, there exist unit lower block-
triangular matrices R, S such that

c,. J
CL,_, J,-

C,= R
(3.10) CL J2

C,

35

diag (I, ,I,A,)= R diag (I, ,I,A,)S.

From 3.8 and (3.10) we obtain that

RPCcQS= c,
(3.11)

RP diag (I, ..., I,A)QS diag (I, ..., I, A),

where RP and QS are unit lower block-triangular matrices. Set RP U [Uj] and
(QS)- V= [Vii], i,j 1,... n, where

I if =j,
(3.12) Ui= V=

0 ifi<j.
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From (3.11 we get

UC= CV,
(3.3)

Udiag (I, ,I,A,) diag (I, ,I,A,)V,

and by means of algebraic manipulations we obtain that

(3.14) U0= V/= 0, j<i.

From (3.12)-(3.14) we deduce that Ai H;, 0, 1, n 1. Then by (3.9), the
sufficiency is proved. []

COROLLARY 1. Let L(X) Z’=0 AjXj be a matrix polynomial (not necessarily
regular) with Ai Cmm O, 1, n, and let Li( X be a nonmonic matrixpolynomial
ofdegree ni, 2,... k , = ni n Then L(X) isfactorizable in theform

(3.15) L(X)= L1 (X)L2(X)... Lk(X),

(3.16) L,.(0) =I, i=2, ,k

ifand only ifthere exist unit lower block-triangular matrices P, Q C such that

PRL(X)O=F(X)

with

RL(X) =diag (I, ,I, Ao)X-RL,

F() diag (I, ..., I, Ao) X
RL2

where RL RL, are the comonic companion matrices ofL(), Li( ), 1, 2, k, and
matrix Ji is defined by 3.3 ).

Proof. We consider matrix polynomials given by

N(X) X"L(X-),

Ni(X) ,mZi(,-l), i= 1,2, ,k.

From (3.16), N2(X), Nk(X) are monic and L(X) can be factorized into the form
3.15 ), (3.16) if and only if

N(X)= N1 ()k)N2()k).’’ Nk(,).

Applying Theorem 1, the result is obtained, because the companion matrices of N(),)
and Ni(X) are, respectively, equal to the comonic companion matrices of L(), Li(),
i= 1,2,.--,k.

COROLLARY 2. Let L(X) Zj’=o AjX be a matrix polynomial (not necessarily
regular) with Ai C’ m, O, 1, n and let Li( X be a nonmonic matrixpolynomial
ofdegree ni 2,... k , k

i= Eli-- n such that

(3.17) det Li( X - O, 2, k.

Let x C be such that Li() is nonsingularfor each 2, k. We consider matrix
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polynomials given by

M(X) L(X + c),

MI(X) L(X + c) Lj(o)

M(Xl ( (X+

Mk(X) Lk(a)-lLk(X+a).
Then

L(c)], 2, ,k- 1,

3.18 L(X) L (X)L2(X)... Lk(X)

ifand only ifthere exist unit lower block-triangular matrices P, Q e C mn such that

PR4( X Q G(X)

with

R4( X diag (I, I, M(0 X Rt,

Rk Jk
RMk- Jk-1

G(X) =diag (I, ,I,M(0))X-

where Ji is defined by 3.3 and Ru, Ru, are the comonic companion matrices ofM(X),
Mi( X ), 1, 2, k, respectively.

Proof. We note that the existence of c e C such that Li(c) is nonsingular,
2, k, is a consequence of (3.17). Factorization 3.18 is equivalent to

M( X M1 X)Me( X)-" Mk( X ),

where Mi(O I, 2, k. Then, the result follows from Corollary 1. Vq
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Abstract. The inverse ofthe covariance matrix in a linear experiment with nonbalanced two-way hierarchical
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1. Introduction. Many statistical procedures refer to linear models, for which the
best linear unbiased estimation and the minimum norm quadratic unbiased estimation
require inversion of the covariance matrix (cf. Rao 197 3 )). The problem often reduces,
in fact, to inversion ofapatterned matrix, where the pattern is induced by the configuration
of the random effects.

In the classical (i.e., balanced) case, the random effects are subject to hierarchical
or cross classification with equal frequencies in subclasses. Then the covariance matrix
may be easily expressed in a canonical form and there is no problem with its inversion.
A key to recognition of the pattern in the unbalanced case can be found, for instance,
in Stepniak (1983). We refer to Graybill (1969) as a good introduction to inverting
patterned matrices. Some special computing techniques can be also taken from House-
holder (1957), Greenberg and Sarhan (1959), Dwyer (1964), and Searle (1966).

This note deals with the inversion of the covariance matrix in the unbalanced hi-
erarchical classification. So far the problem has been solved explicitly for the one-way
case only. Moreover, a stage-by-stage iterative computational procedure was given by
LaMotte (1972). We present an explicit form of the inversion of the covariance matrix
in a linear experiment with the unbalanced two-way classification of the random effects.

2. Definitions and initial reduction. The covariance matrix in a linear experiment
with hierarchical classification of the random effects can be formally defined as follows.

Let n, q, and kl, kq be arbitrary positive integers such that q < n and kl <
k2 < < kq </7. Moreover, let nil, "’", nlk,; n21, n2k2; /Tql, rtq:qbe
positive integers such that

ki

nij=n, i= l, ,q,
j=l

and all the elements of the matrix Vi Vi +1, where

Vi diag (Jn,,, "’",

are nonnegative for 1, q 1, and Jmn is the m n matrix consisting of ones;
when m n, we write Jm instead of Jmm.

Any matrix Z of the form

q

2; 3’0I +
i=1
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where Vi is defined by ), while "Yo is positive and "Y1, /q are nonnegative scalars,
is said to be the covariance matrix in a linear experiment with q-way hierarchical clas-
sification of the random effects (cf. StCpniak 1983, 3 )). The classification is said to be
balanced if the matrices V, Vu may be presented in the form

Vi= Ik,@ Jri, 1, q,

where (R) denotes the Kronecker product of matrices; otherwise it is said to be unbalanced.
The simplest example of hierarchical classification is one-way classification. For

this case

and

where

2; ’oI, + 3’ diag (Jr/l, Jr

,-

A =diag [( + pn)-Jr/,, ,( + p?tk)-lJm,]

and p ’l ]’Y0.
In this paper we focus on two-way hierarchical classification. For this case the co-

variance matrix may be presented in the form

2; ")’0 diag (B, ,Bk),

where B, Bk are matrices of type

(2) B= Im + p diag (Jm,, "’", Jm,.)+ XJm,

while rn m mr are positive integers satisfying rn 2,’" mi, and p and X are
nonnegative scalars defined by p -r 1/’Y0 and

In this way the problem ofinversion ofthe covariance matrix in a linear experiment
with a two-way hierarchical classification of the random effects reduces to inversion of
the matrix (2).

3. Inversion of the matrix B. We are seeking the inversion of the matrix

in the form

B I, + p diag (Jm,, Jm) + XJm

(3) I-X,

where

(4) X

The matrix equation

(5) B(I-X)=I
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may be rewritten as a system of linear equations

xli + pml Xli -’t-

_
FljXji- O,

j=l

X2i -1" pm2x2i + , mjxji- 0,
j=l

Xii @ pmixii- p + , mjxji- )x 0,
j=l

Xri "JI- PmrXri + mjxji- k O,
j=l

1, r, or equivalently, as

(6)

+ pml + Xm )Xli + ,m2x2i + + kmrXri ,
.mlxiq-( + pm2 + km2)x2i-k- -+- XmrXri X,

Xm X qt_ -Jr- + Pm + km x qt_ -Jr- km X k + 0

,mxi+ Xm2x2i+ +( + pmr+ ,mr)Xri ,
for/= 1,...,r.

Now let us write the system (6) in matrix form:

Wxi bi, 1, r,

where xi (xi, Xri)’ and bi is the vector of size r with the ith component equal
to p + X, and otherwise. Then the solution of (5) may be presented in the form
(4) with

IW01 i=1,-" ,r, j=l, ,r,x;- IWl’
where W0. is the matrix obtained from Wby replacing its th column by b.

By routine algebra we get

fiWI (1 +omi)+ X I-I mi(1 +omj)
ljP

and

(p+X) l-[ (l +pmk)+pX Z mk ]-I (l +pmr)
k4i k4=i r4i,k

for i=j,

h [-[ + pm,) for =/:j.
kqi,j

Thus, in consequence, the inverse of the matrix B may be presented in the form (3),
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where X is given by (4) with

+ omi) 2 p+
+ X , rn +

+ om

for i=j,

+ omi)( + omj)

lq-X mk
-t- pmkk=l

for i4:j.
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Abstract. This paper considers the equation AXB + CYD E in matrices over a principal ideal domain.
Under the assumption that [A C] is left invertible and B’: D’]’ is right invertible in the domain, it is shown
that this equation is solvable if and only if both AX + YD E and XB + CY E are solvable. The set of all
solutions to the equation are shown to be in bijective correspondence with the set of solutions to the latter two
equations modulo an equivalence relation.
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1. Introduction. We are concerned with the solvability of a linear matrix equation
of the type

AXB + CYD E

over an arbitrary principal ideal domain (PID) D. The set of solutions (X, Y) of this
equation is also examined. The special cases of this equation that are of particular sig-
nificance are those of type AXB E and AX + YD E. These figure as the main
solvability conditions of various algebraic control problems. The general equation (1)
itself comes up in the analysis of the regulator problems (see, e.g., [2] and [10]).

Being linear, these equations are easily analyzed using Kronecker products and the
theory of linear vector equation Ax b over a PID. This well-known approach can also
be used to yield a description of the set of all solutions to in terms of a particular
solution. Although this may be completely satisfactory from a purely mathematical point
of view (it encompasses a verifiable solvability condition and a constructive procedure
to obtain solutions, etc.), it has a major drawback from a system theoretic viewpoint.
The drawback is that the structure of the original matrices composing the problem data
are lost in the solvability condition and in the description of the set of solutions. (The
extensive literature on linear matrix equations in mathematical journals show that such
a concern is not actually peculiar to system theorists.) In what follows, we state and
derive alternative solvability conditions in which the structure of the matrices A, B, C,
D, E is preserved and which are still suitable for obtaining a description of the set of all
solutions to the equation in terms of a particular solution.

Among the many papers which deal with in the special case where D is a field,
[1] and [11] are noteworthy. In [1], a necessary and sufficient condition for (1) to be
consistent (i.e., a solvability condition) is given in terms ofg-inverses of the matrices A,
B, C, D. In 11 ], for the special case B I, C I, it is shown that is solvable if and
only if

are equivalent over the field D (which amounts to the equality of ranks of these two
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matrices). This result of 11 extends to the general case ofD being a PID, as we emphasize
below in Lemma 2.

Some ofthe terms that we use in the subsequent sections are now defined. A matrix
M over D (i.e., with entries in D) is called left unimodular (or left invertible over D) if
and only ifMN I for some matrix N over D. It is right unirnodular (or right invertible
over D) if and only ifLM I for some matrix L over D. It is unimodular if and only if
it is both left and fight unimodular. Two matrices A, B are left coprime if and only if
the matrix [A" B] is left unimodular and right coprime if and only if [A" B’]’ is fight
unimodular, where "prime" denotes "transpose." Let a matrix M over D have full row
rank over the field of fractions F of D. Then, there exists a square matrix L and a left
unimodular matrix M, both over D, such that M LM. Such a matrix L is called a
greatest leftfactor ofMand it is denoted by L glf (M). A glf (M) is unique up to fight
multiplications by unimodular matrices. For a full column rank matrix M over D, a
greatest right factor ofM, grf (M), is the transpose of a greatest left factor of M’.

2. The equations AXB E and AX + YD E. Let A Dak, B Dlb, and E
Dab. Let U Daa be a unimodular matrix such that

for some full row rank matrix A e Drxk, where rA is the rank of A over the field of
fractions F of D. Also let V e D b b be a unimodular matrix such that

ev= [, 0]

for some full column rank matrix/ DTM rB, where re is the rank ofB over F. Define

UEV
/’21

where the matrix on the fight-hand side is partitioned so that E DTM. Further-
more, let

LA glf (A), R8 grf (B),

so that

d= LA, =
for some left invertible d and fight invertible/ over D.

LEMMA 1. Equation

(2) AXB= E

has a solution over D ifand only if
(i) E12 0, E21 0, E22 0,
(ii) L R . DrAxrs.
Proof. See, e.g., [9] for the proof.
Let A e Dak, D Dnxb, and E Dab. The solvability of

(3) AX+ YD=E

has been examined by Roth and the following is a fundamental result. (The original
proof by Roth is for the special case where D is the ring of polynomials. However, the
same proof applies to arbitrary PIDs with almost no change.)
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LEMMA 2. Equation (3) is solvable over D ifand only if

0 0 D]
are equivalent over D.

Still, a special case of is obtained by letting E I in (3). It is interesting to note
that the analysis of (3) can be reduced to the analysis of an equation of the type AX +
YD I by redefining the matrices A and D. The following is an unpublished result of
Fuhrmann [4 ].

LEMMA 3. Equation (3) has a solution ifand only if

(4)
0 I 0

is solvable, or equivalently, ifand only if
E

(5)
0 I

X+ I
0

is solvable.
Proof. Given a solution (X, Y) of (3), we let

I:=
0

0]=,

which clearly satisfies (4). Conversely, given a solution (, I) of (4), partition and
I compatibly and define X := -)2 E, Y := I2. Now, 3 is satisfied by X and
Y. The fact that "(4) is solvable if and only if (5) is" can be established by simple
unimodular transformations on the equations. []

3. TheequationAXB + CYD E. LetADa BDlb, CDam DDmb

and E D b. The solvability of the general equation over D is now considered.
This equation may be rewritten as

[A =EC’O Y D

an(t ence, it is ote type (), were a solution of (tecentralize(t structure is sought over
D. Let U and V be unimo(iular matrices over D suc tat

U[A CI
0

V=/ 0

where [" (] is of full row rank and [/"/’]’ is of full column rank. Define

:= UEV,

where the partition is such that E is of size rank [A’C] rank [B"D’]’. Further-
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more, let

[2 d] z_,[A dl,

for a left invertible [" d] and right invertible [/"/5’]’ over D. Thus,

L=glf

Define

F’= L-IR-1,

which is a matrix over the field of fractions of D. The following is a direct consequence
of Lemma 1.

PROPOSITION 4. Equation (1) is solvable if and only if all three of the following
conditions hold:

(i) EI2 0, E2! 0, E22 0.
(ii) / is over D.
(iii) Equation

(7) AX/ + dY/}=/

is solvable over D.
Furthermore, ifthe conditions (i) and (ii) hold, then (X, Y) is a solution of( if

and only if it is a solution of(7 ).
Using this result, we can without loss of generality consider the solvability of

under the assumptions

(8) [A C] is left unimodular,

B] is right unimodular.(9)
D

By these assumptions, there exist matrices M, N, L, K over D such that

are unimodular matrices. Showing their inverses explicitly, in compatibly partitioned
form, we have

Note. In the case where [A C] and/or [B" D’] is square and hence already uni-
modular, we can let the following expressions (2, , 2r, and/or/,/5,/(,/2 be zero
and all subsequent claims remain valid.

We can now give the following alternative conditions for the solvability of ).
THEOREM 5. Let (8) and (9) hold. Then, thefollowing are equivalent statements"
(i) Equation is solvable.
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(ii) The equation

(11)

is solvable.
(iii) Both ofthe equations

(12) AX + YI D E,

are solvable.
(iv) The equivalence over D

holds.
v The equation

ACX+ YDB EKB AME

XzB + CYz= E

C E 0 0 C 0 0 0
0 B 0 0 0 B 0 0
0 0 A E 0 0 A 0
0 0 0 D 0 0 0 D

(13)
0 A 0 D 0

is solvable.
Proof. We establish the following chain of implications: (iii) (i) (ii)

(iv) (v) (iii). (iii) (i) ]. Given Y, Y, X2, Y2 satisfying (12) let Y XK +
M(YK + XzL)D and Y := Y2L + N(YIK + XzL)B. Using (10), it is straightforward to
verify that (X, Y) is a solution to ).

(i) (ii) ]. Given X and Y satisfying ), let

X’=N(XB-ME)-M(YD-NE), Y:=(CY-EL)K-(AX-EK)L.

Using (10), it can be seen that these matrices satisfy 11 ).
[(ii) (iv)]. If 11 is solvable over D, by Lemma 2, we have

0 B 0 DB

Extending each matrix by identity matrices of size a + b, we also have

AC EKBAME 0 0 AC O_ 0 0
0 DB 0 0 0 DB 0 0
0 0 1,0 0 0 Ia O
0 0 0 Ib 0 0 0 I,

By simple unimodular operations, which also employ the unimodular matrices appearing

0 0 C E 0 0
0 0 0 D 0 0
Ia 0 0 0 A E
0 Ib 0 0 0 D

0 C 0 0 0
0 0 B 0 0
0 0 0 A 0
Ib 0 0 0 D

in (10), it is not difficult to see that

A EKBAME
0
0

AC O_ 0
0 DB 0
0 0 I
0 0 0

This yields the equivalence claimed in (iv).
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[(iv) (v)]. By permutation of the rows and columns of the first matrix, it fol-
lows that

Similarly,

C E 0 0 C 0 E
0 B 0 0 0 A 0
0 0 A E 0 0 B
0 0 0 D 0 0 0

0
E
0
D

C 0 0 0 C 0 0 0
0 B 0 0 0 A 0 0
0 0 A 0 0 0 B 0
0 0 0 D 0 0 0 D

Hence the matrices on the fight-hand sides are equivalent. By Lemma 2, the result follows.
(v) (iii) ]. This is immediate on partitioning the matrices ), I? conformably in

(13). E]

Remarks. Given two equivalent block-diagonal matrices, it is by no means true
that their corresponding diagonal blocks are equivalent. For this reason, one point may
look peculiar in Theorem 5. Comparing the conditions (iii) and (iv) and interpreting
(12) via Lemma 2, it is clear that (iv) implies the equivalence of the corresponding
diagonal blocks of the matrices appearing in (iv). This quite surprising fact is a conse-
quence of the special structure of the block entries together with our coprimeness as-
sumptions among the matrices A, C and B, D.

(2) Let D be a field. Then, equivalence over D is simply rank equality and the
condition (iii) ofTheorem 5 together with Proposition 4 easily yields that is solvable
if and only if all the rank equalities below hold:

rank[A C E]=rank[A C 0],

rank rank

rank
0 D 0 D’
C

rank
0 B 0 B

This is an alternative to the condition given in [1 and it is more directly related to the
problem data.

4. The set of all solutions. We now relate the set of solutions of the equation
and the set of solutions of the uncoupled equations (12).

Let us denote

O: (X, Y) AXB + CYD E },

12 :--" {(Xl, gl,X2, g2): AXl-t- Y1D=E,X2B+CY2=E}.
These are the solution sets of and (12), respectively, over D. On O, we define an
equivalence relation by

(x, r) (x, r)
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if and only if

(14) X=X+COD, Y= Y-AOB

for some 0 over D, where C, D, A, B are the matrices in (10). Similarly, on 0,2, we
define an equivalence relation by

X, Y, X2 Y2) (X,, Y, X2 Y2)

if and only if

(15) X, =X, +O,D, Y, Y,-AO,, X2=X2+C02, Y2, Y2,-02B,

for some O, and 0_ over D. Let 0 { [X, Y] } and 0,2] { [X,, Y,, X2, Y2] } denote
the sets of equivalence classes induced by these equivalence relations.

THZORZM 6. The map p: 6t,2 -- 6’ defined by

[X,, Y1 ,X2, Y2]--[X1K+M(Yl+X2/S), Y2L + N(Y,+X2/S)/],
is a bijection.

Proof. We show that the map is well defined, onto, and one-to-one.
[Well-defined]. If (X,, Y,, X2, Y2) [X,, Y1, X2, Y2], then there exist 0,, 02 over

D such that 15 holds. Defining

0"= NO,K+ MO2L,

it is easy to verify, using (10), that

XIK+ M( Y1K+X2L)6 X1K+M(Y,g+X)6+ 06,

Y2L + N( Y1K+X2L)B Y2L + N(YIK+X2L)B-AOB.
Consequently, ( [X1, Y1, X2, Y2 lp( IX,, Y1,22, Y2 and the map is well defined.

Onto ]. Given [X, Y] 0 ], consider

X, XB, Y1 CY, X2 AX, Y2 YD.

Then, an easy computation employing (10) yields

@( [Xl, Y1,22, Y2 IX+ COD, Y-AOB], t9"- MYK-NXL.

Consequently, ([Xl, Y1,22, Y2 [X, Y and the map is onto.
One-to-one ]. Let ([X1, Y1, X2, Y2 ]) [X, Y] and b([)l, 71, )2, I72 ])

[X, Y and suppose [X, Y [X, Y ]. Then, there exists 0 over D such that

X= XlK+M( YIK+ X2L)D X+ COD XlK+M(YIK+X2L)D + OD,

= 2L+ N( Y1K+XzL) Y-0/ Y2L + N(Ylg+X2);-A-O.
Now, define

OI:=COB-MZB+(X1-X1)L, 02"=AOD+NZD-(Y2 Y2)K,

where

Z’= (]71 Y, )/+ ()2 X2)[.
It is straightforward to verify, using (10) and the equalities/IX, + Y, D E, X2B +
CY2 E, AXl + Y, D E, X2B + CY2 E, that 5 holds. Hence,
[Xl, Y,, X2, Y2] and the map b is one-to-one.
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The significance of Theorem 6 above is that once a characterization of the set of
equivalence classes of solutions to AX + YD E is known, we can obtain a character-
ization of O via the map . It is also possible to establish a similar bijective correspondence
between 5f and a set ofequivalence classes ofsolutions to 11 or to 13 )). A realization
theoretic approach that yields the set of all solutions to AX + YD E or its dual XB +
CY E is contained in [3] for the case where D is the polynomial ring, and in [8] for
the case where D is the ring of stable or proper stable rational functions. Another related
result is Theorem 4.6 of [7] which yields, indirectly through "skew-complements," a
polynomial parameterization of all solutions to AX + YD I. Although the latter result
is again for the case where D is the ring of polynomials, its modification for the tings of
stable and proper stable rational functions is straightforward. In order to clarify the
relation between the parameterization of the set of (equivalence classes of) skew-com-
plements and the set of (equivalence classes) of solutions to AX + YD I, we first recall
the following definitions from 12 and 17 ].

DEFINITION. Let A Daxk, D Dmxa. Suppose that k + m a >_- 0. The
pair (A, D) is called skew-prime over D if and only if there exist d e Dmx(k+m-a), )
D(k+m-a)xk such that

DA

where (D, A) is left and (A,/)) is fight coprime over D. In case one exists, the pair
(A,/)) is called a skew-complement of (A, D).

By a result of 12 ], it is known that (A, D) is skew-prime if and only if there exists
a solution (X, Y) to the equation AX + YD I. The set of skew-complements and the
set of solutions to this equation are in bijective correspondence modulo suitable equiv-
alence relations. We now establish this bijection explicitly. We assume below that AX +
YD I is solvable so that k + m a >= 0 necessarily holds. In the case where k + m
a 0, it can be shown that [] defined below consists of a single element and that
DA 0 so that (0, 0) is the unique skew-complement of (A, D). Hence, assume below
that k + m a > 0.

On the set of skew-complements - of (A, D), we define an equivalence rela-
tion by

(d,)-(d,:) iff ,d=du, 1=
for some unimodular U over D. Let [-] denote the set of equivalence classes induced
by this equivalence relation. Also let

r {(X, Y) AX+ YD I}
denote the set of solutions to AX + YD I and define an equivalence relation on r by

(X, Y)(), I?) iff X=)+OD, Y= I?-AO,
for some 0 over D. With abuse of notation, we let [gF] denote the set of equivalence
classes induced by this equivalence relation.

THEOREM 7. The sets [’] and ] are in bijective correspondence.
Proof. Consider a map defined as

" []--* [w]- IX, Y]--,[fi,b],

(16) I /) -X X

where A,/) are such that
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for some , I? over D. The proof consists of showing that is well defined, one-to-one,
and onto.

[Well-defined]. We first show that given [X, Y] e [], there exist matrices ,/,
), I2 such that (16) holds. Since (X, Y) e 6f, it holds that AX + YD I. Let I?,/ be
such that

is a completion of the left unimodular [Y -A] to a unimodular matrix over D. Parti-
tioning its inverse compatibly, we have the equality

Y D -L X

Comparing AX + YD I and AL + YK I and noting that the columns of [" J’]’
are a basis for the kernel of [Y -A l, it follows that D K-I and X L + 21 for
some I over D. Letting I? f + y, OA, we obtain (16). We next show that
"if[X, Y] [2, ], then ([X, Y]) ([2, ])." Let [X, Y] [, ] so that 2
X- OD, Y + A0 for some 0 over D. If we denote [A, ] 4([X, Y]) and
[A, ] 4([, ]), then by the definition of 4, there exist matrices 2, , M, N such
that (16) and

N -(X-OD)
=I

hold. By simple row and column operations, it also holds that

(17)
-X =I’

where M- 0, N + DO. Comparing the equalities Y A, Y
obtained from 16 and 17 ), it follows that U, 2 U for some matrix U over
D. By fight copfimeness of (, 2), the matrix U is actually unimodular. Similarly, the
equalities D X, D Xyield that V, V for a unimodular V over
D. Employing these and comparing various equalities implied by (16) and (17), it is
easy to obtain the following four equalities:
A A(VU)-, 2 2( VU)-. By left unimodulafity of[" ] and by right
unimodularity of [" 2’]’, these four equalities imply that VU I. Hence,
U-, A U, which prove that [A, ] [, ].

[Oe--e]. We need to establish that fif4([X, Y]) 4([, 1), then IX, Y]
[2, fl." Let us denote, as before, [A, ] 4([X, Y]) and [, ] 4([2, ]). If
[A, [, ], then A U, U-D for some unimodular U. By definition of
there exist matrices 2, , M, N over D such that (16) and

=I

hold. Substituting U, U-1 in this equality and perfoing simple unimodular
transformations, we obtain

(la) N D -2 =I,
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where MU, := U-IN. Comparing various equalities following from (16) and
18 ), it is easy to see that I2 y- AO, I7" +/O, X + 9D, hr )- j for
some 0 and 9 over D. The following four equalities are also obtained by these last
equalities and by comparison of various equalities from (16) and 18)"/OD =/D,
AOD AD,AO A,/0 =/. By left unimodularity of[D" .] and by fight
unimodularity of [A"/’]’, it now follows that . Hence, X + OD, I Y-
AO, implying that [X, Y] [,

[Onto]. Let [J,/] [-], so that DA / with (D, ) left and (A,/) fight
coprime. Thus there exist matrices X, Y, ), I2 satisfying

-X / =I.

This last equality is identical with (16), and hence, 4([X, Y]) [,/]. []

The results of Theorems 6 and 7 above and Theorem 4.6 of 7 yield a parameter-
ization of all solutions to (1) in the cases where D is one of the tings of polynomials,
stable rational functions, or proper stable rational functions.

5. Comments. There are at least two directions for further research. These concern
the following equations over D"

N

(19) AiXiBi C,
i=1

N

(20) AiXBi C.
i=1

Considering (19), we note that the cases N and N 2 are the objects of Lemma
and Theorem 5, respectively. The simplicity of these results gives some hope of tackling
the general case (19) via the equivalence over D of suitable matrices; although presently
no such result is available for N > 2. Existing results concerning (20) have been sum-
marized in the excellent survey by Hautus in [6 together with some improvements.
However, even in the case N 2, no result that respects the structure of the matrices A;,
Bi, and C is currently available except in a special case where Bi qi(B) for some matrix
B over D and polynomials qi(x) with coefficients in D. This is not quite surprising in
view ofour characterization results above. The solvability ofAXB + CXD E is equivalent
to the existence ofan element ofthe form (X, X) in the solution set O of ). Checking
the existence of such an element seems to be a formidable task as the set of equivalence
classes 012 ], and hence O ], exhibits a rich and complicated structure (see 7 ). There
is, however, a number of papers containing structural results on the equation AXB +
CXD E in the special case where D is a field. See, e.g., [11], [5], and the references
listed in 5 ].

Acknowledgments. am indebted to the referees for pointing out the relevance of
[1], [5], and [6] to the work reported here, and especially to one of them, who made
me realize my ignorance of the vast literature in the field case.
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GAME OF VON NEUMANN*
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Abstract. Von Neumann and others considered a two-person zero-sum game with nonlinear payoff function
x’Ay/xTBy, where A and B are m n matrices, xT is the row m-vector strategy of the maximizing player
(player ), and y is the column n-vector strategy of the minimizing player (player 2). This game is defined to
be completely mixed if every solution (or optimal strategy) (x, y) is such that all elements ofx and all elements
of y are positive. In such a game, it is supposed that the matrices A and B are infinitesimally perturbed by
matrices of perturbations, i.e., multiple elements of each matrix are perturbed simultaneously. The effect of
such perturbations on the solution and value of the game is calculated.

Key words, zero-sum game, two-person game, nonlinear game, perturbation theory, von Neumann model,
economic model, stochastic game
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1. Introduction. This paper develops the perturbation theory of a finite, two-person,
zero-sum game with a nonlinear payoff function proposed by yon Neumann [13 in a
model of economic growth. Subsequent development of the model has been synthesized
by Morgenstern and Thompson 11 ]. The same payoff function appears in a special case
ofa stochastic game proposed by Shapley 12 ]. Because the game has more than economic
interpretations, we shall not emphasize the economic view of the game nor restrict our
assumptions to those that might be plausible in an economic application.

Von Neumann’s game has m pure strategies for player 1, the maximizing player,
and n pure strategies for player 2, the minimizing player, where <- m, n < . The
strategy of player is specified by a row m-vector x T, where xi is the probability that
player chooses pure strategy i, for 1, m. The strategy of player 2 is specified
by a column n-vector y, where yj. is the probability that player 2 chooses pure strategy
j, forj 1, n. The payoff’function ofthe game, that is, the amount ofmoney player
2 must pay player if player has strategy x T and player 2 has strategy y, is xAy/xVBy,
where A and B are real rn n matrices. This payoff function is defined (though possibly
equal to + ov provided its numerator and denominator are not simultaneously equal to
zero; additional conditions will be provided to assure that the payoff function is always
defined. As there does not appear to be a standard name for this game, we shall call it a
rational game specified by (A, B), because the payoff function is a ratio of lin-
ear forms.

Marchi [8] extended and generalized the equilibrium points of a rational game to
an n-person game with a rational payoff function. Marchi [7] and Marchi, Tarazaga,
and Elorza [9] applied such results to expanding economies.

The perturbation theory of a game describes how small variations in the parameters
of the payoff function affect the solution and value of the game. The perturbation theory
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of games in general, and of rational games in particular, is of practical interest for both
estimation and control. The value of a rational game has an economic interpretation as
the asymptotic rate of change (growth or decrease) of an economy. In economic appli-
cations of the game, the matrices A (the output matrix) and B (the input matrix) must
be estimated from data. The first derivative of the value with respect to the elements of
A and B indicates the value’s sensitivity to errors in the values of these elements, and
therefore indicates which elements should be measured with greatest precision. Kuhn
and Tucker [6, p. viii] recognized the importance of perturbation theory for control in
their introduction to the work of Mills [10]" "This study promises practical application
whenever these parameters [the matrix elements] can be controlled or altered since it
indicates which changes will have a beneficial effect on the value."

To our knowledge, the perturbation theory of rational games has not been studied
before, except in the linear special case when B Jm,n, where Jm,n is the rn n matrix
with every element equal to one. In this case, a rational game reduces to an ordinary
two-person zero-sum matrix game. Previous studies of the perturbation theory of zero-
sum matrix games are reviewed by Cohen [1] and Cohen, Marchi, and Oviedo [3].

We now establish notation and state some results which are mostly standard or
readily proved.

Let Pn {x R n: X O, 1, 2,.’., n, and ’= xi 1} and P+
{x e P," x; > 0, 1, n }. Vectors are assumed to be column vectors, and the
superscript T denotes transpose.

Given two real rn n matrices A and B we say that a pair of vectors (2T, jT)
Pm Pn is a solution ofthe matricial problem if

(., TA;)(xTB;)--(xTA;)(.TB;)O VXPrn,

(x VAy)(Xvy) (X VAy)(X vy) >_- 0 VyP..

To prove the existence of a solution to the matricial problem, we recall a result of Marchi
[8] which is a special case of a theorem of Karamardian [5].

LEMMA. Consider a real continuousfunction ok: Z -- defined on the Cartesian
square of2, a nonempty, compact, convex set in a Euclidean space. Ifok(., ) is concave
for any r Z,, then there exists a point r such that

max 4( a, ).

THEOREM 1. For any real rn n matrices A and B, a matricial problem has a
solution.

The theorem is easily proved by using the lemma. Essentially this theorem was
known to von Neumann 13 ]. Under the conditions given by von Neumann 13 ], namely,

aij >= O, bij >= O, ai + b6> O, j 1, n

the solution ofthe matricial problem determines a solution or saddle point ofthe rational
zero-sum game with payoff function xTAy/xTBy. In what follows, instead of von Neu-
mann’s assumptions we assume B > 0, i.e., every element biy ofB is positive real. Shapley
[12 considers the same assumption. Then a solution of the matricial problem satisfies

xTAy <ZTA.ff <ZTAy VXPm,
XTBff TB . TBy

which is a saddle point of the rational game. Any saddle point determines the value v of
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the game v (rAfi)/(YrBfi), and furthermore

v= max min (xrAy)/(xrBy) min max (xrAy)/(xrBy).
xePm Y-Pn yePn xePm

Solutions are interchangeable. That is, if (2,)7) and (2, 37) are two saddle points of a
rational game, then (2, 37) and (2, 17) are also saddle points. The proof is identical to the
proof for ordinary zero-sum matrix games. Optimal strategies for both players may be
defined as in matrix games. The set of optimal strategies of each player is a nonempty
convex polyhedron.

A rational game is defined to be completely mixed (abbreviated "cm") when, for
every solution (x, y), x > 0 and y > 0. When B Jm,n, this definition reduces to
Kaplansky’s [4] definition ofa completely mixed matrix game. Completely mixed rational
games exist. For example, let m n, B Jn, and let A be a diagonal matrix with positive
elements on the main diagonal. This rational game is an ordinary zero-sum matrix game,
and Kaplansky [4 proved that it is cm.

In a rational game (A, B) with B > 0 (as we assume throughout), if (x, y) is a
solution, then (Ay)i/(By)i < v implies Xi 0 and (xrA)j/(xrB)j > v implies yj- 0.
Therefore, in a cm rational game specified by (A, B) with B > 0, if (x, y) is a solution,
then (Ay)i/(By)i v, for all 1, m, and (xTA)/(xrB) v, for all j 1,
n. Equivalently, Ay vBy and xTA vxrB. If, in addition, A 4:0 and A >= 0 (i.e., each
element a0. ofA is nonnegative real), then v > 0. The proofs ofthese remarks are straight-
forward and are omitted.

Let p(A denote the spectral radius (maximum modulus of the eigenvalues) of an
n n matrix A. Under certain conditions, there is a direct connection between the value
of a cm rational game specified by (A, B) and the spectral radius ofA-lB.

PROPOSITION 1. In a cm rational game specified by A, B) with m n and B > O,
ifA is nonsingular and A-IB > O, then v 1/p(A-IB) > 0 and, for every solution
(x, y), y is unique and xB is unique. These are the right and left positive eigenvectors
ofA-1B corresponding to the eigenvalue 1/v.

Proof. By Perron’s theorem for positive matrices applied to A-1B, A-B has a unique
positive fight eigenvector in P+. But from previous remarks, y vA-By. As y > 0,
A-1B > 0, evidently v > 0 and v- y A-By, so y must be that unique fight eigenvector
corresponding to the positive eigenvalue v -1 and there can exist no other rt e P+ such
that At/= vB. Similarly, xrA(A-B) vxrB(A-1B)or(xTB)v-1 (xTB)(A-1B). [-1

This proposition has slightly stronger assumptions and arrives at slightly stronger
conclusions than Theorem 5 (a) of Cohen and Friedland 2 ].

While xrB is unique, under the assumptions of Proposition 1, it is clear that xr

need not be unique.

2. Perturbation theory. Let A, B, G, H be fixed n n real matrices, B > 0, and
for each real number c, define

L L( c) A + cG, M=M(a) B + cH.

It is clear that ifB > 0 and A is nonsingular andA-B > 0, then there exists a real number
r > 0 such that, for all real c with I1 < r, (i) M() > 0, (ii) L(c) is nonsingular, (iii)
[L(c)l-M(c) > 0, and (iv) o([L()]-M(c)) is analytic in c.

Define a rational game specified by (A, B) to be nonsingular if A and B are both
n n and both nonsingular.

PROPOSITION 2. Suppose a nonsingular rational game specified by (A, B) is cm,
B > 0, andA-IB > O. Then there exists a real number r such that if lc[ < r, the rational
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game specified by (L(a), M(a)) is nonsingular and cm, the value v(c) ofthat game is
given by v(a) 1/o([L(a)]-lM(a)), and the solution (x(a), y(a)) of that game is
unique.

In other words, for sufficiently small perturbations (measured by a), under the
common assumptions of Propositions and 2, the conclusions of Proposition about
the unperturbed rational game specified by (A, B) carry over to the perturbed rational
game specified by (L(c), M(a)).

Proof. IfA and B are nonsingular, then so are sufficiently small perturbations ofA
and B. Thus, the rational game specified by (L(a), M(a)) is nonsingular for small
enough values of a. By Proposition 1, the game specified by (A, B) has solutions (x, y)
such that y and z r xrB are unique. Because B-1 exists, z rB-1 xr is also unique.
As (x, y) is the solution of a cm rational game, x > 0 and xr(AB-1 vx r, i.e., xr is
the left eigenvector of AB-1 corresponding to the eigenvalue v. Sufficiently small per-
turbations ofA L(0) and B M(0) to L() and M(c), respectively, will result in a
sufficiently small perturbation of v to v(a) such that the corresponding left eigenvector
xr(a) ofL(a) [M(a) -1 remains positive and the corresponding fight eigenvector y(a)
of L(a -M(a) remains positive. That (x(a), y(a) is unique is guaranteed because
y(a) and zr(a) xr(a)M(a) are unique by the Perron theorem and therefore xV(a)
is unique by the nonsingularity of M(a). Thus for small enough a, every solution of
(L(a), M(a)) is positive, i.e., (L(a), M(a)) is cm. Proposition then guarantees that
v(a) 1/p([L(a)]-M(a)). F-]

THEOREM 2. In a nonsingular cm rational game specified by (A, B) with B > 0
andA-B > O, let A be perturbed to A + aG and B be perturbed to B + cH. Then there
exists r > 0 such that, for al < r, dr(a)d exists. Moreover, evaluated at O, the
derivative is

dr(O) xr(G-vH)y
dc xrBy

where (x, y) and v are the solution and value ofthe original game specified by (A, B).
Proof. The existence of the derivative follows from Proposition 2 and preceding

remarks. Now use the chain rule. If (x(a), y(a)) and v(a) are the solution and value
of the nonsingular cm rational game specified by (L(a), M(a)), then

dr(a)
da

d {

--(xT(o)L(o)y(o))[ dxT()d M(a)y(a)+xr(a)Hy(a)

--[
+xT(o)M(a)

da
c)M(c)y(c))

(L(a)-v(a)M(a))y(a)

+xr( a)(G- v( a)H)y( a)

+xT(o)(L(o)-v(o)M(a)) dy(c)]/(xT()M(a)y(a))dO
O
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Because the game specified by (L(a), M(a)) is cm and M(a) > O, it follows that
(L(a) v(a)M(a))y(a) 0 and xT(a)(L(a) v(a)M(a)) O. Then taking a

0 gives the claimed formula. El
Under the assumptions of Theorem 2, the derivatives dzv(O)/do 2, dxT(O)/dcx and

dy(O / da exist and satisfy

dzv(o)
da dxT(O)(G_vH_ dv(O..__)B)Yda da xTBy

) xVHy dr(O)x dv(O)B dy(O)_2__+ x.By G vH- d---- da xBy da

dxT(O) (A_vB)=(dv(O)) T(d------ da
xTB--x G-vH),

dy(O) (dv(O))By_(G_vH)y"(A vB da da

These formulas follow from applying the chain rule to, respectively, the formula for
dv(0) / da and the identities

xV(a)[L(a)-v(a)M(a)]=O, [L(a)-v(a)M(a)]yv(a)=O.

It is not difficult to verify that when B Jn,n and H 0, the preceding formulas reduce
to those found for ordinary zero-sum matrix games by Mills [10] and Cohen [1].

A task for the future is to derive perturbation results similar to the preceding under
weaker or different conditions from those assumed in Theorem 2.

Acknowledgments. Several careful referees improved this paper.
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EIGENVALUES OF THE LAPLACIAN THROUGH BOUNDARY
INTEGRAL EQUATIONS*

YA YAN LUgS AND SHING-TUNG YAU
Abstract. A numerical method for the eigenvalue problem of the Laplacian in two-dimensional

domains is developed in this paper. This method requires O(N) operations for calculating one
eigenvalue in each iteration step, where N is the number of boundary points in the discretization.
It is based on the boundary integral formulation which reduces the computation of the eigenvalues
to the zeros of the function/1 (A) defined as the smallest eigenvalue of a related matrix. Iteration
methods such as the Lanczos method are used to compute ul (A), which requires the multiplication
of an N N matrix with a vector. The multipole expansion techniques developed for the potential
problems by Rokhlin [J. Comput. Phys., 60 (1985), pp. 187-207] are applied and extended here, and
the number of operations is reduced to O(N) for this multiplication. The zeros of/ (A) are found
by the method of quadratic interpolation. A method for finding the kth eigenvalue with the value of
k prespecified is also presented. It is based on continuously tracing the eigenvalue while the domain
is deforming to (or from) the unit disk. Only five values of/1 are required in this tracing process.

Key words, eigenvalue problem, Laplace operator, boundary integral equation

AMS(MOS) subject classifications. 65N25, 65R20

1. Introduction. The eigenvalue problem for the Laplacian arises in many phys-
ical problems, such as vibration theory, acoustic scattering, and harbor oscillations.
It has been extensively studied both theoretically and numerically [7]. In this paper,
we develop a numerical method based on the boundary integral formulation for any
two-dimensional domain with a smooth boundary.

Traditionally, numerical methods, such as finite difference and finite element
methods, are based on the discretization of the interior of the domain. The num-
ber of nodes in the whole domain is proportional to the square of the number of
nodes N on the b_oundary. The resulting matrix problem involves N N sparse ma-
trices. For large N, iteration methods, such as the Lanczos method, are usually used.
A few extreme eigenvalues can be obtained in a relatively small number of iterations.
However, if more eigenvalues or a higher eigenvMue are desired, not only could the
number of iterations be large, but the reorthogonalization process in each iteration
also becomes expensive. In each iteration step, a multiplication of the sparse
matrix with a vector is necessary, which requires O(/) operations.

The method in this paper is based on the boundary integral formulation of the
eigenvalue problem for the Laplacian. When the boundary is discretized to N nodes,
the integral equation is approximately reduced to a matrix problem with an N N
matrix A. The entries of A are functions of A and the matrix becomes singular when
A is an eigenvalue of the Laplacian. The approach suggested by Hutchinson [6] is to
evaluate the determinant of A at different values of A and locate the value of A where
the determinant is zero. Since A is not sparse, the calculation of its determinant
requires O(N3) operations. Therefore, this method is not efficient compared with the
domain methods.

In this paper, instead of computing the determinant of A, we compute the smMlest
eigenvalue #() of the matrix ATA. When A is an eigenvalue of the Laplacian, #()
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becomes zero when the matrix A becomes singular. Iteration methods such as the
Lanczos method [8], [3] can be used to compute the eigenvalues of the symmetric
matrix ATA. The smallest eigenvalue #I(A) emerges in just a few iterations. In
each iteration, a matrix vector multiplication involving the matrix ATA is necessary.
Furthermore, the number of operations for the matrix vector action can be reduced
to O(N) when we carefully apply and extend the multipole expansion techniques
developed by aokhlin [9] for the potential problem (see also [4]).

Rokhlin [9] studied the boundary value problem for the Laplace equation. When
the boundary integral formulation is used, the discretized problem is a matrix problem
with an N N nonsparse matrix. Generalized conjugate gradient [5] methods can
be used with a matrix vector multiplication in each step. Using careful expansions
at many locations, the structure of the matrix is fully utilized and the number of
operations required for the matrix vector multiplication are reduced to O(N). The
efficiency of this method is most evident when we compute the solution at only a few
points in the interior of the domain.

The case that we will study in this paper is more difficult because the kernel in
the integral formulation of the Helmholtz equation is more complicated. It involves
Bessel functions and the parameter A. We overcome this difficulty by using the poly-
nomial approximation of the Frobenius expansions for small arguments of the Bessel
functions, and Taylor expansions for large arguments. However, we should point out
that the O(N) operations for this matrix vector multiplication involves a constant
which depends on the accuracy that we need to have (and it is usually quite large),
and one should use a direct matrix vector multiplication when N is less than several
thousands.

When the kth eigenvalue of the Laplacian is desired with a prespecified value of
k (which could be large), we present a method based on tracing of the kth eigenvalue
while the domain is continuously deforming from the unit disk to the original domain
that we are studying. For such a tracing to be practical, we use a five point scheme,
which keeps the minimum information for where the kth eigenvalue is located and for
whether or not there are any other eigenvalues nearby.

2. Boundary integral formulation. We study the eigenvalue problem of the
Laplace operator in a two-dimensional domain

A+A=0 in

with Dirichlet boundary condition 0 or Neumann boundary condition 0/0p 0
on 0t.

This problem can be reduced to a one-dimensional nonlinear eigenvalue prob-
lem for an integral equation on the boundary. For the two-dimensional Helmholtz
equation, the related Green’s function satisfying the equation

Vg + g 5(x x’)

and the Sommerfeld radiation condition at infinity is taken as

1x’; yo(v lx + go(v lz x’l),

where Y0 and J0 are zeroth order Bessel functions.
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For the Neumann boundary condition, we apply Green’s formula, to arrive at the
equations

Og(x, x’
(1) (x’)- (x) ds(x) 0 for x’

Or(x)

fO Og(x,x’;A) x’(2) (x’)- (x) Ou(x) ds(x) 0 for Oft,

where Oft is assumed to be smooth and u(x) is the normal vector of 0t at x. Similarly,
for a Dirichlet boundary condition, we have the following two equations"

0(x) x’(3) (x’) + ag(x’x’;A) Ou(x)dS(x) 0 for

1 O(x’) f Og(x, x’; )) O(x) ds(x) 0 for x’ e Oft.(4) 20,(x’) Joa O,(x’) O,(x)

Note that in the above boundary integral equations, the kernels Og(x, x’; ))/O,(x)
and Og(x,x’; A)/O,(x’) are smooth for all values of x,x’ e Oft. In fact, the kernel of
the Neumann problem is

g(x x’, ) Og(x, x’;
O(x) (x).V(x,x’; )

(x).V Y0(/lx x’[) / Jo(v[x x’[)

/ X X----(Y(v/-lx x’l) + iJ(xfllx

Although Y - as x - x’, the angle between (x) and x- x tends to 7r/2 in this
limit. Using the asymptotic formula for Y (x) as x --, 0, we can prove that as x --, x,

1
K x, x’ ) --where a(x) is the curvature of 0 at x. The kernel for the Dirichlet problem is

o(, x’; ) o(’, x; ) g(x’, x,
O(x,) o(,)

since the Green’s function g(x,x; ) is symmetric with respect to x and x.
The boundary integral equations (2) and (4) are eigenvalue problems in A, since

(x) and O(x)/O, can be nontriviM solutions only when A is an eigenvalue of the
original problem. However, the difficulty related to this problem is that A is involved
transcendentally in the kernel K(x,x, )). Assuming that the boundary is given by
x,x2,’",Xy and the corresponding arclength for the node x is ds, (2) and (4) are
approximated by

N
1

(5) (x) Eg(xj,x,))(x)dsj o,
j--1

N
0 (xj)dsj 0

1 0 (xi) + E g(xi’xJ’))-ffu(6)
2o

j--1
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respectively For simplicity, the arclengths for different nodes are assumed to be the
same, i.e., dsl ds2 dsn ds. The above conditions are further reduced to

[I 2ds(K(xj,xi, A))] =0,

[I / 2ds(K(xi, xj, A))] (x2). 0,

where I is the N x N unit matrix and (K(x, xj, A)) denotes the N x N matrix whose
(i,j) entry is K(xi,xj,A). The condition that A be an eigenvalue is approximated by
the existence of a nontrivial solution to the above equations, i.e.,

(7) det[I- 2ds(g(xj,x,A))] O,
(8) get[// 2ds(g(x,x,A))] O,

for Dirichlet and Neumann boundary conditions, respectively.
One can try to locate the eigenvalues by finding the zeros of the above determi-

nants as functions of A. However, the evaluation of the determinants above requires
O(N3) operations, which makes this approach inefficient. Nevertheless, the condi-
tion that the coefficient matrix be singular is equivalent to the existence of a zero
eigenvalue. Therefore, we are led to consider the smallest eigenvalue of

(9) AD [I / 2ds(g(x,xj, A))][I / 2ds(g(xi,xj,A))H],
(10) AN [I 2ds(K(x, xi, A))][I 2ds(K(xj, xi, A))H],
for Dirichlet and Neumann boundary conditions, respectively. With the Lanczos
method, the smallest eigenvalue of AD or AN can be obtained in relatively few it-
erations. The multiplication of matrix AD or AN with a vector is necessary in each
iteration step, .which essentially involves the evaluation of

(K(xi,xj, A))

for arbitrary constants cl, c2,

C1 C1
C2 C2

and (K(xi,xj,A))H

CN CN

’’,Cg. The direct calculation of the above matrix
vector multiplication requires O(N2) operations. Since the number of iterations is
much less than N in the Lanczos method, this method is already an improvement
over that of Hutchinson [6]. Furthermore, we will demonstrate that it is possible to
use the idea of multipole expansions to reduce the number of operations required in
this multiplication to only O(N). We first illustrate the basic idea of the multipole
expansion method in a simple integral equation which is of interest by itself.

3. Integral equations. Consider the following integral equation:

K(x x’)y(x’)dx’ f(x),
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where the kernel K can be written in the special form K(x- xt). When the interval
[0, 1] is discretized to n nodes, xl,x2,"’,Xn, the integral equation is approximated
by a set of linear equations

n

y(xi) + wjK(xi xj)y(xj) f(xi)
j--1

for 1, 2,..., n. If we choose equispaced nodes, then xi xj (i j)h, and the
resulting matrix is a Toeplitz matrix. The direct method for solving this linear system
needs O(n2) operations because of the special structure.

An iterative method is also possible, which takes O(n2) operations in each step,
as it is necessary to evaluate a matrix vector multiplication which is equivalent to
evaluating

n

gi cjK(xi

for some constants cl,c2,..., c,. However, when the kernel satisfies a certain condi-
tion, the idea of multipole expansion can be applied to this problem, which results in
a method with O(n) operations in each iteration step.

Consider the case where the function K(t) for -1 < t < 1 satisfies the following
uniform convergence radius condition. For any to in this region, the Taylor expansion

K(t) K(to) / K’(to)(t- to) + K"(to) +...
2

has a radius of convergence larger than a certain constant ro. We can choose ro > 0,
such that whenever It- t01 < r0, the value of the M term truncation of the above
Taylor expansion gives rise to accuracy e. This latter condition is related to the
uniform boundedness of the Mth derivative. Then we can cut the interval of [0, 1]
into several pieces of length 2r0, say I, I2, I3,... ,Ip. The value P is approximately
1/(2r0). In these subintervals, we have the center points C, C2,..., Cp. Then

Therefore, we first calculate

for p 1, 2,... ,P and m 0, 1,..., M- 1. All these calculations can be done in
O(n) operations when P, M are O(1) constants. After this step, the values of gi can
be obtained in O(1) operations. The total number of operations for computing all
g,g2,’",gn is still O(n). This method can be efficient when there exist a large ro
and a small M such that M/(2ro) is much less than n. The number of operations is
proportional to O(M/(2ro)n).
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Of course, this procedure is based on the existence of a uniform radius of conver-
gence for the Taylor expansion of the kernel K. In the case of the potential problem
studied by Rokhlin and the problem in this paper, the radius of such a Taylor expan-
sion may depend on the ratio of It- tol/Itol. When to is close to zero, the radius of
convergence becomes small. If such a singularity exists, we need to treat the problem
more carefully.

4. Matrix vector multiplication.

4.1. Basic notations. In this section, we develop an O(N) algorithm for the
multiplication of the related matrix with a vector. For simplicity, we take only the
real part of the kernel into account. In this case, the values of A such that the
matrix is singular correspond to the eigenvalues of the Laplacian for the domain [2

and those for the exterior of . We introduce complex notation for the boundary
points zl, z2,..., ZN. The boundary 0 is assumed to be smooth with total length L,
and these boundary points are equispaced with distance ds L/N between any two
nearby points. Without loss of generality, we assume N 2n for an integer n and
introduce the following partition for these N boundary points:

2n--m

U
k--1

where A") is the first M 2m boundary points, Am) is the second M points, etc.
In general,

A(km) {Z(k-1)M+l, Z(k-1)M+2, ZkM}.

We also define the center of A(km) as

We define z(m),,k to be the union of all those Am) which are at least Mds away from
the center of A(m) i.e

W(km) {zj E AIm) for some l, such that dist(Alm), c(km)) >_ Mds}

where the distance between a point and a set is defined as the minimum of the distance
between the point and any point in the set.

Since only the real parts of the kernels K(xi,xj, ,) are used, the matrix vector
multiplication steps for both the Dirichlet and the Neumann problems require the
evaluations of

G E v/cj xi- xj
4 x l),(x l lx x l’

1,2,...,N

and

1,2,...,N
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for any given real numbers cl, c2,.’., aN.
For G, using complex notation for the boundary points, we first compute

CJvIzi- zj]Yi(vlzi- zj[), i= 1,2,... ,N,(11) g
zi- zj

then take the dot product of (x) with the vector (Re(gi),-Im(g)). The values of
G are thus obtained. For G, the two components of the vectors cj,(xj) are used to
define the real and imaginary parts of the complex numbers ; then we compute gi as
in (11) with cj replaced by j. G is the real part of gi. Therefore, the essential part
of the matrix vector multiplication is reduced to computing gl, g2,’", gg defined in
(11) for an arbitary set of complex numbers c, c2,..., cg.

4.2. Near field expansion. We first study the expansion for

where z E A(km) and Am) is contained in W(m) such that V/lz- zl <_ 3 for all

zj c= A}m) and z A(m). We seek the following expansion:

(.,) (.,) c(.))t (’)k (Z) E atsk (Z-- (--
t,s>_O

For 0 < x < 3, we have the approximate expansion

7

xY (x)
_
E ai + ix2 In
i--1

valid to 10-s in this range. The coefficients a, are given in the following table:

(i i
1 -0.6366198 0.3183099
2 2.4578789 10-2 -3.9788724 10-2

3 2.6768777 10-2 1.6578500 10-3

4 -1.8058748 10-3 -3.4531940 10-5

5 4.7613944 10-5 4.3015641 10-7

6 -6.7905638 10-7 -3.4242205 10-9

7 5.2447967 10-9 1.3284848 xl0-l

After some calculation, we end up with

(z) o
t,sO Zj EAIm)

where 0 [zj cm) (z c))]/w, w c(km) clm), and

(m)
tsk at8 + its In

2
i--O
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The coefficients ats, t8 are given by the following formula:

O0t O0

airs (--1 t- 1

__! ( i__ )
min(i+l’s-1)

2 t E (-llq+t

q=l
8 q

t (--1)t+i t- 1 S- 1 for

) ()min(i,t--1) l)p_Fs ( 11 )1 (- i-

q-1 for i_> 1,

i>1.

.(,,t)The coefficients rusk are obtained when the binomial expansion of 0, 0 are used.

4.3. Far field expansion. In the case when v/[z-zj[ > 2, we use direct Taylor
expansion for

f(z, zj)
z-- zj
vlz- zjlY(vqlz- zl).

Introducing the function

F(, v) Y(),
we find that the derivatives of F are given by

Ot+sF t+s

Ou Ov 
v

i=-0

where the coefficients satisfy the following recurrence relations:

3’0
(0,0)

i=0,
0 < < t+ s+ 1,
i=t+s+l,

i=O,
0< < t+s+ 1,

i=t+s+l.

The function f(z, zj) is then expanded as follows:

It is clear that -(’) defined before is the summation of the coefficients in the above’*tsk

equation over all zj in A}m).
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4.4. Multiplication steps. After we have obtained the expansion coefficients
(m,l)for Wk for the near field and the far field, we are ready to consider the general steps

for the evaluation of gl, g2," "’, gg.
We first define mo to be the largest integer satisfying the condition

mo< n- log(v).

For m m0, we calculate the expansion for

k (Z)--
W(mO)zjE..

Z-- Zj

with z E A(km). That is,

o/ 0)(ztsk
t,s>_O

_(too) by ATM) is calculated through theThe contribution utsk-(m’l) to the coefficients ttsk
formula in the previous two subsections. Depending on whether Am) is a near field

or far field of A(m), we use the different approaches studied before. The fact that mo
satisfies the above inequality guarantees that AIm) can always be put into one of the
two cases.

When we have the level m expansions for (km) (z), the level m- 1 expansion can
be obtained combining the level m results and supplementing a few level m- 1 near
field expansions. More precisely, we have

(12)

(13)

The values of ll, l,/2, l, reflect the geometry of the boundary and must be checked
each time. In most cases, we only need the following: 11 2k- 3,12 2k + 1,13
2k + 2, l 2k 3, l 2k- 2, l 2k + 2. Therefore, we have,

(m--1) (km) (m-l,/)_
(z) (z) + (z)

+ ats,2k-1 2k-1 C2k-1
l=l ,l,... t,sO

The first term in the above equation can be put in the new form, that is,
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After we reach the m 1 level, the problem is almost done, since Wk(1) is almost
all these N boundary points. We simply evaluate it at z z2t:-l, z2k and add a few
nearby terms which are not included in Wk(1). The values of gl, g2,’", gN are thus
obtained.

5. Zeros of #1 () In the previous section, we presented the details for the
multiplication of the related NN matrix (K(x, xj, ))) with an arbitrary vector. The
whole process can be carried out in about kN operations, where k is a constant related
to the finite accuracy that we need to attain. Usually, for a few digits precision, the
constant k is estimated to be around several thousand. Therefore, when the number
of points on the boundary for a discretization is not too large, we should use the
direct matrix vector multiplication. The method of the previous section for an O(N)
multiplication is only useful when we are interested in some very large eigenvalues of
the domain.

This matrix vector multiplication is used in the Lanczos method (or other iteration
methods) to determine the smallest eigenvalue #1 (A) of AD or AN as a function of A,
depending on the type of the boundary conditions. The eigenvalues of the Laplacian
correspond to the zeros of #1()). Since the matrix AD and AN are the products of
I +/- 2ds(K(x,xj, ,)) with their complex transposes, the zeros of #1(), which are the
same as the values of A such that det(AD), det(AN) are zero, must be at least double
zeros. In fact, if Ai is an eigenvalue of multiplicity m, it must be a zero of #I(A) of
multiplicity 2m. One possible way [10] to calculate a zero of #1 (A), say A, is based on
Newton’s method with a transformation that changes #I(A) to a new function T(A)
such that Ai is a single zero of it. The trouble with this method is that we need more
than one evaluation of the function #1 in each step, and these values are expensive
to obtain. Therefore, we turn to the quadratic interpolation method, in which, for
three known points at A1, A2, 3, we seek ,. such that (A., #1 (A.)) and (Ay, #1 (Aj)),
j 1, 2, 3, are on the same parabola with a minimum located at A.. The new value
of A. is then used with the previous calculated values for a further iteration. In
principle, the final point we come to should have a zero #1 value, and the generated
series converges to a zero of #1 quadratically.

A typical graph for #1 (A) is shown in Fig. 1. When only the real part of the
matrix is used, both the eigenvalues of the domain and those of the exterior of
are zeros of #1 (A). The convergence of the zeros of #1 ()) towards the eigenvalues of
the Laplacian, when N tends to infinity, is illustrated in the following table for the
first eigenvalue of the unit disk.

N A
10 5.8
20 5.79
45 5.784
90 5.7833
180 5.78319

The exact value for A1 is 5.7831859629.... It should be noted that for a fixed value
of N, the error is larger for larger eigenvalues, as expected.

6. The kth eigenvalue. The method that we presented in the previous sections
allows us to find the value of an eigenvalue near some initial starting point that we
provide. Very often, in many practical applications, we would like to know which
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FIG. 1. it1 () versus for the unit disk. Zeros of the function #1 correspond to the eigenvalues
of the Laplacian for the unit disk or the domain outside the unit disk subject to Dirichlet boundary
conditions.

eigenvalue it is according to the ordering from smaller ones to larger ones:

In other words, we know that A, is an eigenvalue of the Laplacian in a two-dimensional
domain with an appropriate boundary condition, and we want to find the value of k,
such that )k A,. Furthermore, it is also very common that we are given the value of
k at the beginning and are asked to find the kth eigenvalue .k. We present a method
for these problems based on a five point tracing of the eigenvalues with a continuous
deformation of the domain to the unit circle.

We consider a set of domains ft continuously varying with the parameter t, such
that tlt=0 (the original domain that we are concerned with), and ftlt=l is
the unit disk. Such a continuous deformation can usually be constructed by a linear
superposition of weights t and 1-t for representations of the domain and the unit circle
with their parameters scaled the same. Suppose that we start from the kth eigenvalue
of the unit circle; we follow the development of this eigenvalue as t decreases from
1 to 0. The principle guiding us is that we must keep track of the kth eigenvalue.
Therefore, when there is a crossing between other branches of eigenvalues with the
one that we are tracing, we must make an appropriate switch in order to keep track
of the kth eigenvalue. Such is the case when two eigenvalues get close to each other
and become a double eigenvalue, then bifurcate to two eigenvalues again as t varies.
There is necessarily a switch of the branches for the kth eigenvalue, when there is
such a crossing.

The main issue of the above tracing proposal is its efficiency. Apparently, it is
very time-consuming to find the values of/k and its nearby eigenvalues for all values
of t discretized for certain accuracy. The five point tracing algorithm is the scheme
that makes this problem accessible in reality. It is based on the fact that the trace of
the kth eigenvalue and its crossing with other branches can be realized by the values
of #1 (A) at five points for each t. Consider a grid for A with constant grid size A.
For five nearby points on the grid, sn sn tn-2, -1,s’d, sr,s’ at t if s is the closest to
),k at t tn, and there is no other eigenvalue nearby, we have

8
n(14) #l(sn--2) > #1(-1) > #l(s) < #l(s) < #(s).
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At the next time step, t tn+l snwe first evaluate #1 at the three points, --1, 8, 8.
n+l n among the above three having the smallest #1 value.Then we choose so as the sj

s+1 is the closest point on the grid to the kth eigenvalue in the next time step. The
other four points are defined as

n+l 8+1sj + jS for j :kl, +2.

If there is no other eigenvalue except Ak in the region defined by the five points, an
inequality similar to (14) is valid again. If some eigenvalue is nearby, we can detect
this from the #1 values on these five points. For example, if Ak-1 appears in this
region, then condition (14) becomes

< > < <
We follow the development of this pattern as t varies, until a later time, say t tm,
when the two minima merge together. This is a different situation, since it represents
a double eigenvalue near s. Therefore, we really need to keep track of the nearby two
points, which have the smallest and second smallest #1 value. This fact and the side
from which the other eigenvalue has come are remembered, and we anticipate that
there is a bifurcation when t is further varied. In order to capture this bifurcation, it
is necessary to keep track of six points denoted by sn, j =t=0, :kl, -+-2, where s-0, s+0
are two distinct points at distance 5A from each other. The following relation holds:

8
m

8
m

8
m m- > - > -o s+o < s < s.

To follow the bifurcation of the eigenvalues, we evaluate #1 for t tm+l at the
four points s_l S_o sm+0, sn. If the smallest and second smallest of the four values
we obtain are located at two nearby points, then we pick sm_o+l,So+1 as these two
points. If the smallest and second smallest among these four points are separated,
then we pick s$+1 as one of these two points and switch back to the five point tracing
scheme. The choice of sn+l reflects the kind of merging we have. If the merging is
between Ak_ and Ak, then we need to select sn+l with a larger value, so that we are
still on the branch for Ak. Similarly, if it is the Ak+l that merges with Ak, then we
select the point with a smaller sn value as s$+. In any event, if such a separation
occurs, we switch back to the five point tracing and continue our process. The value
5t Itm tm+[ can be fixed or varied at each step; the only necessary condition is
that the ratio 5t/SA should be smaller than the absolute value of the slope (or slopes
at a crossing) of the curve (curves) of t versus Ak (and Ak+). For the starting point
at t 1, i.e., the initial unit disk, we may often start from a double root, so that a
six point tracing will be necessary to begin with.

7. Discussion. We conclude this paper with a number of comments.
First, the discretization of the integral equation is based on the trapezoidal rule.

This numerical quadrature formula is preferred here not only for its simplicity but
also for its high order of accuracy for the periodic functions [2].

Second, the boundary value problem or the scattering problem related to the
Helmholtz equation can also be handled with this O(N) algorithm of matrix vector
multiplication. A different kind of generalized conjugate gradient method, which
utilizes the above matrix vector multiplication in each of its iteration steps, can be
used as the main process.

Finally, it is evident that the method used in this paper can be generalized to
other eigenvalue or boundary value problems [1] where boundary integral formulations,
particularly with smooth kernels, are available.
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ITERATIVE DESCENT ALGORITHMS FOR A ROW SUFFICIENT
LINEAR COMPLEMENTARITY PROBLEM*

JONG-SHI PANGf

Abstract. The class of row sufficient linear complementarity problems was introduced in a recent paper
by Cottle, Pang, and Venkateswaran [Linear Algebra Appl., 114/115 (1989), pp. 231-249 ]. In the present
paper, two iterative descent algorithms for solving such a linear complementarity problem are developed. One
of the algorithms is based on a symmetric variational inequality formulation of the problem, and the other
algorithm is an interior-point method which requires a strict feasibility assumption on the problem. Convergence
ofboth algorithms is established. As a by-product of the investigation, a certain property of a column sufficient
matrix is uncovered which leads to a constructive way of determining the solvability of a column sufficient
linear complementarity problem.

Key words, linear complementarity problem, matrix splitting, sufficient matrices, interior-point method

AMS(MOS) subject classification. 90C33

1. Introduction. In a recent paper 8], Cottle, Pang, and Venkateswaran introduced
the classes of row and column sufficient matrices and discussed their connection with
the linear complementarity problem (LCP). These new matrix classes are generalizations
of the positive semidefinite and the P-matrices whose fundamental role in the study of
the linear complementarity problem is well recognized. It was shown that the matrix
sufficiency properties provide interesting characterizations for the solutions of the cor-
responding linear complementarity problems. The authors ofthe cited paper also pointed
out that Lemke’s almost complementary pivoting algorithm 16] can be successfully
employed to process a linear complementarity problem of the row sufficient type. In a
subsequent paper 6 ], Cottle established the same conclusion for the Cottle-Dantzig
principal pivoting algorithm 7 ]. As a reference ofa solution method for solving a general
linear complementarity problem, we mention 22 ], which describes a global optimization-
based algorithm that does not depend on any special property of the defining matrix of
the problem.

The motivation of the present paper is twofold. First of all, it is well known that a
symmetric positive semidefinite linear complementarity problem can be solved by a host
of efficient iterative algorithms, such as the family of successive overrelaxation methods
18 ], 21 ]; a paper by Cheng 5 demonstrates that the gradient projection algorithm in
nonlinear programming can be applied to solve the asymmetric linear complementarity
problem with a P-matrix. Since the class ofrow sufficient matrices extends the symmetric
positive semidefinite and the (asymmetric) P-matrices, it is natural to ask whether the
whole class ofrow sufficient linear complementarity problems can be processed by some
iterative scheme(s). One goal of this paper is to develop a large family of such iterative
algorithms as a generalization of Cheng’s work. The resulting algorithms are related to
the projected gradient methods for linearly constrained optimization problems specialized
to a quadratic program 4 ].

A second motivation of this paper stems from the recent interest in interior-point
methods for solving mathematical programs. Many papers have discussed these methods
in the context of the linear complementarity problem (see 13 ], 14 ], 15 ], 26 ], 27 ],
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[28 and the references therein). In all these papers (with the exception of 28 ]), the
linear complementarity problem is assumed to be of either the positive semidefinite or
the P type. The paper 28 attempts to generalize the results to a broader class ofproblems
and discusses the role of a certain quantity in the computational complexity of these
interior-point methods. A second objective of the present paper is to develop a special
version of the interior-point method for solving a row sufficient linear complementarity
problem. We establish the (infinite) convergence ofthe method; unlike the cited references,
the complexity issue is not treated here. As a by-product of this part ofthe investigation,
we uncover a certain property ofa column sufficient matrix which leads to a constructive
way ofdetermining the solvability ofa column sufficient linear complementarity problem.

The organization of the remaining sections of this paper is as follows. In the next
section, we review the notion of matrix sufficiency and its characterization in terms of
certain solution properties ofthe linear complementarity problem; 3 describes the family
of iterative splitting algorithms for solving a row sufficient linear complementarity prob-
lem. The fourth section treats the interior-point method; in the fifth section, we discuss
the solvability of a column sufficient linear complementarity problem. Finally, some
concluding remarks are made in the sixth and last section.

2. Review. We begin with the definition [8].
DEFINITION 1. A matrix M Rn n is row sufficient if the implication holds:

max xi(MTx)i<--O]=[xi(MTx)i=O foralli= 1, ,n].
1.i_n

The matrix M is column sufficient ifMr is row sufficient; M is sufficient if it is both row
and column sufficient.

A matrix Me R is a P-matrix (Po-matrix) if all its principal minors are positive
(nonnegative). In [8], it was pointed out how row (and column) sufficient matrices are
related to the classes of P- and P0-matrices. In particular, a row (or column) sufficient
matrix must be a P0-matrix, and a P-matrix must be sufficient. Throughout this paper,
we use the same notation to denote matrices of a particular type as well as the class to
which they belong. For example, we speak of the class P of P-matrices.

We define the linear complementarity problem. Given a vector q R and a matrix
M e R , this problem, which is denoted by LCP(q, M), is to find a vector x R n

such that

x>=O, w=q+Mx>=O, xTw=O.
The feasible region of LCP(q, M) is denoted by F(q, M); we have

F(q,M) {x_Rn x>=O,q+Mx>=O}.

A vector x F(q, M) is said to be strictlyfeasible if x > 0 and q + Mx > O.
Associated with the LCP(q, M) is the natural quadratic program denoted by

NQP(q, M)

minimize xr( q + Mx)
subject to xe F(q, M).

The stationary point problem associated with NQP(q, M) is the variational inequality
problem of finding a vector x e F(q, M) such that

(y-x)r(q+Nx)>=O forall yeF(q,M)
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where

(1) N=M+MT

is twice the symmetric part ofM. Note that Nis symmetric. The latter variational problem
is denoted by VI(q, M). Let

O(x) x’(q + Mx)
denote the objective function of the NQP(q, M).

In [8], a characterization of row sufficiency was obtained in terms of the relation-
ship between the Karush-Kuhn-Tucker points of NQP(q, M) and the solutions of the
LCP(q, M). In what follows, we rephrase this characterization in terms of the prob-
lem VI(q, M).

THEOREM 1. Let M RnE be given. Then, M is row sufficient if and only if
for all q R’, the (possibly empty) solution sets of the two problems LCP(q, M) and
VI(q, M) coincide.

The above characterization does not assert that a row sufficient LCP is always solv-
able. As pointed out in 8 ], a row sufficient matrix must belong to the class Q0, that is,
for any vector q, the LCP(q, M) is solvable if and only if it is feasible. In particular, if
LCP(q, M) has a strictly feasible solution, then it has a complementary solution.

In the case of a column sufficient matrix, the following characterization was ob-
tained 8 ].

THEOREM 2. Let M R n be given. Then, M is column sufficient ifand only if
for all q R n, the (possibly empty) solution set of LCP(q, M) is convex.

Unlike a row sufficient matrix, a column sufficient matrix does not necessarily belong
to the class Q0; indeed, for the vector q and matrix M below,

q= M -5
-1

it is not difficult to verify that M is column sufficient, and that the LCP(q, M) has a
feasible solution x (0, 2, O)r but has no complementary solution. Since a column
sufficient matrix must belong to the class P0, the results in [1 ], [2] provide necessary
and sufficient conditions for a column sufficient matrix to be in Q0 and in Q (Q is the
class ofmatrices M for which the LCP(q, M) has a solution for all q); nevertheless, these
results fail to be applicable to determine the solvability of LCP(q, M) for a specific q.

3. A symmetric Vl-based splitting algorithm. Based on Theorem 1, we introduce
a matrix-splitting algorithm for solving the LCP(q, M) with M being a row sufficient
matrix. Let

N=B+C

be a given splitting of the (symmetric) matrix N defined in ). For our purpose here,
the matrix B is taken to be symmetric positive definite.

ALGORITHM I. Let x e F(q, M) be given. In general, given a feasible vector x e
F(q, M), let xg / /2 be the (unique) solution of the quadratic program

minimize xr( q + Cx) + 1/2 xrBx
(2)

subject to xe F(q, M).

Set d x + /2 x. Define the step size z as follows: if (d)Md is nonpositive, set
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Zk 1; otherwise, let Zk be a nonnegative number such that

O(xk+-kdk)=min {O(xk+zdk)" xk+’dkeF(q,M),’>=O}.

Set xk + xk + ,rkdk and test xk + for termination. Repeat the process ifxk + fails the
termination test.

Several remarks should be made, the foremost ofwhich is the fact that the algorithm
requires the feasibility of the LCP(q, M) and maintains this property throughout. As a
consequence ofthis feasibility condition, each subproblem (2) indeed has a unique optimal
solution xk + 1/2 by the symmetry and positive definiteness ofthe matrix B. This solution
xk + 1/2 can be computed by many efficient iterative methods such as those described in
17]. In this context, Algorithm I becomes a hybrid iterative scheme for solving the
LCP(q, M), which comprises two levels ofiterations: inner and outer. Each outer iteration
corresponds to an update of the subproblem (2) to be solved by the inner iterations; the
step-size determination is performed at the outer iteration.

By the minimum principle, the solution xk+l/2 of (2) satisfies the varia-
tional inequality

(3) (y--xk+l/2)T(qWCxkWBxk+l/2)>=O, forall yeF(q,M).

Substituting y xk F(q, M), we derive

(Xk Xk + 1/2) T( q + Cxk + Bxk + 1/2) . 0,

which implies

(4) (dk)T(q+Nxk)--(xk+l/2--xk)TB(xk+l/2--xk)o,

where the last inequality follows because B is positive definite. By noticing

VO(xk) q + Nxk

where O(x) is the objective function of NQP(q, M), we conclude that

5 (dk) TVO(xk) <- 0;

moreover, equality holds only if xk+ 1/2 xk, in which case xk must be a solution of
VI(q, M), and thus of LCP(q, M), by Theorem 1. Summarizing this discussion, we
have proven the following important descent result.

LEMMA 1. Suppose that xk is not a solution of LCP(q, M). Then the vector
dk generated by Algorithm I is a direction of descent for the objective function of
NQP(q, M).

In the discussion below, we assume that strict inequality holds in (5). The de-
termination of the step size Zk can be better understood by considering the one-dimen-
sional function

6(t)=O(xk+td), t>0.

We may write
2

O(xk + tdk) O(xk) + t( dk) T( q + Nxk) +(dk) TMd.
Suppose that (dk) TMdk <= O. Then, with the step size 1, we obtain

O(xk + dk) <= O(xk) + (dk) T(q + Nxk);
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thus, the next iterate xk+ xk + dk satisfies

(6) O(x + 1) O(Xk) O.Tk(d) r(q + Nx)
for any e (0, by the descent condition (5).

Suppose now that d)rMdk > 0. Then the one-dimensional function di (t) is strictly
convex in t and its unconstrained global minimum is attained at the value

d) r( q + Nx)
t= d)rMd

Note that t >= 0 by (5). If the vector x + td is in the feasible region F(q, M), then
the step size r is equal to t; in this case, it is not difficult to show that the inequality
(6) must hold as an equation with a 1/2. On the other hand, ifx + td lies outside of
the feasible region F(q, M), then we must have

<= rk <tk;
in this case, one can easily show that the inequality (6) also holds with a 1/2. Moreover,
the actual computation of the desired step size rg is not difficult at all because of the
quadratic nature ofthe one-dimensional function 6(t) and the polyhedrality ofthe feasible
region F(q, M).

Summarizing the above discussion, we have established the following descent prop-
erty of the sequence { x } produced by Algorithm I.

PROPOSITION 1. Let x + be generated as in Algorithm I. Then,

r d r(O(x+)-O(x)<--( q+Nxk)<O.

Before completing the convergence proof, we make some further comments on
Algorithm I when the LCP(q, M) is derived from a primal-dual pair of linear programs.
To be specific, let us consider the linear program

minimize crz
subject to Az >-_ b, z >= 0

and its dual

maximize b ry
subject to A ry =< c, y >= 0.

The corresponding LCP(q, M) in this case is defined by

q=
-b

M=
A 0

the vector x (in the LCP) is composed of the primal and dual variables z and y; the
objective function O(x) crz bry is equal to the gap between the primal and dual
objective values at an arbitrary primal-dual pair of vectors z and y. The matrix M is
skew-symmetric, hence N is identically equal to zero. Consequently, the step size r in
Algorithm I is equal to unity at each iteration.

Consider the choice of an identity matrix for B. Then C is equal to the negative
identity matrix. With this choice, the problem (2) decomposes into two independent
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subproblems: one in the primal variables z,

minimize crz + 1/2 z- zk) r(z- z)
subject to Az >= b, z >= 0

(where z is the current (primal) feasible iterate), and the other in the dual variables y,

minimize b ry+ 1/2 (y y) r(y y)

subject to A Ty =< C, y-> 0

(where y is the current (dual) feasible iterate). It is easy to see that these subproblems
are precisely those arising from the proximal point algorithm [23 ], [24] specialized to
solve a primal-dual pair of linear programs 19 ], [9]. Consequently, we may conclude
that in the context of linear programming, Algorithm I, with a diagonal choice of B,
reduces to the well-known proximal point algorithm.

The following result establishes the convergence of Algorithm I.
THEOREM 3. Let M be a row sufficient matrix and B a symmetric positive definite

matrix. Suppose that the LCP(q, M) is feasible. Then, every accumulation point ofthe
sequence { x } produced by Algorithm I is a solution ofLCP(q, M).

Proof. Let Y be the limit of a subsequence { x" k e K}. The sequence { O(x) } is
nonincreasing by Proposition 1. Since the subsequence { O(x) k e K} converges, the
entire sequence {0(x) } must be bounded below and hence must converge. Thus,
{0(x+ ) 0(x)} -- 0. By Proposition again, it follows that

lim rk( dk) T( q + NXk) O.
k-oo

There are two cases:
(i) lira infk- oo,k rk > 0;
(ii) lim infk-, oo,k rk 0.

In case (i), we must have

7 lim dk) r(q + Nxk O,
k- oo,k

which in view of the inequality (4) and the positive definiteness of B, implies

lim xk + !2 xk) O.
k-

xk+/2 2. Passing to the limit as k -- cConsequently, it follows that limk- oo,k
k r in the expression 3 ), we conclude that 2 is a solution ofthe VI(q, M). Consequently,
2 solves LCP(q, M) by Theorem 1.

Consider case (ii). By the inequality (4) and the Cauchy-Schwartz inequality,
we obtain

cell dk]l <= dk) TBdk <- --( dk) T( q + Nxk) <= dkll2llq + Nxkl[2,

where a > 0 is the smallest eigenvalue of the (symmetric positive definite) matrix B.
Cancelling one term dkll2, we conclude that the sequence of directions { dk" k } is
bounded. Without loss of generality, we may assume that limk- oo,k "rk 0. By the
preceding analysis of the step-size determination, we deduce that for all k suffi-
ciently large,

dk) T( q + Nxk)
rk dk) rMdk
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Hence, it follows that the limit condition (7) again holds. The remaining proof of case
(i) therefore applies. This completes the proof of the theorem. /-1

Theorem 3 does not assert the existence of an accumulation point of the sequence
{ xk}. In order for this to hold, it suffices that the level set

{xeF(q,M) O(x) <=O(x) }
be bounded. In turn, the latter condition holds if the matrix M belongs to the class Ro,
i.e., if the homogeneous LCP(0, M) has zero as the unique solution (this is true because
if { uk } were any unbounded sequence belonging to the above level set, each limit point
ofthe normalized sequence { u’/Ilull ) would be a nonzero solution ofthe LCP(0, M)).
In particular, ifM is a P-matrix, then the sequence { x } produced by Algorithm I must
be bounded and every accumulation point must be a solution of LCP(q, M). Since the
LCP(q, M) has a unique solution by the P-property of M, it follows that the sequence
{ xk } must converge to that solution. Summarizing this discussion, we have proven the
following consequences of Theorem 3.

COROLLARY 1. Let M R and q R be given.
(a) IfM is row sufficient and belongs to the class Ro, then for any initial vector

x e F(q, M), the sequence { x } produced by Algorithm I is bounded; moreover, every
accumulation point solves the LCP(q, M).

(b) IfM is a P-matrix, thenfor any initial vector x F(q, M), the sequence { x }
produced by Algorithm I converges to the unique solution of LCP(q, M).

It should be pointed out that under the assumptions in part (a) of the corollary, the
solvability (and hence the feasibility) of the LCP(q, M) are guaranteed by the results in
8 ], 2 ]; the main conclusion ofthis part ofthe result is the boundedness ofthe sequence
produced by Algorithm I.

4. An interior-point method. In this section, we describe an interior-point method
for solving a row sufficient LCP. The basic assumption required for this method is the
existence of a strictly feasible vector for the problem. Recall that this assumption can
always be satisfied in the case of a positive semidefinite matrix. This is accomplished by
considering a modified LCP, as suggested in [14]. Indeed, given an n n LCP(q, M)
with M being positive semidefinite, one can always associate with it an augmented
(n + 1) (n + 1) LCP(, M), where

= M=
-eT 0’

with e being the n-vector of all ones and tr > 0 being an appropriate constant; this
augmented LCP satisfies the following properties:

(i) The matrix 3r remains positive semidefinite;
(ii) A strictly feasible vector Y is readily available for the augmented problem;
(iii) Ifthe given LCP(q, M) has a solution, then the last component in any solution

Y of LCP(4, Ar) must be zero.
WhenMis merely row sufficient, it is generally not true that the above augmented matrix

will remain row sufficient. An example is the following matrix

[05]
which can be easily verified to be row sufficient. The augmented matrix ;Q is not row
sufficient because the defining property of row sufficiency fails with the vector
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(0, -3, 0)r. Consequently, the augmentation suggested in 14 fails to be applicable for
a row sufficient LCP.

As an alternative, consider the 2n 2n LCP(q’, M’), where

tre -I

and tr > 0 is an appropriately chosen scalar. In what follows, the magnitude of a is not
explicitly specified because we are not concerned with complexity issues here; we simply
refer to a as a sufficiently large positive quantity. The reader can consult [14 if he is
interested in how tr ought to be defined in compliance with the size ofthe data q and M.
(See also the proof of Proposition 2, below, and the next section.)

The matrix M’ is row sufficient if M is so; to verify this, suppose x’ e R2 is
such that

(x’)i((M’)Trx’)i <-0 for all 1, ,2n.

Write x’ (u, v) with u and v both n-vectors. Then, we have for all l, n,

(8) ui(MTu)i Uil)i <0, l)iU

which imply

(9) lgi MTbl )i <= O.
By the row sufficiency of M, it follows that equality holds in (9) for all 1, n;
hence the same is true in (8). This establishes the row sufficiency of M’.

The augmented LCP(q’, M’) obviously has a strictly feasible vector provided that
tr is large enough. To see this, choose an arbitrary positive vector u Rn; then pick r >
max/ui and v e R such that q + Mu + v > 0. This pair of vectors u and v provides a
desired strictly feasible vector for LCP(q’, M’). With the availability of such a strictly
feasible vector, one could apply the interior-point method (to be described later) to the
augmented LCP(q’, M’); if the computed solution (u, v) has v 0, then u is a solution
of the original LCP(q, M). In particular, if the LCP(q’, M’) has the property that all of
its solutions have the v-component equal to zero, then one can safely apply the interior-
point method to it and recover a solution to the original problem LCP(q, M) easily. It
turns out that the required property ofM for this statement to hold is column (and not
row) sufficiency. We state this result more precisely in the following proposition and
shall return to discuss more of its implications in the next section.

PROPOSiTiON 2. IfM is column sufficient and if LCP(q, M) has a solution, then
for all sufficiently large, any solution (u, v) of LCP(q’, M’) must have v 0, and
therefore u is a solution ofthe LCP(q, M).

Proof. To prove the assertion, let a be greater than the largest component in all
basic (complementary) solutions of LCP(q, M) (there are only finitely many such so-
lutions). Suppose that (u, v) is an arbitrary solution of the augmented LCP(q’, M’).
Write y q + Mu + v and z re u. Let x be a basic solution of the original
LCP(q, M). Then, for 1, ..., n,

O - U X)i (y W)i u- x)i (M( u x) )i - u x)il)

If vi > 0 for some i, then ui
Consequently, each product (u x)il) is nonnegative. It follows that for each i,

O>=(u-x)i(M(u-x))i.
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By the column sufficiency ofM, we deduce

O=(u-x)i(M(u-x))i

for all i. Thus, v 0, as desired. I--1
Summarizing the above discussion, we conclude that if M is a sufficient matrix,

then by considering an augmented LCP if necessary, we can assume with no loss of
generality that the LCP(q, M) has a strictly feasible vector. At this time, we do not fully
understand how essential the column sufficiency property is for Proposition 2 to be valid;
the question ofwhether a (possible different) modified LCP can be derived which satisfies
all the desirable properties when M is row sufficient remains unanswered.

From this point on, we consider an n n LCP(q, M) where M is row sufficient
and for which there exists a vector x > 0 satisfying q + Mx > 0. Fix a scalar p > n and
consider the real-valued function 4" R+ R+ -- R defined by

b(x, w) p log (xTw)- log (XiOOi),
i=1

where "log" denotes the natural logarithm. This is the "merit" function for this class of
descent methods; it is well defined whenever x and w are both positive. The function
(x, w) first appeared in a paper by Todd and Ye 25 dealing with linear programming,
and was used in 13 ], which treats the LCP. The following result lists several useful
properties ofthis function. (A word about notation: ifd is a vector, we denote by diag (d)
the diagonal matrix whose diagonal entries are the components of d.

PROPOSITION 3. Let x and w be two positive n-vectors. Let X diag (x) and W
diag w). Then,

(0) 4(x, w) >- (p n) log (xTw)

for all(Vx(X, W))i(Vw(X, W))i XiWi xTw XiWi

(12) (Vx4(x, w))Vw4(x, w)>0.

Proof. The verification of (10) and (11 is fairly straightforward. We now prove
(12). Suppose that (VxO(X, w))VwCk(z, w) 0. According to 11 ), it follows that for
each i,

p
"-0.xTw X Wi

(11)

This implies

pxTw 1,.IxTw,
which is a contradiction because

The next result is an immediate consequence of the expressions 11 and (12) in
the above proposition and provides an important justification for the descent step ofthe
interior-point method.

COROLLARY 2. IfM is row sufficient, then for x, w > O,

xck(x, w) + MTwdp(x, w) 4:0.

Proof. Suppose the contrary. By 11 ), it follows that for all i,

(Vwq(X, w))i(mTVwdp(x, w))i -(Vwf(x, w))i(Vxff)(x., w))i- 0.
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Hence, by the row sufficiency ofM, we deduce

(Vw(X, w))v(x, w)=O,

which contradicts (12). E]

Remark. By using a sign-reversing characterization of a P0-matrix 11 ], we can
show that the above corollary remains valid when M is a P0-matrix. This can be proved
by a slight modification of the argument used above.

We now describe the interior-point method for solving the LCP(q, M) when M is
row sufficient. In the algorithm below, the scalar fle (0, controls the step size in each
descent iteration and ensures the strict feasibility of the iterates obtained; 3’ e (0, is
the usual backtracking factor required in an Armijo-type line search step; and a e (0, 1/2
determines the amount of sufficient decrease in the line search (we refer to 3 for more
discussion of line-search procedures of this type).

ALGORITHM II. Let/3, 3’ (0, and tr (0, 1/2 be given. Let x be a strictly feasible
point of LCP(q, M) and let w q + Mx. In general, given the pair (xg, we) > 0, let

Vx4k Vx4(X, wk), Vw Vw4(X, W),
and

X= diag (xk), W= diag (w).
Solve the problem below to obtain the search direction (dx dw)

minimize (Vxg)rd + (Vwg)rdw

subject to dw Mdx, (X)-’ dxl[ + (w)-’ dwl[ aa <=
Let me be the smallest nonnegative integer m such that

4 x + .r m dk w + .r dkw x, w) <__ . "[(Ve) dk + Ww4 dkw
and set

(xe + l, we + l)= (xe we)+3"mk(d,dw).
If(xe / l, we / satisfies a prescribed termination rule, stop; otherwise, repeat the general
step with k replaced by k + 1.

The search direction (d, dw) admits an explicit expression. Indeed, let

pe VxChk +MrwChk,

Me= (xk) -2 q- MT(we)-2M;
the vector pk is nonzero by Corollary 2 and the matrix Mk is clearly symmetric and
positive definite; hence, the scalar

is positive. We have

Since

(13)

]/(pe) r(Me)- pe

dxk -,-e (Me) -lpe, dew Mdk.

(Vx4e) rdx + (Vw4e) rdw Xefl 2 < O,
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it follows that (dxk dkw) indeed provides a descent direction for the function q(x, w).
Moreover, it is obvious that for any r e 0, ), the vector pair

(xk(T), wk(T))--(Xk, wk)+r(dkx,dkw)

remains positive; in particular, so does (xg / , wg/ 1), defined in Algorithm II.
In view of (13), the sequence ( xk } satisfies the inequality

(14) )(xk+l,wk+l)--t(xk, wk)--fft23‘mkkk(O
which implies that the sequence ( cb(xk, wk) ) is decreasing. Thus, by (10), the sequence

{ (xw )
is bounded. Since xk e F(q, M) for each k, the discussion in the paragraph preceding
Corollary of 3 shows that the sequence { xk } is bounded if, for example, M belongs
to the class R0. The following theorem establishes the convergence of Algorithm II.

THEOREM 4. Let M be a row sufficient matrix. Suppose that the LCP(q, M) has
a strictlyfeasible solution. Then every accumulation point ofthe sequence { xk } produced
by Algorithm II is a solution ofLCP(q, M).

Proof. Let 2 be the limit ofa subsequence { xk" k e K } and let ff q + M2. Clearly,
the pair (2, ) is nonnegative. Since (2, v) < oe, it follows that either 2rv 0 or
(2, ) > 0. In the former case, the theorem is proven. Therefore we assume that the
latter holds. Let/ and 2r denote the limits ofthe sequences {pk. k e K } and {Mk" k e r},
respectively. The matrix M remains positive definite; moreover, the sequence of scalars
{ Xk" k e r } converges to

VIT--ll

which is positive, and the sequence of directions { (dxg, dw) k } converges to
dx, dw), where

dx J/I-- l, dw Mdx.

Since the sequence { (xk+ 1, wk+ 1) q(Xk, Wk) } converges to zero, the inequality
4) implies

lim 3’mk- 0
k- o,k

or equivalently,

lim mk=
k--- ,k

Hence, both sequences {(xk+l wk+l) k e r} and {(xk + rkdx, wk + rkdw) k },
where rk 3"mk-, converge to (97, if). By the definition ink, we have

49(xk + rkdx wk + rkdw)- 49(xk, wk)
7"k

on the other hand, (14) implies

((Xk + Wk + 1)_ ((Xk, wk)
3" mk
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Passing to the limit { k -- c, k e K } in the last two inequalities and noting that is F-
differentiabl at (, v), we deduce

+
On the other hand, passing to the same limit in (13), we obtain

which is a contradiction. This establishes the theorem.
Kojima and his colleagues 12 have developed a version ofthe interior-point method,

which can be proven subsequentially convergent for the class of linear complementarity
problems with a P0-matfix; our results (Corollaw 2 and Theorem 4) are also valid for
such a matrix. It appears that there are considerable overlaps between the two sets of
results.

5. More on the augmented problem. In this section, we expand on the discussion
of the augmented LCP introduced in 4. Let the n X n LCP(q, M) be ven. For our
puose here, we consider the 2n X 2n LCP(q’, M’) where

(15) q’=
ae -I tI

where a and are two positive scalars. Similar to the proof of Proposition 2, choose a

such that for all a { 1, n } with M,, nonsingular,

a > max (0, ((M,,)-qa)i for all a;

the scalar > 0 is arbitraff.
We recall 10 that a matrix M e R x is semimonotone (or equivalently, belongs

to class Eo) if for eveff 0 x 0, there exists an index such that xi > 0 and (Mx)
0. Clearly, a column sufficient matrix must be semimonotone, and so must a P0-matfix.
The following proposition identifies two impoant propeies of the augmented matrix
M’ in 15 when M e E0.

PROPOSITION 4. Let > 0 be arbitrary. IfM is semimonotone, then M’ e Eo Ro.
Proof. The proof is ve similar to the argument in 4 preceding Proposition 2.

For completeness, we give a detailed proof. Let x’ (u, v) e R be a given nonzero
vector. Without loss of generality, we may assume that u 0. By the semimonotonicity
ofM, there exists an index e { 1, n } such that ui > 0 and (Mu)i O. For such an
index i, we have (Mu + v)i 0; this establishes the semimonotonicity of M’.

To show M’ e R0, suppose that x’ (u, v) is a nonzero solution of the 2n X 2n
homogeneous LCP(0, M’). If u 0, the fact that t > 0 yields v 0, which contradicts
the nonzero assumption of (u, v). Suppose that u 0. As above, let be an index such
that ui > 0 and (Mu)i O. By complementarity, we derive (Mu + v)i 0, which implies
that vi (Mu)i 0. On the other hand, we also have

0 -ui + tv -ug < O,

which is a contradiction. This completes the proof.
Remarks. (1) If M’ is semimonotone, then so is M because the semimonotone

propey is inherited by principal submatfices.
(2) The fact that t > 0 is essential for the augmented matrix M’ to belong to R0;

indeed, trivial examples can be constructed to show that the matrix M’ is not in R0 when
t=0.
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According to the results in [10 ], [20 ], if a matrix belongs to E0 fq R0, the corre-
sponding LCP can be solved by Lemke’s algorithm. Now, suppose that M is column
sufficient. By the same proof, one can show that Proposition 2 remains valid for the
matrix M’ and vector q’ in (15) and for tr chosen as above. Solving the augmented
LCP(q’, M’) by Lemke’s algorithm, one computes a solution (u, v). If v 0, then a
solution to the original LCP(q, M) is obtained; otherwise, one concludes that the original
LCP(q, M) does not have a solution. In this fashion, one can successfully determine
whether or not the LCP(q, M) is solvable, and compute a solution if it exists. This
procedure requires only that M be column sufficient; no other assumption is required.

6. Concluding remarks. In the last two sections, we have presented two algorithms
for solving an LCP with a row sufficient matrix. These algorithms are infinite and descent
in nature and therefore differ from the existing methods for solving this class of LCPs,
which are finite pivotal schemes [2], [6].

The first algorithm is based on a symmetric variational inequality formulation of
the problem and requires solving subproblems which are strictly convex quadratic pro-
grams. The implementation of this algorithm requires a feasible vector of the LCP to be
used as a starting iterate. There is considerable flexibility in using the algorithm, since
the splitting N B + C is quite arbitrary. The reader is referred to [17 for an in-depth
discussion on the family of matrix-splitting-based iterative methods for solving related
LCPs and quadratic programs.

The second algorithm is based on the interior-point concept and is actually applicable
to a broader class of LCPs than those of the row sufficient type. This algorithm requires
solving systems of linear equations defined by symmetric positive definite matrices. An
important drawback of Algorithm II is that a strictly feasible vector must be available in
order to initiate it.

It is not easy to evaluate the practical performance of the two algorithms without
actual implementation. The above discussion briefly outlines some potential advantages
and disadvantages ofthe algorithms. Numerical results on the algorithms are not available
at this time.

Acknowledgment. The author is grateful to Professor R. W. Cottle, who brought to
his attention a talk which Professor M. Kojima gave at Stanford University on the interior-
point method. This led to the subsequent contact with Professor Kojima and to the
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A BLACK BOX GENERALIZED CONJUGATE GRADIENT SOLVER
WITH INNER ITERATIONS AND VARIABLE-STEP PRECONDITIONING*

O. AXELSSON" AND P. S. VASSILEVSKI

Abstract. The generalized conjugate gradient method proposed by Axelsson is studied in the case when a
variable-step preconditioning is used. This can be the case when the preconditioned system is solved approximately
by an auxiliary (inner) conjugate gradient method, for instance, and the thus-obtained quasi residuals are used
to construct the next search vector in the outer generalized cg-iteration method.

A monotone convergence of the method is proved and a rough convergence rate estimate is derived,
provided the variable-step preconditioner (generally, a nonlinear mapping) satisfies a continuity and a coercivity
assumption.

These assumptions are verified for application of the method for two-level grids and indefinite problems.
This variable-step preconditioning involves, for the two-level case, the solution of the coarse grid problem and
problems for the nodes on the rest of the gridmboth by auxiliary (inner) iterative methods. For the indefinite
problems that are considered, the special block structure ofthe matrix is utilized--also in an outer-inner iterative
method.

For both the outer and inner iterations, parameter-free preconditioned generalized conjugate gradient
methods are advocated. For indefinite problems the method used offers an alternative to the well-known Uzawa
algorithm.

Key words, generalized conjugate gradient method, variable-step preconditioning, two-level method, two-
grid method, indefinite problems
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1. Introduction. We consider the solution of the system of linear equations,

(1.1) Ax=b

by a GCG (generalized conjugate gradient) method, in the form proposed by Axelsson
and further developed in 2 ]. In general, A may be a nonsymmetric and/or indefinite

matrix. A may even be a rectangular matrix, if only its column rank is complete.
The GCG method from consists of the following steps.
Given a set of search directions { d <s) ) k-s=0 orthogonal with respect to (-, .)1, one

computes a new approximation x<k), such that the quadratic functional

(1.2) f(x)= 1/2 (r, r)o

is minimized over the shifted space

x() + span {d()}-,

where x is an initial approximation, (., .)0 and (., .)1 are inner products, and r
Ax b is the residual. Since the column rank of.4 is complete, there exists a unique
minimizer of (1.2) on any space of vectors of dimension m, the column rank ofA.
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Determining in this way the next approximation
k

x=x-l+ _-1-s,
s=l

and the next residual
k

s=l

in order to accelerate the convergence one uses a preconditioning step, i.e., one computes
by some procedure corresponding to a matrix B, called preconditioner to A, the vector
or pseudoresidual,

(1.3) Br.
Then the next search vector is defined by

k

s=l

The coefficients _- are determined from the orthogonality conditions

(dk,dk-s) =0, s 1,2, ,k.

As is readily seen, this approach is quite general and can be used for an arbitrary map-
ping B,

(1.4) r-*B[r].

In practice B is chosen to approximate the inverse ofA, if this exists, or at any rate such
that BA is sufficiently close to the identity operator. In the general case when B is a
nonlinear mapping, we shall assume a certain coercivity and boundedness condition that
generalizes this matrix property.

In the literature, various iterative methods with inner-outer iterations have been
considered, e.g., by Axelsson 3 ]; Golub and Overton 12 ]; Bank, Welfert, and Yserentant
[10 ]; and Verfiirth [15]. However, as an outer iterative method, they used a stationary
iterative method, i.e., not a conjugate gradient method.

The algebraic multilevel method considered by Axelsson and Vassilevski [5 ], [6]
can also be seen as an inner-outer iterative method. Here the inner iterations oh a given
discretization level correspond to the approximate solution of the coarse-grid problem
in the two-level grid context ofthe method, by a Chebyshev iterative method and to two
problems for the nodes not lying on the coarse grid, also solved by an iterative method.
However, this method is parameter-dependent, i.e., certain parameters required in the
iterative method must be estimated.

In this paper we analyse the GCG method in the general case of variable-step (i.e.,
generally a nonlinear mapping) preconditioner B[. under the following assumptions:

(i) coercivity, i.e., there exists a positive constant/i, such that

(1.5) (AB[v],v)o>=t3(v,v)o, all v,

(ii) continuity, i.e., there exists a positive constant/i_, such that

An[ v] II0 < = vii0, all v.
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Under these assumptions we prove in 2 that the GCG method converges mono-
tonically and at least with a rate given by the inequality,

IIr k) Ilo --< V (6/ti2) 2 IIr
These results are based on already-proven similar results, say, in the linear case (i.e., a
fixed matrix as a preconditioner) in Axelsson [1].

In 3 we express these conditions as algebraic conditions and verify them in 4 in
the context of the two-level nonsymmetric preconditioning method, studied in the sym-
metric case in Axelsson and Gustafsson [4 ], with corresponding variable-step precon-
ditioners. By the theory presented in 2 and 3, we thereby give a mathematical justi-
fication of the numerical experiments presented in Axelsson and Gustafsson 4 ], when
the preconditioned conjugate gradient (PCG) method is used as an inner iterative method,
to solve the systems of equations corresponding to the nodes on the finer level, not lying
on the coarse grid.

In 4 we also demonstrate the algebraic conditions for indefinite matrices on a
common block form. For indefinite problems, our method offers an alternative to the
Uzawa algorithm, used, for instance, in Verfiirth [15] and Langer and Queck [13].

2. The generalized conjugate gradient method with variable-step precondition-
ing. Following an earlier presentation of Axelsson ], the GCG method with variable-
step preconditioning is defined as follows.

Let x() be an initial approximation, r() Axt) b the initial residual, 0)
B[rt)] a corresponding pseudoresidual, and d t0) _(0) an initial search vector. For
k= 1,2,...,let

{d))-be (., .)l-orthogonal search vectors. Then the next approximation
k

x(k)’-x(k-l)+ Ot(kk_-sl)d (k-s)
s=l

is determined from

O
(2.1) 0ask_l)o=0, s=0, 1, ,k- 1,

where

and

(2.2)

-1) a_-l)) 1/2 (rk), rk))o

r (k) Ax (k)- b
k

=r<k-l)+ a_-s)Ad
s=l

We have the following lemma.
LEMMA 2.1. (a) (r(k), Ad(S))o 0, s 0, 1, k- 1;
(b) A()a () y (k), where A(g) is the matrix with entries

A(.k.)=(Ad(k-l),Ad(k-J))o <l<k, <j<k,l,J

(k-l)(a(k))j =ak-j j=l,’",k,
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and

(5,(k))l=--(r(k-),Ad(k-))o, (3,(k)).= 0, j=2,3, ,k.

Proof. (See [1]. As it is short, we present it here also.) Equations (2.1) and
(2.2) give

0 OOl(sk )q9 (r (k) Ad())o=0, s=0, k-

or

k

ot )(Ad(-J),Ad (k- ))o -(r(- ),Ad(k-t))o
j=l

1= 1, ,k,

which proves part (a) and also part (b), using an induction hypothesis. U]

The inner products (., )0 and (., .) can be chosen independently of each other.
For any pair of inner products, Ak) is nonsingular. However, for practical reasons we
shall here consider two special cases.

Case 1. (u, v)l (Au, Av)o.
Case 2. (u, v) (u, v)0.
LEMMA 2.2. (a) In Case 1, (u, v) (Au, Av)0, we have that A(k) is diagonal and

O/s(k- l)--0, S--0, 1, ,k-2,
(2.3)

Ok-l --(r (k- ) Ad (k- ))o/(d (k- 1) d(k-))1

(b) In Case 2, (u, v)l (u, V)o, we have that A(k) equals A (k-1) augmented with
a row and a column.

(c) A(k) is symmetric and positive definite.
Proof (see [1]). (a) In Case 1, the (., ")1 orthogonality ofd (s), s 0, l, k

l, shows that

(Ad(k-J),Ad(k-l))o =(d(k-J),d(k-l))l =0, j l, j,l 1,2, ,k.

Part (a) then follows from part (b) of Lemma 2.1. For any pair of inner products the
orthogonality of ( d (s) } implies in particular that this vector set is linearly independent.
Since A has complete column rank, the set { Ad (s)} s=ok- is also linearly independent, so
A(k) is nonsingular. The last parts of the statement follow by construction of A(k) and by
the linear independence of the set { d (s) }.

At the kth step of the GCG method, the new search direction is defined by
k

(2.4) d(k) _(k)q_ (kk_-sl)d(k-s),
s=l

where

(2.5) (k) B[r (k)

and the parameters { (k_l) } s__ are determined from the orthogonality conditions

(d(k),d(J))l =0, j=0, 1, ,k- 1,

(2.6) /3k- ) ((k)’d()))l
j=0, 1, ,k- 1.

(d (), d ()))
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LEMMA 2.3. (a) (r(k-l),Ad(k-1))o --(r(k-l),AB[r(k-1)])o,
(b) (k-l) (r(k- AB[rtk- ])o det (Atk- )/det (Atk)Ok_

(c) ak_- l) > 0 ifand only if(r(k-1),AB[rtk-1)])o > O.
(Note that in Case 1, the expression in (b) can be fuher simplified, as shown in
Lemma 2.2 (a).)

Proof (see ). Equation (2.4) shows that
k

(r- 1), Ad(k- 1))o -(r-,A- )o+ 3ks2)(r(k- 1),Ad(k-S))o.
s=2

Part (a) follows now from Lemma 2.1 (a) and (2.5). Part (b) follows from Lemma
2.2 and Cramer’s rule. Since A(k- l) is a Gramian-type matrix, its determinant is positive,
so part (c) follows directly from part (b).
Lemmata 2.1, 2.2, and 2.3 show now that one GCG step of the algorithms in
Cases and 2, respectively, takes the following forms (in practice, we frequently let
(u, V)o uv).

ALGORITHM 1. Compute Ad (k- 1)

Compute (Ad (k- 1), Ad (k- 1)0
Compute (r(k- *, Ad (k- )0
(k-l)

OZk- _(r(k- 1), Ad (k-1))0/(Ad (k- 1), Ad (k-

x(k) x(k- 1) + a(kk_-ll)d(k 1)

r(k r(k-) + a(kk_-llAd(-
Compute (g B[r(]
Compute A(k)

Compute s(-k- l (A(k,Ad (J)0/(Ad (J, Ad ())0,
k-1
d(k) __(k) _}_ Esk= 3(kL1)d (k-s)

ALGORITHM 2. Compute Ad (g- 1)

Compute (Ad tk- 1, Ad tk-)o, j 1, k
Compute (rk-
Solve A(k)a (k) "y (k)

r(k) r(k-
Compute (k B[r(k]
Computek-=((k,dJ)o/(d(J,d(J)o, j=0, ,k-

Note that in Algorithm we need two multiplications with the matrix A, while in
Algorithm 2 only one such multiplication is required. On the other hand, Algorithm 2
requires k more inner products and 2(k more vector updates per iteration step.
Hence, if the number of iterations (k) is sufficiently small or if the cost of a matrix
multiplication with A is sufficiently big, Algorithm 2 can be more efficient than Algo-
rithm 1.

We now estimate the rate of convergence of the algorithms.
THEOREM 2.1. Let the preconditioner B[ satisfy the assumptions and ii ), i.e.,
(i) (v, AB[v])o >- 1(, )o, ally;
(ii) [IAB[v] 11o --< 621]vllo, all v, for somepositive constants 6l, 2. Then the variable-

step GCG method converges monotonically and thefollowing convergence rate estimate
is valid:

IIr IIo-< /1 -(di,/di2)2 Ilr tk- l) Ilo, k= 1,2, ....



630 O. AXELSSON AND P. S. VASSILEVSKI

Proof (see Theorem 2.2 in [1]). Lemma 2.1 shows that
k

(r k), rk))o (r),r- ) + a )Ad-))o (r), rk- ))o
j=l

k

=(r-+ akk_)Ad-,r-)o
j=l

(r- ),r- ))o + a)(r-),a- ))o.
Hence Lemma 2.3 shows that

(rt), rt))0 (rt-),rt- ))o-(r- ),AB[r t- )]) det (At- ))/det (Ate)).
It is shown in [1 that

(2.7) det (A ))/ det (A )) min AB r
g W_

where W_2 is the vectorspace spanned by {Ad t) }. Simply letting g 0 in (2.7),
we get the upperbound

(rt), rt))0 (r t- ),r t- )0_ ((r t- ),AB[r- )])/IIAB[r- )] IIo)

Assumptions (i) and (ii) now show Theorem 2.1.
Remark 2.1. Note that Theorem 2.1 also holds for a variable-step preconditioner,

i.e., the preconditioner can change from one step to the next. In fact, it is readily seen
that the rate ofconvergence estimate in Theorem 2.1 can be derived even for the steepest
descent algorithm where a]- ) 0, s 0, 1, k 2, and B- ) 0, s 0, 1,
k-1.

Remark 2.2. Ifd ) 0, for some k, then it follows, by (2.4), that ) is a linear
combination of { d- s) } = . Then

k

(rt),<))o
s=l

by Lemma 2.1. By the coercivity assumption (i), we then have,

0 (r (),A (k))o (r(k),AB[rtk)])o >= lit (g)

Hence r<) 0, i.e., the problem has been solved.
Thus we proved the following result.

THEOREM 2.2. If the preconditioner B[. satisfies the coercivity assumption (i),
then the (variable-step) preconditionedGCG method with this preconditioner cannotfail.

Note finally that even ifA is indefinite, for instance, there can still exist a mapping
B[. for which the coercivity and boundedness assumptions hold.

Remark 2.3. When applying the GCG method there is a simple way to automatically
determine if the preconditioner is sufficiently accurate. We simply check the sign of
(rtk- ), AB[r- )])o, which by Lemma 2.3(a) equals -(r- l, Adtk-l)o" Equivalently,

(k 1)we can check the sign of aL- If this is negative, we restart the algorithm without
updating the approximation at the last step and compute in the following iterations a
more accurate preconditioner B by making the inner iteration parameters , $2 (see 3
smaller, or by simply performing more inner iterations. This corresponds to one form
of a variable-step preconditioning and makes the algorithm a "black box" solver.
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3. Verification of coercivity and continuity assumptions. We consider here two im-
portant types of problems where matrices on a two-by-two block form naturally arise.
Hence, consider a matrix A, partitioned as

JAil A12](3.1) A
A A22

A can be symmetric or nonsymmetric, but in the case when A is indefinite we assume
here that A is symmetric.

We want to solve

Ax=b

or

(3.2)
A ixl +A12X2 b

A21Xl + A22x2 b2.

We shall assume that All is invertible (in fact even with a positive-definite symmetric
part, 1/2(All + A rl )). However, in the case where A22 0 and All is singular or indefinite
(a case occurring frequently in constrained optimization problems), we consider the
equivalent system (that is, with the same solution),

( )AII+-AI2A1T2 x1+A12x2=bl+-A1262,

A 1T2x1 =b2,
and we assume then that, for some e > 0, All + (1/e)A2A12 has a positive-definite
symmetric part. Hence, we must assume that All is positive definite on the nullspace of
A r2. Therefore, we might as well assume that All is positive definite from the onset.

We assume also that

S A22 A21A -{ll A I2

is definite (positive or negative) and that A22 is positive definite if S is positive definite
and A22 is negative semidefinite if S is negative definite.

This means that A22 is definite (positive or negative) on the nullspace ofA2.
Next we consider the following exact block-form of the inverse of A (see, for an

earlier derivation, Banachiewicz [8 ]), which is readily derived by inverting the block
matrix factorization ofA,

A
A21A-{l 0 0 I

and hence

I 0 S-1 -A21A-{ I

0 I -S-1A21A-{d S-1
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Note that the application of this form to compute A-iv for any block vector

involves the following steps.

ALGORITHM 3.
( w A v;
(2) W2 -A21Wl +
(3) Xz S-lw2;
(4) Yl A12x2;
(5) z
(6) Xl wl

Then

A-v
X2

The preconditioner, approximatingA -l, is now defined as follows. Every occurrence
of the inverse of All (i.e., steps (1) and (5) above) is replaced by an (inner) iterative
method to solve the corresponding systems with All, i.e., Alwt vl and
above. Likewise, the occurrence ofS-1 in (3) is replaced by an (inner) iterative method,
i.e., to solve Sx2 w2 approximately. In all cases we iterate until the iteration error is
sufficiently small.

In order to define preconditioner B on each (outer iteration) step we need (in
general, nonlinear) mappings

VI "- BIt [vii, 2-" C [v2]

such that

(3.3a)

(3.3b)

IlallBll[Vl]--VlllOell]Vll]O, all vl

Ilsctv2l-v2llo,211v211o, all v2,

and el, e2 are sufficiently small positive numbers.
The application ofthe (variable-step) preconditioner B B[-] involves, therefore,

the following steps.

ALGORITHM 4.
(1) Wl Bll[Vl];
(2) w2 -A2lWl + 2;

(3) x C[w,_];
(4) Yl AI2X2;
(5)
6

Then

B[v]=[xl]"x2
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We shall now estimate the deviation ofAB[v] from v. Note first, then, that Algorithm
4 shows that

AB[v]
A21 A22 X2 A21(Wl-Zl)+A22C[w21

2 A21(Wl-Bll[Yl])+A22C[w2]-v2]

2 A22C[w2]-w2-A21Bll[yl]

Therefore, since C WE] X2 and BII [Yl] Zl, the application ofthe preconditioner
on each (outer iteration) step can be realized as Algorithm 4’.

ALGORITHM 4’. Given sufficiently small positive numbers el, e2, we iterate in steps
and (5) with some method until the iterations w, z satisfy

(3.5a) IIAwI- vlllo--<elllvll]o, AI,Z y IIo_-<** Ily, IIo,
and in step (3) until the iteration x2 satisfies

(3.5b)

where

W2 2 --A21Wl
Since (3.5b) involves the computation of Zl in step (5), the test (3.5b) is actually

performed after step (5). This means that we may have to repeat steps (4) and (5) if
(3.5b) fails to be satisfied. Hence, in practice, it can be advisable to choose a certain
(fixed) number of iterations in step (3) and test on the sign of akk_- ), instead, as was
already mentioned in Remark 2.2. Ifthe sign test is violated, we repeat Algorithm 4 with
smaller values of el, eL.

To continue the estimate ofABly] v in (3.4), note first that by (3.5a),

(3.6) IIAIlBII[VI]-VlllO-IIAllWI v IIo-< 1 ]]v IIo,
and hence that

IIw_llo < Ilvllo/ [IA21A-fiAllWol[o <- IIvllo/ IIA21Ai-111011AIIBll [vii Iio
(3.7) =< [Iv2[[o +
Next note that

SCtw] w_llo Sx- wollo

A=x A21A -11A 12x2 w2 o

I[A22x2--A21BI[Yl]--w2 +A21(BII[Y]-A-[IAI2X2)I]o

A22x2

----<llwllo/llA21Allllo*lllllo (by(3.5b),(3.5a)).

Further,

(3.8) IIsllo Ilal2x2llo-- Ila12s- SC[w2] IIA2S- IIoll SC[w2] Iio.
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Hence

SC [w2] Wzl]o =< 211w211o / , AzA i-d [IollA2S- Iio[ sc [WE] w2llo + IIw21lo],

so, if e is sufficiently small,

SC [w2] -Wzl[o (BE + $111 Az,A ; Iloll A2S-’ Iio)IIw=ll/( e, AzA; IIoll AS-’ IIo)

and

(3.9)
sc w= 0 z sc w2 w2 0 + w2 0 z + 2) w2 0/ A2,A ;? 0 a,2 S-’ll 0),

Therefore, by (3.8) and (3.9)

(3.o)
S-IlA,z-y, lloellylloellA2S-llo(1 +e2)llw2llo/(1-ellAzAT?llollA,2 Iio).

Finally 3.4 ), (3.5a), and 3.10 show that

[IAn[v]- vii <= AlxW v I[o + AlZ, ylllO)2 + A22x2-A21z1 w2ll
[elllwllo+e, llA,2S-llo(1 +e=)llw2110/(1-e, llA21AT# IlollAl2S-’l[o)] z

so by (3.7)

(3.11) IIAg[v]-vllZ(,

where Ilvll Itv, ll + Ilv211, c1 c(, 2),

Cl (a, a2) [1 + aa2( + e2)( + e)/( elala2)] 2 + 2a2( + e2) 2

+ [1 +ffl(1 +e2)/(1--elfflff2)] 2

and

We summarize the result in the following theorem.
THEOREM 3.1. Let the norms [. [Io in the vectorspaces for v, v2, respectively, be

such that

a, [IAlzS-’]lo, a2 IIA2,A;

are bounded uniformly with respect to the prob&m parameter. Thenfor e, e2 sufficiently
small, the mappingB[ defined byAlgorithm 4, with B [" andC [. satisfying (3.3a,b),
is coercive and bounded; that is,

(v,An[vl)oZ[1-Cl/Z(e,+2)lllvll, ally,

where C C(a, a2) is a function of a, , bounded for all bounded values of,
a2 and

IIAB[v]llo[+Cl/=(e,+z)]llwllo, ally,

respectively.
Proof. Equation (3.10) shows that
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Hence

(3.12) [1

Further, (3.11 shows that

Ilvll0
Hence

2(v,ABEv])0 >= [1-C,(el +e2)2 Ilvll / IIABEv] 0
,

and this, together with the left-hand side part of (3.12), show that

In the next section we make the corresponding choice of norms IIw, II0, IIw2110 in two
particular and important applications: the two-level multilevel method for nonselfadjoint
elliptic problems and a mixed finite element discretization of the Stokes problem or of
the second-order elliptic equation.

4. Applications for the two-level multigrid method for nonselfadjoint elliptic problems
and for problems arising in mixed finite element solution of elliptic equations.

PROBLEM 4.1. Consider thefollowing boundary value problem,

i,j -ix ai x -x + v Vu + bu f x X C[2

u 0 on I’ Oft.
Here 9 is a polygonal domain and the matrix aij(x) ,2.,j is assumed to be symmetric

and uniformly positive definite on x f.
The form

Ou Ow faa u w . aij x -x xj dX+ v Vu w w buw dx

is assumed to be Hi-coercive, that is,

Ou Ou faa(u,u)= .,ao(X)x-xdX+ [b-1/2 divv]u2 dx

>--col ul,. / bol ulg,..

for some Co > O, bo >= O.
To satisfy this, it suffices to have

b(x) 1/2 div v(x) >= bo >= O.

The standard variational formulation of this problem is:
Find u e H(ft) such that

a(u, ) (f, b), all H(t).

Since the form a(., ) is Hi-coercive, this problem has a unique solution u e H(ft) for
any fight-hand side function fe L2(9).
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Also, we shall need the bilinear form d(., .), the symmetric part of a(., .), de-
fined by

(4.1) t(U, th) .,aij--xi--jxjdX+ [b-1/2 divvlu ax.

Consider now a finite element space V split up into two spaces VI, V2 such that

v= v, + v, v,v={0}.
The following are examples of such partitionings.

Example 4.1. Let z2 be a triangulation of 2, consisting of a set of nonoveflapping
triangles. Let

(2) .?/2V2 span { t#i },= 1,

2) is piecewise linearwhere n2 is the number ofvertices in r2 not lying on I’D and where
on the triangles in

2)(XJ2))--i,j,
and (2)

X runs over all vertices of the triangles in z2. By a refining procedure, e.g., by
bisection or by pairwise connecting the center points of the edges of the triangles (see
Fig. 4.1 ), we get a finer triangulation z. Then V is defined by

V span /=1,

where q) forms a nodal basis in V and are piecewise linear on the triangles in z2 and
vanish on the vertices of the triangles in r (except on the ith).

FIG. 4.1

Example 4.2. Let 7"2 be a triangulation of ft, as in Example 4.1; let V2 be defined
in the same way; and let VI be the set of continuous functions, which are piecewise
polynomials of degree p in each triangle, vanishing on the vertices of the triangles in z2
and spanning the complete monomials up to degree p, except 1, x, and x2. Here p is a
fixed integer greater than 1.

Example 4.3. Assume that fl can be divided into a set of rectangular elements. To
the vertices of the elements we associate piecewise bilinear functions, which span the
space V2o V is spanned by the corresponding serendipity piecewise polynomials ofdegree
less than or equal to p, which vanish on the vertices of the elements (see Fig. 4.2).

In all these examples we have two disjoint sets of nodes N2, N1, such that

(2)(V { Ce Vand (xJ2)) 0,xi N2 }
Using this block ordering of the nodes, namely first ordering nodes in N1 and then in
N2, we get the following two-by-two block form of the stiffness matrix A"

[A AI2](4.2) A
A21 A22



VARIABLE-STEP PRECONDITIONING 637

where

and

A,, { a(l)(1)) }xi,xj N

A21 {a(dpl),dPZ)))xN,,xiU2, A,2 { a(,)2) 4’)) }x N,,xN

(2)A= { a(4 }x,x_

FIG. 4.2

The symmetric part of A, . 1/2 (A + A T), is obtained from the bilinear form
d(-, .) defined by (4.1); that is,

(4.3) x ["/112z21 2z 12 ]2z22
with

and

"t.’j }xi,xj6N2"

The following strengthened Cauchy inequality, proved in Bank and Dupont [9 and
Axelsson and Gustafsson [4], will be used later:

Them exists a constant 3’ (0, ), independem ofthe mesh parameter (but dependem
on p), such that

(4.4) V]I2V2T{VtllV) 1/2{V22V2 ) 1/2 for all Vl,V2.

We shall also use the following relations, valid for any s.p.d. (symmetric, positive-definite)
stiffness matrix paitioned into the block form (4.3).

LEMMA 4.1. Let 22 21 12. Then
a The condition number ofJ is bounded above by a number independent ofthe

mesh parameter;
(b) 2 vvz/vz2V2 1,for all V2, where is the constant in (4.4).
These results have been proved in Axelsson and Gustafsson 4].
Since the bilinear form a(., is bounded on H X H, one can easily verify the

following estimate.
LEMMA 4.2. There exists a constant 2 1, such that

vtAw < ’)/’2(vtv) l/2(wtflw) l/2 for all v, w.
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COROLLARY 4.1. Consider the Schur complements

S=Az2-AzlA-{lA2, z22 z2lZ ]-11z12,

ofA and partitioned into blockforms (4.2) and (4.3), respectively. Then thefollowing
inequality is valid:

and

vSw2 ,,g2 { vv2 } 1/2 {ww2 } 1/2 for all v, w,

v[Sv2 >-- v[v2 for all v2.

Proof. (See also Ewing, Lazarov, Pasciak, and Vassilevski 11] and Axelsson and
Vassilevski [7]. Since the proof is short, we present it here for completeness.)

Given v2, w2, choose v arbitrary and wl, so that

[o]A--

that is,

A+A2 0.

Then, by Lemma 4.2, we have

V Sw2 vtAw =< "y2 v tzv 1/2 wtdw 112

(4.5)
2(v’Av)/2(wSw2)/:.

If we choose v2 w2 above, then

wSw: v’Jv
and hence

{N}/<,inf[]tA[l]}l/ (i)1/

W2 W2

Inseing the last inequality into (4.5), we get

{ww)l/
v 2 2

{vv}/{ww}/.
The last inequality follows from

vtAv vtv v[v2 for all v,

and hence for v, such that Av + A12V2 0, that is,

A= S’
we get

COrOllArY 4.2. Assume that the eigenvalues of are contained in the interval
[a, a2], which is defined in Lemma 4.1, and hence where a > O. Then the eigenvalues
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ofAll are contained in thefixed segment ofa disc in the right-halfcomplex plane

{zC;Re zcl, Izl -’y202}-

Proof. By Lemma 4.2, we have

viA1 lWl "Y2 { viA1 lVl } 1/2 { w]A1 lW } 1/2

Hence the eigenvalues of All satisfy

X(All)l "y20/2

and

Re X(All) >_-- kmi [-12 (All +Al)]
Corollary 4.2 shows that All is well conditioned and hence, we can solve the system with
All (occurring in Algorithm 3 using inner iterations with a generalized conjugate gradient
method in a number of iterations independent of the mesh parameter and to any desired
relative accuracy (see Axelsson [1], for instance). In practice, one will use a precondi-
tioned form of the generalized conjugate gradient method, with a preconditioner, such
as the diagonal part, or an incomplete factorization ofAll. Further, Lemma 4.1 (b) and
Corollary 4.1 show that we can solve the system with S occurring in Algorithm 3 with
z22 (a coarse-grid symmetric and positive-definite stiffness matrix) as a spectrally equiv-
alent preconditioner in a preconditioned generalized conjugate gradient method. Since
22 corresponds to a stiffness matrix on the coarse mesh (z2) we can expect to be able
to solve systems with A22 with much less cost than A. In the symmetric case, this was
discussed in Axelsson and Gustafsson 4 ]. Alternatively, we can solve z22 using a recursive
factorization with two-by-two block matrix splittings. This has been analysed in Axelsson
and Vassilevski [5], [6] and shall now be discussed further in the present context.

In order to apply the theory in 3, we need to define the norms Ilvl IIo and [12110
and estimate the corresponding numbers

O-1 IIAlzS 1110, o’2 A21A -: o.

We choose here

(4.6) Ilvlll0--
For practical purposes, however, one must choose

(4.6’) ilvlll0
with/11 s.p.d, and spectrally equivalent to Ai- (such as/11 diag (All)), which give
uniformly equivalent norms to the previous ones. To simplify the presentation, we con-
sider here only the choice (4.6).

By the definition of al, we have

o---sup(llA12S-l2]])2v2112110
(A 12S-12)T ]-11A 12S-12sup

vz vi-lv2
v t2 S-TA "2t -{ A12S- v2sup

v2 VI’--Iv2
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vt2 1/2S-r /2 -l/aA "(2.4-{l /2 ]R1Rav2
sup
v V V2

vt2(RIR2)rRIR2V2 < R, -II RII -sup
V V2

where RI t-{II/2A R2 1 Hence12_-1/2 /28-11/2

Note that

so by Lemma 4.1,

Iv]A12vzlIIR, =sup
vl,v2 { V]/illVi} 1/2 { VV2) 1/2’

Rill =<,: { vd.v/v(,Dv= }l/2<=’Y21(1-’y2)1/2

Further, Corollary 4.1 shows that

(4.7)

Hence

Also,

RII =< 1.

ffl-<,y2/(1---y2) 1/2.

( )2A21A-( vl llo
sup
v, i-;iio

(A21A ]-i 1 T-IA21A-{ 1
sup
v, VA -llVl

where

v GrG2Vl
sup V V

1/2G2= -l12A21A-{t ll

Hence

vtz-1/ZA2 A-{AI2
W1
2 sup0"2 sup

V2,W, IIv21l Ilwlll V2,WI

2A 12where G A( i-A so by Lemma 4.2,

0-2=<2(1 -2)-’/211G, II,
and by the construction ofAll Gill -< 1, so

{ V_-I/222-1/2V2 ) 1/2 {W G1TGIw1 } 1/2

(4.8) 0"2 "y2/( ,,[2) 1/2.

We summarize the result in the following theorem.
THEOREM 4.1. Let the norms IIvll0, IIv2110 be defined by (4.6) (or by (4.6’)). Then

for el, e2 sufficiently small, the mapping B[. defined by Algorithm 4, with B11[" and
C[ satisfying (3.3), is an optimal order variable-step preconditioning. []
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PROBLEM 4.2. Consider thefollowing saddle point problem

A21 A22 x2 b2

withA symmetric, positive definite, A21 A 2 andAz2 negative semidefinite. In certain
applications, such as mixedfinite element discretizations ofsecond-order elliptic problems,
A22 is, in fact, zero.

In this case the Schur complement, -S,

S= Az2 A2A-(A2
is negative definite.

In order to apply the two-by-two block variable step (with inner iterations) precon-
ditioner B, we need to specify Bll[W], a mapping which approximates the solu-
tion of

AIlV1 --W1,

and a mapping C [w2 ], which approximates the solution of

SV2 W2"

Note that, hence, -C [. will approximate -S-1.
IfA is derived by a finite element approximation ofthe Stokes problem, then Bll [Wl]

can, for example, be the approximation of A Wl, which one gets when applying u steps
of an optimal order preconditioned conjugate gradient method, for instance, for the
solution of the Poisson equation based on a multigrid or on the algebraic multilevel
preconditioner in Axelsson and Vassilevski [5 ], [6]. Let us denote the corresponding
optimal (symmetric and positive-definite) preconditioning matrix in this inner iterative
method by 11.

In the case when A is derived by a mixed finite element discretization of second-
order elliptic equations, rill will be, say, a lumped mass matrix, or more generally a
(modified) incomplete factorization ofAll, since cond (All) O( ).

Since the actions of the Schur complement S are not generally available, first use
an approximation of S by

(4.9) A22 A21.3 ]-A 12

where.4 ]- is generally a more accurate approximation to A ]-1 than is ]-1. ]- is obtained
by a fixed number of steps of an optimal stationary (inner) iterative method.

Finally, let D be an optimal order preconditioner to S. For the Stokes problem, D
can, for example, be the unity matrix (see Langer and Queck [13], Verfirth [15]). For
the mixed finite element approximation of second-order elliptic problems, the (best)
choice of D is not clear, as it can depend on the discretization used. However, for the
lowest order Raviart-Thomas finite element spaces discretization (see, for example, 14 ),
D can be chosen as a multigrid step applied to the corresponding equation obtained after
elimination of the velocity.

Then C[w2] corresponds to the approximations obtained by a fixed step precon-
ditioned conjugate gradient method with D as a preconditioner applied to solve the
system 2 W2 (see (4.9)).

The corresponding norms are chosen as

(4.10’) Ilvl I10--- { v 1T.i-? V1)1/2, IIv2110 { v/’D-lv2 } 1/2.
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However, in order to somewhat simplify the analysis, we shall assume that

(4.10) IIvlLo { vAi-lv} /e, IIvllo {vS-v} /.

Finally, it remains to estimate

A2,A ;11 o.

We have

(o’S:sup [IA,zS-’vzllo

(A12S-12) rA ]-11 (A 12S-12)
sup
v2 v(2S-1v2

vt2 S-1/2A21A -{ A12 S-1/2v2=< sup
v2 VV2_

S-1/2 (A21A ]-1 A 12 A22 S- 1/2
2_-< sup

V V2

Similarly,

(r sup
I[A2Ahvll

vA1 A12S-1A21A -{? v1
sup

vA -llVl
v A -{ ZA A -{ 2128-1A21 Vl

sup
Vl ]1

We have

w]A12w2 (A 1/2
11 wl)T(A-(/2A12w2)

wll(wtzA:lA-fAlzW2) /2

12=< IIAI wlllllSl/=w_l[.
1/2Hence, with Vl A 11 Wl, 2 SI/2w2, we find

VtlA-fl/2A 2S-1/2 <

that is,

r2---IIS-I/2A2A-dd/21I <= 1.

2 1/2Here the norm is the standard Euclidean norm, Ilvll { v }
Remark 4.1. Note that

I(A21x,y)I
(AI ix, x)1/2(Sy, y)1/2

I(S-1/2A2ATd/2x’y)I
0"2 for all x, y.
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This shows the upper bound in the well-known Babuska-Brezzi condition. Note also
that

(A21x,y) (x,A-f/2AI2S-/2y)
supx/0(Ax,x)I/2(Sy y)l/2 sup

Hence

(A:x,y)
inf sup
r/o x/O (Ax,x)/(Sy,y)/2

where #2 is the smallest eigenvalue of the matrix

S-1/2A2 A-{A S-1/2 (A-(/2A12S-I/2)T(A-{/2AI2S-1/2)12

This is positive (i.e., the Babuska-Brezzi inf-sup condition is satisfied) if and only ifA 12

has a complete column rank. The algebraic formulation ofthe Babuska-Brezzi condition
can be found earlier in Bank, Welfert, and Yserentant [10].

The result for Problem 4.2 is summarized in the following theorem.
THEOREM 4.2. Let the norms Ilv [10, [Iv2[10 be defined by (4.10’). Then the mapping

B[. defined by Algorithm 4, with el, e2 sufficiently small and B[. ], C[. defined ac-
cordingly as abovefor Problem 4.2, gives an optimal variable-step preconditioner.

5. Conclusion. We have derived a general framework for a parameter-flee variable
step preconditioned generalized conjugate gradient method, which is applied for solving
two-by-two block matrix problems arising, for example, in two-level nonsymmetric
problems, as well as for indefinite saddle-point problems. For them, the general coercivity
and boundedness properties of the variable-step preconditioner have been verified. The
method can be implemented as a black box solver for any problem satisfying the coercivity
and boundedness assumptions.
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A CLASS OF ARBITRARILY ILL CONDITIONED
FLOATING-POINT MATRICES*

SIEGFRIED M. RUMWf

Abstract. Let : be a floating-point number system with basis/3 >= 2 and an exponent range consisting of
at least the exponents and 2. A class of arbitrarily ill conditioned matrices is described, the coefficients of
which are elements off. Due to the very rapidly increasing sensitivity ofthose matrices, they might be regarded
as "almost" ill posed problems.

The condition ofthose matrices and their sensitivity with respect to inversion is given by means ofa closed
formula. The condition is rapidly increasing with the dimension. For example, in the double precision of the
IEEE 754 floating-point standard (base 2, 53 bits in the mantissa including implicit ), matrices with 2n rows
and columns are given with a condition number of approximately 4.1032n.

Key words, condition number, sensitivity, ill conditioned, linear systems, floating-point number systems

AMS(MOS) subject classifications. 15A12, 65F05, 65G05

0. Introduction. It is a trivial fact that there are arbitrarily ill conditioned real ma-
trices. In this paper we concentrate on matrices that are exactly representable in some
floating-point number system :. There is no restriction to the basis and only a trivial
technical assumption on the exponent range of :. For fixed r: there are finitely many
square matrices with n rows and a maximum condition number less than for
given n.

The well-known schemes for constructing ill-conditioned matrices suffer from the
fact that for given : only a few matrices are exactly representable in :, say up to r/ma
rOWS. For n > nmax rOWS the entries are getting "too big." For example, let

i-1 n-j
(z,);j:=

i+j-1

as proposed by Zielke. For single precision in the IEEE 754 floating-point format (base
2 with 24 bit in the mantissa including implicit ), we have (using infinity norm)

nmax(Zn) 10 with IIZI011" IIZ d 2" 10 ’4.
From Pascal’s triangle we get

with

/+j- l)(Pn)i:’=
i-

r/max(en) 15 with Ile, sl[" [[eTg 1.10 16.

The classical example for ill-conditioned matrices is Hilbert matrices, the ijth component
of which is 1/(i + j- ). In order to make them exactly representable in a binary
floating-point format, we may use their inverses, or we may multiply the entire matrix
by lcm( 1, 2, 2n ). We call the latter matrix H*. Then

nmax(H 7 with H7 II" H71 5.10 8

Received by the editors August 31, 1989; accepted for publication (in revised form) March 13, 1990.
f Informatik III, Technische Universit/it, 2100 Hamburg 90, Federal Republic of Germany.
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and

r/max(Hn*) 10 with IIH?011" IIHT0- 2.1013.

The second method is obviously much more effective with respect to generating exactly
representable ill-conditioned matrices. The class of matrices to be described in the fol-
lowing has no restriction in the dimension. In the single precision IEEE 754 floating-
point number system, there are 10 10-matrices with condition number 1.1.10 78.

1. The class of matrices. Let = be a floating-point number system with base/3, i.e.,

= consists of real numbers of the form

1.1 X +_0. mm2"" m,’fl e

with

(1.2) 0 _-< mi </3 for _-< _-< ) and emin =< e =< emax.
We do not require numbers in the gradual underflow range and assume

(1.3) m4:0 if x4:0.

Let = consist at least of all real numbers x with a representation satisfying 1.1 )-
(1.3) and assume emi 1, 2 emax.

Consider PelFs equation (see [1])

(1.4) p2 k. Q2

for positive integers P, Q, and k. If/3 is a square, let k be the smallest prime factor of ,
otherwise set k =/3. Then (1.4) has infinitely many solutions (P, Q) (see [1]).

Let P, Q be numbers satisfying Pell’s equation (1.4) for some k and let
n

(1.5) P= Pi’a and Q= qi’a
v=0 v=0

with p 4 0 or q 4 0 for some 1 and PI, ql < , 0. n. Furthermore, in this
section we assume that 0 =< p;, q < for 0. .n.

In practical applications a typical choice for a is fix. However, in this section we
are interested in minimum requirements for the floating-point number system :. Therefore
we set a k.

For a k the numbers pi, q are of : if emin -< __--< emax and so is k" q because k.
q < k2 _-</3 2. To store the number requires to be an admissible exponent; to store
k. q requires or 2 to be admissible exponents. Therefore

Pi, k. qi, 1, ae = if emin -< and 2 -< emax
and the matrix

(1.6) c,

P,, Pn-1
q,, qn-1

P Po kq, kq,_ kq kqo
ql qo Pn Pn-I Pl PO
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consists only of components that are exactly representable in :. Since 1.4) has infinitely
many solutions, the class of matrices Cn defined by (1.6) consists of elements with an
arbitrarily large number of rows.

2. Properties of the matrices. In this section some properties ofthe matrices defined
by (1.6) will be studied. Here, no restrictions on k or a with respect to fl are necessary;
our only assumptions are 1.5 and (1.4). In the following, especially, the assumption
0 <- Pi, qi < a for 0.-.n is not necessary.

Throughout this paper we use componentwise ordering ofmatrices, i.e., A <_- B ( )
ais <= bis and the componentwise absolute value A[ (I Aisl ), which is again a matrix.

The condition number Cnl[" C for the o-norm will be calculated along with
the sensitivity of Cn. Rohn, in 3 ], gave a nice definition of the sensitivity of a matrix C
with respect to inversion: Let B be a matrix of relative distance less than or equal to a

to C, i.e., [B C[ _-< a. [C[, then

s( C)’= max { B Cl }i-C-i IB-CI <=" ICI

provided C :/: 0 and

sis(C) := lim s(C).
a-0+

In 3 ], Rohn proves an explicit formula for the sensitivity matrix S (sis(C)):

(2.1) sij(C)=(IC-’l" ICl" IC-’l)ij
forCj, 4=0.

If-1 lis

LEMMA 1. det (Co) 1, Co C611[ (P + kQ)2, and sis(Co) 4P2 3 for
j and sis(Co) 4p2 for 4 j.
Proof. For n 0, (1.6) writes

Co =(PQ kpQ)withCl=( P_Q -kQ)p
as follows from (1.4). Then the first two statements are obvious; for the third, a short
computation yields

(sis(C)) ( ’rt r/). with =p2+3kQ2, rl=3p2+kQ2. I--]

In the following we will show that for n > 0 the condition and sensitivity of Cn
increase compared to those of Co.

For the rest of the paper we frequently use

(2.2) C CnE(2n + 2) (2n + 2) with components cis, 0 <= i, j <= 2n + 1.

The indices of matrices start with 0 with the exception ofA and B, to be defined later.
Those are (n + n-matrices with row indices starting with a and column indices
starting with 1.

LEMMA 2. The matrices Cn are not singular: det (Cn) (-1 )".
Proof. Define

(2.3) S.._.(ffn o.n-1 )t n+lo-,1 EN
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and

(2.4)

Then

x.=( P.s-Q.s) -Q.a E2n+2

(2.5)

and using (2.2),

(pr/,...,po).s=P and (qr/,...,qo).s=Q,

2n+

Co,,’x,=PZ-kQ2= 1,
v=0

2n+ 2n+

cI,’X,=PQ-QP=O iv’Xu
v=O v=O

This means that x is the first column of C- and, especially,

(2.6) (C-1)2n+I,O---Q.
Therefore -Q -det (C)/det (C) with

C: Z
0

pr/ P)0
X*

and

for i>=2.

--a

2’=
--a

2*

But det (C) det (C) with

:= ( qn qo

and C.s Q.e with e 1, O, 0). This implies that- )oo an / Q det (()/ det (()
with

Therefore

.= --tr _nn

--q

det (C)

det ()= -( )n

det ((2) det (C) det (d). Q
Q Q an.Q =(--1) n.
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Next we calculate the inverse of C Cn explicitly. The first column is already given by
(2.4), the second is given by

(2.7) -k.Q.s) R2n+ 2Y P.s
C.y=(0, 1,0, ,0) t.

Formulas (2.4) and (2.7) imply, especially, that -Q and P are the first two elements of
the last row of C-1 Let

(2.8) (-QPan... Olln I)ER2n+2

be the last row of C-1 Then multiplication with the first n + columns of C yields

(2.9)

-Q" Pn "+- P" qn at- Oln O,

-Q" pn- -k P" qn- O" Otn-l- Otn-1 =0,

-Q" pl + P" q o" oz + o1 O,

-Q. po + P. qo- o. oe =0.

Setting a0 an +1 0 by definition gives

(2.10) -Q.pi+P.qi-o.oei+l-+-oti=O for i=0. .n

and by successively adding the equations in (2.9), multiplied by a, yields

n

(2.11) oq=Q ., p,,’a"-i-P _, q,,’r"-i for/= 1...n.
v=i v=i

By treating the last n + columns of C in the same way, we obtain

(2.12)
-k.Q.qi+ P. pi- ff’i+ - i 0

-k’Q’qo+P’po-a’l 1,

for i= 1...n,

setting/30 tim +1 0 by definition, and

n

(2.13) i--P. p.’r"-i-k.Q. q..r"-i for 1...n.
v=i v=i

According to our assumption 1.5 ), Pn 4= 0 or qn 4= 0 and

p,,’o’"-i<o’n<=e or q,,.o-"-i<Q
v=i v=i

for i>= 1.

Moreover, gcd (P, kQ) such that (2.11 and (2.13 imply

(2.14) ci=/=0 and /i=/=0 for 1...n.

Let t; E Rn+ l,n+ be a matrix with in the ith upper diagonal and 0 elsewhere such that

(2.15) S--(ffn-i ,a,l,0, ,O)t[Rn+,
using s from (2.3). Then we are ready to describe C-1 as follows.
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LEMMA 3. The inverse ofC Cn defined by ( 1.6) is given by

(2.16)

P.S -k.Q.S

-Q.S P.S

B
0

n+l

n+2
2n+ 1

0 1 2 n+l n+2 2n+l

with

and

A := (OlnS OllS)-n +

B’= ([3nI-t t,n) S, ,(/1I+/,1) S) Cr-:Rn + 1,n.

Proof. For the matrices A (a0) and B (b0), we have
n- andaij an _j + O"

{(2.17)
bo=

/3n-j+l’rn-i j< i,

.o.n-i j-i+l/3n -j+ +r j>-i+

for 0...n, j 1..-n (the row indices start with 0, the column indices with 1).
Denote the matrix defined by (2.16) by I’. Then for 0 _-< i, j _-< n, we have

r C)o P" si" Pn-- k. Q. Si" qn-j + bi,j + a. bo

where the third summand cancels for j n, the fourth for j 0. Using/30 3n / 0
and (2.17 yields

t(i,j) for j < i,

I" C)ij t( i,j) + r- for j i,

t(i,j)+aJ-g+r-i-1 for j>i

using the abbreviation

t( i,J) rn- i’(P" Pn-j- k" Q" qn-j + n-j-- a" t3n-j + 1)-

Therefore, for 0 -< i, j =< n,

(2.18) I’. C)o r i. (p. Pn - k" Q" qn - + n- r. [n -j + -[- ij

using Kronecker’s delta. Since later on we will need C-1l CI, we write down the
explicit formulae for the other components of r. C. For 0 =< _-< n, n + _-< j _-< 2n +
derives

(2.19) I’. C)i9 a i. k.(P. qn-- Q" Pn-j + a.n-j-- o’" Cen_ j + 1);

forn+ l_-<i_-<2n+ 1, 0 _-< j _-<_ n derives

(2.20) r" C)O fin i. _Q. Pn -j -t" P. qn -j + Oln -j if" Oln -j + );

and forn+ =<i,j=<2n+ lderives

(2.21) (I’.C)i=an-i.(-k.Q.qn_+P. pn_j+n_-a.n_+)+6i.

The identities (2.10) and 2.12 prove I’. C)i 6ij. ]
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For the condition of C using the oo-norm and ci 4 0,

Cn oo" Cl[I > (p, + k. q,) { o-n- (P+ k. Q) }

(2.22)

(rp+keq) "(P+kQ)>=(P+k.Q).
e=0

We calculate the sensitivity s0(C) according to (2.1) for 0 _-< _-< n, j 0. By (2.18)
we have

(IC-’ I- ICl)i,->-rn-i’(P IP,-I +k’Q" Iq,-,I / I,-1 / " !,-,+ 11),

for 0 -< -< n and by (2.19) we have

(IC-I ]CI)i->-an-i’k’(P" ]qn-ul +Q" Ipn-l + IOtn-ul q-ft" I,-+ll),

forn+ 1-<u-<2n+ 1.
Using c,,/3 4 0 we get, for 0 =< -< n,

(IC- ICl" C-1 I)io
2n+

(Ic-ll IcI)/, Ic-ll=o/ 2; (If-11 If[)i=. IC-’l=o
v=0 v=n+l

n--i, Z {(e’lp-=l+k’Q’lq-=l)’e’a-+k’(e’lqn-=l+a Ip-=l).a-a-=}
=0

q-o’n-i’{ ([n_[’at-ff" In_u+ll)’P’ffn-
=0

>_ rn-i. p. (p +kQ +kQ + kQ_) + rn-i. p. 4

r’-i" P’(4P- 3 + 4)> o"n-i" P-(4P)
using k. Q >_- P. Together with C- lio n-i. p g= 0,

No(C) > 4P for 0 _-< i_-< n

follows. This proves the following theorem.
TFOIFM 4. The matrix C defined by (1.6) satisfies

[Icily. IIc-I I1 > (P/ k.Q) 2

and there are components ofC of which the sensitivity defined by (2.1) is greater than
4.p2.

3. Some examples. For given k, suitable pairs (P, Q) satisfying Pell’s equation
p2 k. Q2 are easily generated. Given some (Po, Qo) unequal, the trivial solution
is 1, 0), and successive solutions are

ei + , Qi + (PiPo + kQiQo, Qieo + eiQo ).

For a floating-point number system given by (1.1)-(1.3), a choice for a is/3 x. Any
expansion 1.5 of P, Q is suitable. The coefficients Pi, qi are calculated successively.
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Some bits can be saved by the following observation. Ifsome coefficient Pi is divisible
by/3 or by a power of/3, then Pi and the following pj, j > are expressed with a corre-
sponding exponent. If the last digit mx in the mantissa ofPi + is equal to 1, then Pi
can be replaced by Pi tr and Pi / by Pi +1 + 1, the latter being divisible by/3.

For example, let P 73942,/3 10, a 100. Then expanding P yields (P2, pl, P0)
7, 39, 42 and this is reduced by the method just described to (pl, P0) 74.101, -58 ).
This method is especially useful for base 2.

For a given number P, the corresponding coefficients Pi, O. .n can be calculated
by the following algorithm:

e 0; 0;
repeat

while P mod/3 0 do { P P13; e e+ }
q IP/aJ; r P- tr.q;

if(q mod fl :P/3-1 or (q < )
then {pj r’ie; P q}
else {pi (r-a)’e;P q+l);
i+1

until P 0;

For k 2, successive pairs P, Q are (3, 2), 17, 12), (99, 70).... In Table we display
some values for Pi, qi for single and double precision. For the individual value of n
(resulting in a 2n 2n-matrix C) we choose the maximum values (P, Q) being repre-
sentable by (Pn- 1, PO) and (qn- 1, q0). In the columns ofTable 1, the condition
number is given followed by the coefficients Pi and q;, both in descending order. The
coefficients are given by two numbers rn and e such that m-2 is the actual coefficient.
For example, q4 1175-2 22 for n 5 (yielding a 10 10-matrix). Our algorithm yields
a higher condition than the expected maximum 4"2 24"2n 7" 10 72, especially for this
10 10-matrix.

For double precision we choose different values for k yielding the coefficients in
Table 2. These coefficients are, of course, only samples used to construct matrices of the
general form 1.6). We conclude by writing the 6 6-matrix for single precision explicitly.

TABLE
Pi, qifor binaryformat, 24 bit precision; k 2.

Cond

Pi

1.3E+030 2.2E+044 6.5E+060 1.1E+078 4.8E+090 1.7E+ 107

15248163 2 3527199 3
11171905 0 6746489

-8816797 0
84235 9

-3559681 3 1247053 4
13508351 2

-14061827

6929233 6 425393 14 2161033 8 8490761 10
9763077 3 6127903 11 5075327 7 15520103 6
12608263 -10707825 7 8241033 6 6855055 5
-6160127 0 7194379 -9934673 5 6997339 4

-2285085 0 -5752371 -11831695 3
1224927 8 12291875 0 9051609

-5131195 6 1175 22 -11093871 0
14870387 5 -14199789 15 47753 13
-7145793 4 12492253 13 -15523515 12 3001937 11

9093109 10 -1620555 9 12103369 10
10074835 14867027 6 -13213329 9

14366575 3 -9497253 7
-4879973 -3241495 4

8507481 3
-1367575 2
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TABLE 2
p, qfor binaryformat, 53 bit precision.

Cond
k

7.0E+066 3.4E+097 2.1E+ 131 1.4E+ 164
32 32

8384758637032543 5
--3529290569461695 0

5928919690858185 3
--6097772977423311

119071610094027 9
--3183251058136493 3
--8183182949466111 0

84196342944287 9
891386017353869 8

--1900818942150157 7

1838140087490775 8
-6618243915631817 2
-7698164339527309
5251261634103185 0

162470165079445 9
6774769086897599 6
4831599480133437 3

-5900891544265983 0

1217131843483323 9
5555590710757647 8

-1048381871128883 4
4113071334050663 3

-3228782923936605 0

1721284360250283 8
292142371452983 6

-4351444206118847 4
1403045714199203 2

-2787903664869301

It is exactly storable with only 24 bits in the mantissa (and therefore in almost any
floating-point number system) but matrix inversion will "fail" in almost any floating-
point format available because, due to the condition number 2.2.1044, an equivalent of
approximately 44 decimal digits precision would be necessary:

3527199-23 6746489.21 -8816797.2 1247053.25 13508351.2 -14061827-2
1247053 24 13508351"22 -14061827.21 3527199.23 6746489.21 -8816797.20

--224
--2 24

--224
--224

To generate this matrix, the values P= 7942546277405390632803 and Q=
5616228332641321147898 have been used.

MATLAB 2 delivers as an estimation for the condition number of the matrix the
(almost) correct answer o.
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AND POSITIVE-DEFINITE A AND B*
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Abstract. An algorithm is given for computing the solution ofthe eigenvalues ofAx XBx with symmetric
and positive-definite A and B. It reduces Ax Bx to the generalized singular value problem LLrx
(LBL)x by the Cholesky decompositions A LLT and B LBLnr, and then reduces the generalized singular
value decomposition ofL r and Lr to the CS decomposition of Q by the QR decomposition (L, Ln) r QR.
Finally, it reduces A and B to diagonal forms by singular value decompositions. The algorithm provided is
stable and, what is more, faster than the QZ algorithm. Numerical examples are also presented.

Key words, generalized eigenvalue problem, generalized singular value problem, CS decomposition, singular
value decomposition
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1. Introduction. Consider the generalized eigenvalue problem

Ax kBx,

where A and B are n n real symmetric and positive-definite matrices. The equations
of motion for small vibrations about a position of stable equilibrium of a mechanical
system operated upon by a conservative system of forces derive the generalized eigenvalue
problem of the form [8, p. 34].

Many efficient methods have been designed to solve the generalized eigenvalue
problems. Among them, there are the stable QZ algorithm [2] and LZ algorithm [3];
the MDR algorithm 4 ], which can preserve the symmetry ofa problem; and the Lanczos
method, which is known to be well suited to the numerical solution of large sparse
generalized symmetric eigenvalue problems ]. Besides, when A and B are symmetric
and B is positive definite, the problem could be reduced to a standard symmetric eigen-
value one by the Cholesky decomposition ofB [1 ]. Last, the generalized Jacobi method
has been used with some success on small A and B that are diagonally dominant 12,
p. 4521.

In this paper we present an algorithm for the problem ). By means ofthe Cholesky
decompositions of A and B, it reduces (1) to the generalized singular value problem,
and then reduces the generalized singular value decomposition (GSVD) to the CS de-
composition (CSD). Finally, it reduces A and B to diagonal forms by singular value
decompositions (SVDs).

2. Algorithm. Since A and B are symmetric and positive definite, there exist the
Cholesky decompositions

2 A LL 7", B LL,
where L andL are lower triangular matrices with positive diagonal elements. The problem

thus becomes the generalized singular value problem [9]

LLrx= X(LLf)x.
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The problem of computing the GSVD can be reduced to the problem of computing the
CSD [5], [10]. Let

(3) L =QR

be the QR decomposition of (L, LB)7-, where the columns of

are orthonormal, Q, Q2, R R n, and R is a nonsingular upper triangular matrix. Let

(4) Q-- U1CVT, Q2 U2SVT

be the CSD of Q, where U, U2, V R n are orthogonal; S diag (s, sn); C
2diag(c, c,); si >= 0; ci >- 0; and sZi + ci 1, (i 1, n). From (2), (3), and

(4), we obtain

(5) A RTvcZVTR, B RTvszVTR.

Since VTR is nonsingular, the eigenvalues of the problem are given by

2(6) ki’--Ci/S2i, (i= 1,." ,n).

If we set

(7) P=R-V,

then we have, from (5),

AP BPA.

It shows that the columns ofP are the eigenvectors of ).
If R is well conditioned with respect to inversion, then the formulas (2), (3), (4),

(6), and (7) can lead to an algorithm for the computation of the eigenvalues and eigen-
vectors of ).

Now we consider the computation of the eigenvalues of ). Let Q1 (vbe
the SVD of Q, where U1 and V are orthogonal, and C is diagonal. We set X Q2V.
Let X U2S be the QR decomposition of X, where U2 is orthogonal and S is upper
triangular with positive diagonal elements. Then S is diagonal 5 ]. Thus

is the CSD of Q. The SVD Q UCV is computed first for computing the CSD (4)
of Q 5 ], 6 ], where C diag ((, c). In the presence of rounding error, Stewart
[6] has shown that C is effectively (. Likewise, if we compute the SVD Q2 U2SV,
where S diag (g, s), then S is effectively S in the presence of rounding error.
Hence the eigenvalues of are given by Xi (i2/k-i2, (i 1, n).

From above, we obtain the following algorithm.

ALGORITHM. Let A, B R" be positive definite. This algorithm produces the
diagonal matrices and satisfying 2 + 2 I, pTBp q2, and PvAP 2, where
P is nonsingular.
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Compute the Cholesky decompositions ofA and B
TA LL 7, B LsL,

where L and Ls are lower triangular matrices with positive diagonal elements.
(2) Compute the QR decomposition of (L, Ls) T

Q,

where the columns of

Q=
Q2

are orthonormal, Ql, Q2, R e R n, and R is a nonsingular upper triangular matrix.
(3) Compute the SVDs of Q and Q_

Q1 UCV, Q2 UzSVf,

where , 2, V, V2 R" are orthogonal, and diag (?, .-.,
the . and Y/are ordered as follows: 0 -< ? -< _-< ?, -< 1, >_- Yl >-- >-- , >-- 0.

The QR decomposition ofF (L, L) T is computed in step (2) of the algorithm.
Since L v and L are upper triangular matrices, computing the QR decomposition can
take advantage of the structure of the matrix F. Golub and Pereyra [13 have given a
method. It results in upper triangular matrices Q and Q2 and requires ((2/3)n 3) flops.
The SVDs of QI and Q2 are computed in step (3) of the algorithm. The reduction of a
triangular matrix to bidiagonal form is given in [14]. If a modified Householder matrix
[7, p. 43 is adopted, then the reduction requires n 3 flops. It requires O(n2) flops for
computing the singular values from the bidiagonal form, while computing the Cholesky
decomposition of a matrix of order n requires (n3/6) flops [7, p. 89 ]. Therefore, if we
do not form 3, 2, V, and V2, the total number of flops required is about 3n If only
the eigenvalues are desired, then the QZ algorithm requires about 15n flops 7, p. 262 ].

As noted, 2
__
2 I, SO we may compute only the SVD ofQ in step (3). Then,

the eigenvalues of are given by X; -2 -2c /( ci ), n) Thus the algorithm
requires about 2n flops. However, the cancellation of significant figures might occur in
the computation of Xi ?/( ?/2).

3. Rounding-error analysis. Let : be the computed version ofx. From 8, p. 232 ],
we have

(8) v= A + El, / B+ E2,

where E1 and E2 are small relative to ][A[[2 and ][B][2, respectively. From [8, pp. 160,
236], we know that there is an orthogonal matrix Q and a matrix (Er, E4v) such that

L + E4 Q2

where E3 and E4 are small relative to

T
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From 8, 19. 161 ], we obtain

(10) O= O__.z Q+E6

where E5 and E6 are small relative to unity. Suppose the CSD (4) of ( is computed by
the algorithm in [5], [6]. From [5],

U1VT_ QI + ET, Uz,VT= 2 + E8,
()

U(U =I, UU2=I, VTV=I,
where E7 and E8 are small relative to unity. From 6 ],

(12) = +E9, =/+E,o,
where E9 and Elo are small relative to unity. From (9), (10), 11 ), (12) we have

UIVV=(V+E3)k- +E +E7 + U1E9V

=(V+ E3 +Ek + ETk + UEgVVk)k-.
Let E E3 + EK + EvK + U E9VK. Then from (8),

vZv=k-V(A + E, +E+Er +ErE)k -1 k-V(A + E)k-
where E E1 + E + Er + EVE is small relative to (IIAII2 + BII2)and symmetric.
Thus

2 VVk-r(A + E)k- V.

Analogously, we can obtain

2 vT]-T(B + Es)I-I v,
where Es is small relative to (IIA]I2 + I[BI[2) and symmetric. The algorithm is stable
thereby.

Let

((,3),(, 6))
X/(I 12 + 1fll2)(Ivl 2 + idil2)

a, 3, 3’, and 6 C, (a, 3) 4= (0, 0) and (3’, 6) 4: (0, 0).
Since A, B, E, and E are symmetric and A and B are positive definite, from [15]

we know that if

[IX[12 V (xHAx) 2h- < 1,

then the generalized eigenvalue variation
-’2min { max o((c,si), ((,s,(o)) }

=< max { O((xAx,xBx), (xl(A + E)x,xl(B + E)x)) },
Ilxl12

and here r runs through all permutations of { 1, n }.
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TABLE

Our algorithm- Qz algorithm M W method Correct values

i "-l- gi Ai Ai Ai Ai
0’.298588E ’05’ "0.305790E- 050.100000E + 01

0.100000E + 01
0.100000E + 01
0.100000E + 01
0.100000E + 01
0.100000E + 01
0.100000E + 01
0.100000E + 01
0.100000E + 01

0.301185E 05
0.244826E 03
0.778315E 02
0.116766E + 00
0.100000E + 01
0.856412E + 01
0.128483E + 03
0.408494E + 04
0.333536E + 06

0.244887E 03
0.778319E 02
0.116766E + 00
0.100000E + 01
0.856413E + 01
0.128483E + 03
0.408496E + 04
0.338781E + 06

0.251860E 03
0.791056E 02
0.117145E + 00
0.100073E + 01
0.856557E + 01
0.128484E + 03
0.408501E + 04
0.337572E / 06

0.3b0371E- 05
0.244832E 03
0.778316E 02
0.116766E + 00
0.00000E + o
0.856413E +01
0.128483E +03
0.408489E +04
0.336035E + 06

4. Numerical examples. The calculations were done on an IBM-PC/AT computer
in the following examples. Two programs in the STYR/MATH Users’ Guide [16] have
been used on the problems for comparison. The first one transforms Ax XBx to a
standard symmetric eigenvalue problem and applies the QL algorithm (i.e., the Martin
and Wilkinson method); the second one is the QZ algorithm.

Example 1. B (bij), A (aij), where bij sin ((i j)(Tr / 2)) / (i j), aij
r6(i, j) bi. The calculations were done in double precision for bg and ai. For n 3,
4, 15 we have found the eigenvalues in single precision.The results, for n 9 and
n 15, are shown in Tables and 2.

As the eigenvalues computed by our algorithm and the QZ algorithm in double
precision agree to six digits for n <- 15, we take them as correct results which are presented
in Tables and 2.

From Tables and 2, it can be seen that the eigenvalues computed by our algorithm
have about the same accuracy as the ones computed by the QZ algorithm. -2Cid-g=l
is satisfied to working precision. In Table the approximations to the smallest eigenvalues
are far less accurate for the Martin-Wilkinson method (M-W method) than for the two
others. In Table 2 the computed eigenvalues by the M-W method fail to agree with the
correct values.

TABLE 2
n=15.

ai + gi

O.lOOoooE + 01
0.100000E + 01
0.100000E + 01
0.999999E + 00
0.100000E + 01
0.100000E + 01
0.100000E+ 01
0.100000E + 01
0.100000E+ 01
0.I00000E + 01
0.100000E + 01
0.100000E + 01
0.100000E + 01
0.100000E + 01
0.100000E + 01

bur algorithm

Ai
0.374126E 07
0.596040E 07
0.107120E 05
0.393491E 04
0.955453E 03
0.149418E 01
0.147088E + 00
0.100000E + 01
0.679867E + 01
0.669264E + 02
0.104665E + 04
0.254386E + 05
0.968951E + 06
0.501775E + 08
0.757954E + 08

QZ alg0rithm Correct values

Ai Ai
0.461546E- 07 0.279294E 07
0.668033E 07
0.976377E 06
0.392772E 04
0.955525E 03
0.149418E 01
0.147088E + 00
0.100000E + 01
0.679866E + 01
0.669262E + 02
0.104663E + 04
0.254325E + 05
0.980617E + 06

+c
+

M W method

Ai
-0.342318E + 00
-0.334077E + 00
-0.240770E + 00
-0.165970E :+ 00
-0.119879E + 00
-0.395875E- 01
-0.681586E 02
0.709770E 02
0.425809E 01
0.112224E + 00
0.133817E + 00
0.282139E + 00
0.369343E + 00
0.431837E + 00
0.484609E + 00

0.432000E 07
0.105091E 05
0.393447E 04
0.955460E 03
0.149418E 01
0.147088E + 00
0. IO0000E + 00
0.679866E + 01
0.669263E + 02
0.104665E + 04
0.254343E + 05
0.977433E + 06
0.650511E + 08
0.981998E + 10
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Let QHAZ Tand QHBZ Hbe upper triangular, where Q and Z are orthogonal.
Let 7 and be the computed versions of T and H by the QZ algorithm, and let ti,
i, and hi denote the diagonal elements of T, H, 7, and , respectively. Analogously,
we take the -2 --2 2c and si computed by our algorithm in double precision as the exact c
and si2, and the i and hi computed by the QZ algorithm in double precision as the exact
ti and hi. We obtain

min { max p ((c, s), r(i),Sr(i))) } " 1.5E- 7

min { max t9 ((ti, hi), (r(i), hr(i))) } "< 3.8E- 7

min { max 0 ((ci, S r(C r(i), i))) } < 1.4E-- 7

min {max p((ti, hi),(,(i),hti)) } < 1.0E+0

(n=9),

(n=9),

(n= 15),

(n= 15).

Example 2. Let A UTDAU, B UTDBU, where U is a random Householder
matrix and DA and DB are diagonal matrices with positive diagonal elements. We have
constructed many problems by this method. An example of this kind is the 10
10 problem

T

U I- 2 uu A UTDAU, B UTDBU,

where u, DA, DB are as follows:

U

0.443755E 02
0.581926E + 00
0.428218E + 00
0.546248E 01
0.790236E 01
0.149859E + 00
0.674297E + 00
0.916294E + 00
0.161062E + 00
0.970872E + 00

0.100000E 03
0.100000E + 05
0.100000E 02
0.100000E + 04
0.100000E 01
0.100000E + 03
0.100000E + 00
0.100000E + 02
0.100000E + 01
0.100000E + 01

DB
0.200000E 02
0.200000E + 04
0.200000E + 05
0.200000E 03
0.200000E + 02
0.200000E + 00
0.200000E 01
0.200000E + 03
0.200000E + 01
0.200000E + 01

The calculations were done in single precision. The results are shown in Table 3.
Again it can be seen that the eigenvalues computed by our algorithm have about the
same accuracy as the eigenvalues computed by the QZ algorithm, and + k-,2. is
satisfied to working precision. The approximation to the eigenvalue 0.5 is far less accurate
for the M-W method than for the two others.

Let DA diag (a, al0), Ds diag (1, /10)o We obtain

min { max p (( Oi,/i), "2 "2C r(i),S r(i))) } " 3.1 E- 3

and

min {max p((oti,ti),(l(i),h(i)))} <7.9E- 1.
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Our algorithm

O. IO0000E :t- ’01
o.:00000E + 0
0.100000E + 01
o. 00000E + 0
0.00000E + 0
o. .O0000E + o.
0.100000E + 01
0.100000E -t- 01
0.100000E -i- 01
0.100000E + 01

0.542428E 07
0.500134E 03
0.499888E 01
0.500009E 01
0.499977E + 00
0.500002E + 00
0.492157E + 01
0.499999E + 01
0.500065E + 03
0.523423E / 07

TABLE 3

QZ algorithm

0.44096E 07
0.484089E 03
0.497860E 01
0.499535E- 01
0.499964E + 00
0.499999E / 00
0.498219E + 01
0.500000E + 01
0.500026E + 03

M W method

0.469603E 07
0.499008E 03
0.498549E 01
0.500173E 01
0.399286E + 00
0.500876E + 00
0.466847E + 01
0.500000E + 01
0.500042E + 03
0.522994E + 07

Correct values

0.500000E- 07
0.500000E 03
0.500000E 01
0.500000E 01
0.500000E / 00
0.500000E + 00
0.500000E/ 01
0.500000E + 01
0.500000E+ 03
0.500000E + 07
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DIAGONALIZING THE ADAPTIVE SOR ITERATION METHOD*

JEROME DANCIS"

Abstract. The SOR iteration method is a popular method for solving the large sparse systems of linear
algebraic equations which approximate many partial differential equations that arise in engineering. Often the
associated SOR matrix M-N is diagonalizable except at the eigenvalue , o 1, and the noneigenvector p.
associated with the , w (i) slows down the convergence, and (ii) in the adaptive SOR method, reduces
the accuracy of the calculation of the next relaxation factor oi. Of course, M-N cannot be diagonalized, but
the error vector can be pushed into the span ofthe eigenvectors ofM-N, thereby eliminating the p.-coordinate
of the error vector, together with its undesirable effects. This is done with the simple polynomial acceleration
associated with the polynomial P(x) (x- (o ))/( (o )), and P,,(x) x’-P(x), n 2, 3, -...

In the adaptive SOR method, this acceleration reduces the size of the error (i) by enabling the program to
update the value of oi sooner, and (ii) by eliminating the contribution ofp. to the error vector.

In the computer runs, using this polynomial acceleration resulted (on average) in an extra digit ofaccuracy
over the results using the standard adaptive SOR method.

Key words SOR iteration method, polynomial acceleration

AMS(MOS) subject classifications. 65F10, 65F50

1. Introduction. The SOR iteration method is a popular method for solving many
of the large sparse systems of linear algebraic equations which approximate the partial
differential equations that arise in engineering problems. The modern (1980s) approach
is to use the "adaptive SOR" method described in Hageman and Young’s book [2 ].
Under this adaptive SOR method a short increasing sequence of relaxation factors
is used:

-1 < (..02 <

(where O)b is the "optimal" relaxation factor). Roughly speaking, a small number ofSOR
iterations are done using a relaxation factor wi until it is clear that (i) 0i 4 0b, and (ii)
certain conditions in Hageman and Young’s algorithm are met; then oi is updated to
the next relaxation factor oai +.

When the associated SOR matrix is not diagonalizable, there will be a principal
vector of grade two p. (that is, (&’ (oa ))2p. 0). Various undesirable effects
caused by these principal vectors p. are described in 2, pp. 227, 228 ]. The main effects
are (i) a postponing of the updating of the relaxation factor oai, and (ii) a slowing of the
rate of convergence.

We can remove these undesirable effects by "pushing" the error vector into the span
of the eigenvectors of ’. Then the principal vector will make no contribution to the
error vector, and hence only the "diagonalizable part" of’ will be acting on the error
vector.

We achieve this by doing a "first-degree polynomial acceleration" (on the first SOR
iteration for each relaxation factor oi) which we will call an "a-shift."

DEFINITION. An a-shift on two successive SOR iterations, say v0 and v, shall mean
formation of the new vector:

a
(1 1) v* "-

-a
v

-a YD.
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662 JEROME DANCIS

The details of the consequences of this a-shift (with a wi will be discussed later.
At first glance, it might look like this move will greatly increase the size (2-norm) of the
error vector. We will explain why this "should" not happen with the adaptive SOR
method.

We did computer runs on the "model" problem 2, 1.7 ], that is, on the 5-point
rule applied to Poisson’s equation on grids of size 25 25 to .45 45, which results in
625-2,025 equations. Our variation resulted in an extra digit of accuracy (on average)
when compared to the standard adaptive SOR method. The results ofthe computer runs
are presented in 4 and in Graphs 1-8.

2. Background. It is well known (see 2 that for a symmetric linear system Av
w and a relaxation factor co, there is the associated SOR matrix

’=(D-coL)-[wU+( -co)D],

where A D L L 7- is the usual splitting (with D the diagonal of A, and L and U
the upper and lower triangular parts ofA).

Young [4, p. 238] and Hageman and Kellogg [1 have shown that these associated
SOR matrices are diagonalizable except at the eigenvalue co (for some common types
of matrices), namely, Theorem 2.1.

THEOREM 2.1. Let q’, be the associated SOR matrix for some symmetric block
tridiagonal matrix A or a consistently ordered 2-cyclic symmetric matrix.

Ifco is not an eigenvalue ofq, then q’o, is diagonalizable (with complex
eigenvalues);

(ii) Ifco is an eigenvalue offg, then .o has one or more Jordan blocks

all the other Jordan blocks ofq’ are diagonal matrices.

2.1. The case when co 1 is an eigenvalue of qo. In this case, there will be a unit
principal vector p, and a unit eigenvector u, such that, with a co 1"

Thus

q’oP , ap , + u, and M’u, au ,.

(a ,)J=
0 a

represents the restriction of M’ to the subspace Span { u,, p, }, with { u,, p, } as the
basis for its coordinate system.

Let c, and cp be the coefficients of u, and p, in the initial error vector e(). Thus

e()=c,u, +cpp, + ,aiui,

where the ui are the other eigenvectors ofo and &t’(ui) ,iui.
Then, the contribution to the next error vector e() by these vectors u, and p, is

Then

(2.3)

a cp acpCp)"
e() =(ac, + c)u, + acpp, + aikiui.
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That the contribution of the principal vector to the error vector results in a slowing
down of the convergence has been observed in computer runs is mentioned in Chapter
7 of [4].

As Sheldon 3 has pointed out, a consequence of o (.ob and the existence of the
principal vector (when o Ob) is that the diagrams of the ratios of the 2-norms of
successive error vectors look like hillsides:

ratios of
2-norms of
successive
error vectors

l=CO-

hillside

base of hillside

iterations (with a fixed co cob)

3. Removing the principal vector. In this section, we will explain how the a-shift
(eq. 1.1 )) "kills" the principle vector component ofthe error vector, thereby "pushing"
the error and difference vectors into the span of the eigenvectors. The result should be
the elimination or reduction of the hillsides mentioned in the preceding section.

DEFINITION. The nth difference-vector r) is the residual vector for the iteration
equation. It is known that r") and the nth error vector are connected by the equation

r (n) I-.)e().

The next theorem is the main result.
THEOREM 3.1. Suppose we are doing an SOR iteration procedure (with as the

associated SOR matrix with afixed valuefor ) and suppose that Theorem 2.1 is appli-
cable. Suppose that a single a-shift (with a is done only after the first SOR
iteration. Thus the iterations are"

l)n o/)n + WO, n=1,3,4,5, ...,
a

(3.1) v * V Vo wherea o-
-a -a

v2 a%v" + Wo.

Suppose that a o is an eigenvalue ofo,. Then (exceptfor Vo and I) all the error
and difference vectors will be in the span ofthe eigenvectors of.’.

Remark. The matrix algebra motivation is as follows. Calculating from (3.1)
we obtained

v ( aI)vo +
-a -a

Therefore, the matrix S associated with going from v0 to v " is

S (&t’-aI).
1-a

Let

(a
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again. This matrix S restricted to the subspace Span { u,, p, } with { u,, p, } coordinates
is represented by

1-a i-a 0
aI 1-a 0 0

Therefore the contribution by u, and p, to the error vector for v * is

1-a Cp 1-a 0 0 cp a 0 1-a

Observe that there is a u, component but no p, component. We now proceed to
the proof.

Proof. Let e,) be the error vector for v ; then

ae(*)=v-v
-a

(v-v)-
-a

(v-v)

ae(1)_e(O)
-a -a

where e(l) and e() are the zeroth and first error vectors. Plugging in (2.2) and (2.3)
results in

1-a
c,u, + ()ti-a)aiui

We observe that the principle vector p, does not appear in this equation. Thus e,) is in
the span of the eigenvectors. The difference vector for this error vector is given by

r(,) (1-,oo)e(,)=cu, + , 1-hi
l-a

)ti-- a)aiui.

Again, p, does not appear and r (,1) is a linear combination of the eigenvectors of
As long as we continue to do more SOR iterations with the same o and no more

a-shifts, the error and difference vectors will be

( "-1 +(ki a)aTug)a CpU,e (*n ’i a

and

r(,n)= a’- CpU, + ll--ki (ki-- a)aTui.
-a

Clearly, e(n) and r(’) are linear combinations of the eigenvectors (u, and b/i) of

4. The computer runs. The algorithm for our computer runs is to use a standard
adaptive SOR algorithm modified by the addition of a-shifts, a o 1, immediately
following the first SOR iteration after the updating of o.

ALGORITHM 4.1. Use the adaptive SOR Algorithm 9-6.1 of 2 together with one
modification as follows.
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Let V,0 denote the iteration solution vector for the iteration after which o_ is
updated to aai

Vi, ,.qo Vi,0 4- Woi

, wi--1V i,"- V,. V,,o,
2--wi 2--ooi

Vi,2 ,toi V i,l 4- Woi

Vi,n’-’q’o,(Vg,,,_)+Wo, n 3,4,

until the next updating of 0. Thus V, is obtained from Vi,o by a single SOR iteration
and V *

g,l is obtained from V/,1 and V,-,0 by an a-shift with a wi- 1.

Our computer runs were on the popular "model" problem 2, 1.7 ], which is the
5-point rule applied to Poisson’s equation on (equally spaced) square gridsfrom a
25 25 to a 45 45 point grid, all with the dictionary ordering.

We used the problem (M N)v w where v was chosen by a random number
generator as a vector with integer entries between -999 and +999. Using the randomly
chosen answer vector v and the computer calculated w, we then used the adaptive SOR
method with initial guess v0 0 to calculate approximate solutions { v, }. Since we knew
the exact value of v, the computer also calculated the 2-norms of the error vectors
(llv v. II).

We used these strategy parameters (see [2, pp. 228-229])

PSP .01, RSP .0001, F .8.

The initial omega o0 was always set equal to one.
Basically we did a line-by-line translation of the 50 lines of Algorithm 9-6.1 of 2

into 50 lines of APL code. (This resulted in our APL code being as easy to read as
Algorithm 9-6.1 itself.) APL does its calculations in double precision.

We did seven pairs of computer runs. The control runs used the standard adap-
tive SOR method [2, Algorithm 9-6.1]. The experimental computer runs used Algo-
rithm 4.1.

The results ofthese computer runs are presented in the Tables 4.1, 4.2, 5.1, and 6.1
and in Graphs 1-7. The 2-norm is used throughout. The number of iteration steps for
each pair of computer runs was a prechosen fixed number.

4.1. The gralhs and their descriptions. For each pair of computer runs we will
present a set of three graphs.

Notation.
e") is the error vector after n SOR iterations using the adaptive SOR method.
e .n) is the error vector after n SOR iterations using the adaptive SOR method together

with simple a-shifts after the first iteration with each new value for omega.
A solid arrow points to the step where an a-shift was performed as o was updated.
A broken arrow points to the step in which w was updated without an a-shift.

The thick dark line segment denotes the base of the "hillside" at "altitude"

(i) The top graph is a graph ofthe ratios ofthe 2-norms ofsuccessive error vectors
of the unshifted and shifted runs, namely,

IleCn) / lie=- )11 denoted by

en) + e(,n-’)ll denoted by
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These top graphs clearly show the hillsides following the update to the final o. Both
the height and the length ofthe hillsides ofthe runs with a-shifts are always less than the
ones for unshifted runs. The sinusoidal behavior to the fight ofsome hillsides is a known
phenomenon due to the complex eigenvalues. Also, the error drop at each a-shift is
visible (sometimes even off scale).

(ii) Each middle graph is a graph of the ratios of the paired error vectors, i.e.,

denoted by ....
This shows the cumulative improvement of the shifted runs over the unshifted runs. As
such each middle graph is a consequence of the top graph.

(iii) Each bottom graph compares the 2-norms of the error vectors ofthe unshifted
and shifted runs, namely,

denoted by

denoted by

The difference between the two discrete curves reflects the ratios pictured in the mid-
dle graph.

The "drop" points in the middle and bottom graphs occur at the a-shift iterations.
Log scales are used in the middle and bottom graphs. Every horizontal axis lists the

numbers of the iteration steps.

4.2. Observed reduction of the hillside effect. In our computer runs, was never
equal to oB, but for the final o (in each run), o oB. This resulted in there not being
any principal-vector-of-’ component in the error vector when each final o was chosen.
Still, since o o,, the eigenvectors associated with the pair of eigenvalues near o
acted in a manner similar (but reduced) to an eigenvector-principal vector pair. This is
demonstrated by the low hillsides, which are clearly seen in all the graphs (of the ratios
of the 2-norms of successive error vectors). In each case, both the length and the height
of the hillside of each run with the a-shifts was lower than the length and height of its
"control" run’s hillside (without the a-shifts). Thus, doing the a-shifts, when
seems to remove a good portion of the hillside effect caused by the "approximate eigen-
vector-principal vector pair." By observation, this reduction ofthe "hillside" effect seems
to have reduced the 2-norm ofthe error vector by a factor of 1/2 in our runs (see the lower
hillside column in Table 6.1 ).

4.3. Contamination of the error vector. A second problem caused by principal vectors
is that the contribution ofthis p, vector "contaminates" the error vector, thereby helping
to disguise the maximum eigenvalue. The a-shifts probably reduce this "contamination"
by reducing the "principal-vector"-type effect. We observed that the computer runs with
a-shifts usually updated the values of o earlier. This is tabulated in Table 4.1. (In the
adaptive SOR method, all runs are updated from o0 to o following the fourth step.

4.4. A technical detail. In our runs we observed the following pattern for the ratios
of the difference vectors when using the next-to-last 0:

The term "contamination" is rigorously defined and discussed on pp. 221-224 of [2].
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ratios of tail
2-norms of 1
successive
difference
vectors

iterations (with a fixed o < oB)

When w is updated at the local maximum on the tail, then the final w will be
somewhat higher than we. To avoid this, the Hageman-Young book tells us to choose
a strategy parameter PSP which the computer will use in calculating a variable p*. This
number p* is supposed to be the number ofiteration steps needed to arrive past the local
maximum on the tail.

My choice for these runs was PSP .01. For comparison, I also ran a pair of
computer runs on 1,600 equations with (the default value) PSP .5. The result (using
PSP .5 was that the 03’s (for both the shifted and unshifted runs) were updated to the
final 034 038 + .006 at the relative maximums of the tails (steps 47 and 52) instead of
updating to the final 034 , 03B -- .001 further down the tail (steps 84 and 91 ), as occurred
when PSP .01. It turned out that the error vectors, when PSP .5, were smaller than
those when PSP .01 in spite of the larger spectral radius of f’4. This is a known
phenomenon when 03 > 03B.

For our runs with 1,024 and 2,205 equations, the choice of PSP being .5 or .01 did
not affect the steps at which the 03’s were updated.

We present the graphs of the successive difference vectors for the runs with 1,600
equations in Graph 8.

A side effect of using these a-shifts (to remove the principal vector) is that the
associated eigenvector is increased by the term

TABLE 4.1
The step at which o) was updated.

Computer run at step #

was updated to

O9

at step #
O9

at step #

625 eqs.

676 eqs.
solution #
676 eqs.
solution #2
1,024 eqs.

1,600 eqs
PSP .01
1,600 eqs.
PSP .5
2,025 eqs.

with shifts:
no shifts:
with shifts:
no shifts:
with shifts:
no shifts:
with shifts:
no shifts:
with shifts:
no shifts:
with shifts:
no shifts:
with shifts:
no shifts:

13

11

13

14

11

11

12

14

11

13

14

12

12

13

44

32
46

34
35

36
31

32
29

32
29

32
32

33

66

77

72

84

47

66

75

71

78

91

52

7O
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and this term might be undesirably large, especially when a is close to one (which cor-
responds to a + o being close to two). This raises the possibility of the norm of the
error vector increasing considerably at the time an a-shift is performed.

This did not occur in any of our seven computer runs. In fact, as Table 4.2 dem-
onstrates, the opposite occurred. Not only did the norms of the error vectors decrease at
the time of each a-shift (which was combined with the updating of the SOR relaxation
factors wi), but the decrease was even greater than the corresponding decrease in the
control computer runs.

We have not (as yet) investigated this effect for the non-adaptive SOR method.
For the red-black ordering, the principal vector may be considerably reduced by

doing a single Gauss-Seidel iteration immediately following each updating of w. This is
called Sheldon’s method 3 ], 4 ].

5. The eigenvalue banjos and further analysis of the consequences of the a-shift. It
is well known [4, Chap. 5 ], [2, 9.3] that when the relaxation factor o is less than the
optimal relaxation factor Wb, then the set of eigenvalues of the SOR matrix qo are on a
"banjo" (see Fig. 5.1 ).

DEFINITION. Whenever the eigenvalues of a matrix lie on the union ofa circle and
a real line segment such that

(i) the center of the circle is a real number,
(ii) the circle intersects the line segment in exactly one point, and
(iii) the endpoints of the line segment are (real) eigenvalues,

then the union of this circle and line segment shall be called the eigenvalue banjo of the
matrix.

The a-shift (defined in is the same as the polynomial acceleration associated
with the first-degree polynomial

x-a
e(x)=,

1-a

TABLE 4.2
Reduction oferror vectors while shifting.

Computer run o9

625 eqs. wth shifts: .73
no shifts:
wth shifts:
no shifts:
with shifts:
no shifts:
wth shifts:
no shifts:
wth shifts:
no shifts:
with shifts:
no shifts:
with shifts:
no shifts:

676 eqs.
solution #
676 eqs.
solution #2
1,024 eqs.

1,600 eqs.
PSP 0.1
1,600 eqs.
PSP .5
2,025 eqs.

Ratios of 2-norms of succesive error vectors
at the updating of o9 to

.80

.77

.79

.85

.85

.79

.78

.83

.81

.83

.87

.87

.82

.65

.69

.60

.81

.85

.85

.77

O92

.83

.85

.81

.90

.92

.92

.90

.61

.51

.61

.79

.78

.78

.70

O93

.90

.85

.91

.95

.95

.95

.91

O94

.44
.89

.29
.86

.43
.90

.49
.93

.53
.93

.62
.95

Let etr*) and et’) be the error vectors for the r, and rth iteration vectors during a pair of computer runs
*-’)11with the indicating the run with the a-shifts. Then the ratios listed in this table are Ile*)ll/lle,

and Ilet)ll/lle(r- )11 when ogi- is updated to ogi between steps #r, and #r, and steps #r and #r, respectively.
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FiG. 5.1

whose unique root is at x a (also P( ). Since such a P (x) is an affine function,
these polynomial accelerations will shift the eigenvalues of&t’ by the affine transformation
P (x) fixed at the point one. Therefore the a-shift, when a o 1, will shift the eigenvalue
banjo of &t’ to this eigenvalue banjo for P (&t’) (see Fig. 5.2). For example, when a
.825 (as it will be in the case of our computer run with 1,024 equations), the eigenvalue
banjos are as shown in Fig. 5.3.

In our computer run, a-shifts were done at steps 5, 15, 32, and 73 (Graph 4 and
Table 4.1 ). At step 73, 1.825 and so Fig. 5.3 is a correct picture of the eigenvalue
banjo. We will now examine the changes in the eigenvector coordinates of the error
vector during steps 33-73 in order to explain why the a-shift at step 73 reduced the 2-
norm of the error vector to less than half its size instead of increasing it tenfold. Let

1024

(5.1) e(33) Z iui

be an error vector with u and u,024, the eigenvectors of 9, corresponding to the ei-
genvalues with largest and smallest real part; the ui are the unit eigenvectors of e. In
our example we will have

(5.2) P1 (O1.825 (Ul,024) --9.4 1,024Ul,024.

Thus, this a-shift increases the coefficients of the u,024-part of the error vector by a
factor of 9.4. On the face of it, this appears to be masochistically counterproductive. But

FIG. 5.2

-9.4

eigenvalue banjo for.q’1.s25

-- ’
.846

-.825
k,,,,).825

0.12

eigenvalue banjo for P1 (1.8a5)

FIG. 5.3
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when we look at the computer results (Graph 4 and Table 4.2), we see that the 2-norm
of the error actually drops by more than 1/2! How is this possible?

The explanation lies in the fact that the error vector was concentrated in the eigen-
vectors associated with the large real eigenvalues by the earlier SOR iterations which
were performed using the preceding relaxation factor 03. We shall explain this.

Let
1,024

e(33)=blWl+ biwu+ biwi
i=2 i=r

be the eigenvector expansion of the error vector after the 33rd SOR iteration of our
computer run (Graph 4); the wi are the unit eigenvectors of &t’ 1.766. Here

and

qO1.766(W1 klW1 , .92Wl,

O1.766(Wi) kiW when Iil .766

(and these ki, >- r, are the complex eigenvalues ofM’ 1.766)- (In our particular computer
run with 1,024 equations, r 2, but this is not important in this analysis.) The ratios of
the 2-norms of the error vectors (also the difference vectors) is

11e(33 > .9 > .8 > .766 W-- 1.

The important consequence of this is that the contribution of the complex eigen-
values to the error vector is less than the contribution of the real eigenvalue Xl (and
> .9). Thus

1,024

(5.3) IIb,wll > biwi
i=r

Forty iteration steps later, we see that the 72nd error vector is

1,024

e(72). X4blWl + , (ki)4biwi+ Xbiwi,
i=2 i=r

k 140
Combining this, we have

800
for =r,r+ 1, 1024.

[IbX4w,
(5.4) I’=2r4 bik0

wi
> 800.

Thus, in the 72nd error vector, the contribution of the largest eigenvalue is more than
800 times the size of the contribution of the complex eigenvalues.

After the 72nd step, the relaxation factor was changed, which resulted in a change
in the eigenvectors. Fortunately, the span ofthe complex eigenvectors of&’1.766 is "close"
to the span of the corresponding complex eigenvectors of f’.825.

Therefore, it is most likely the case that

cl > 251 Cl,024[
where Cl and Cl,024 come from (5.1) and the ratio of 25 is much less than the ratio of 800
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in (5.4), and hence

9.41C,o241 <.4lc I.
This is why increasing Cl,024 by a factor of 9.4 does not prevent the size ofthe error vector
from being cut by a factor of .4 (while doing the a-shift).

The same type of analysis will explain why the a-shifts at the other steps when an
wi was being updated (see Table 4.2) did not increase and instead actually decreased the
size of the error in each of our seven computer runs.

We do not have proof that this type of analysis will work in all cases. Of course,
when the relaxation factor is greater than the 1.872 (of our computer run with 2,025
equations), the factor, by which the coefficient (cl,024) is multiplied, will be larger than
14. But our results certainly suggest that further experimentation with these a-shifts
should be fruitful.

Table 5.1 compares the "blowup" factors to the actual reduction of the 2-norms of
the error vectors as the last a-shift was done in each of our seven computer runs.

6. Summary. When the SOR iteration method is used to solve problems in which
Young’s theory is applicable, it is well known that the SOR iteration matrix is diago-
nalizable except when o is an eigenvalue. In this case there is a principal vector of
grade 2 associated with the eigenvalue o 1. It is well known that this principal vector
slows down the convergence process in a manner illustrated by the hillside-like figure in
the graph of the ratios of successive error vectors. (See the diagram in 2.)

We introduced an affine polynomial acceleration P (&t’), which we named an a-
shift. In theory, these a-shifts should "kill off" the undesirable principal vector and
thereby remove the undesirable hillside effect, by shifting the iteration error-vectors into

TABLE 5.1
Blowupfactors at a-shifts.

Computer Last shift Blowup decontamination
performed factor at Product < reduction

run factor when at shiftat step # shift using previous w

625 eqs. 44 6.7 5 10-8 3 10-7 < .61
676 eqs. 66 7.5 .0002 .001 < .44
vector #
676 eqs. 77 7.9 .009 .07 < .29
vector #2
1,024 eqs. 72 9.4 .001 .01 < .43
1,600 eqs. 84 12.2 5 10-6 6 10-5 < .49
PSP .01
1,600 eqs. 47 12.7 .015 .19 < .53
PSP .5
2,025 eqs. 66 13.6 .0001 .002 < .62

Blowup factor -P(-a,O 2a4/(1 a4), where a4 is the last value of a.
Partial decontamination factor (a3/X)m, where a3 is the next-to-last value ofa; X is the largest eigenvalue

of &t’, for the next-to-last w; m is the number of iteration steps using the next-to-last w.
Product (Blowup factor) (Decontamination factor).
Observed reduction is the factor by which the 2-norm of the error vector was reduced by the a-shift (as in

Table 4.2).
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the span of the eigenvectors of’ (see Theorem 3.1 ). Separately, we noted that when
the red-black ordering is used, applying Sheldon’s method may be more appropriate.

As is the usual situation with the adaptive SOR method, the final o is not equal to
the optimal Ob, but is merely close to Ob. This results in there not being any principal
vector of &’. Still, when o Ob, there is a pair of eigenvalues which are close to o
1. The principal vector-eigenvector pair is replaced by a "nearby" eigenvector pair. As
is common in numerical calculations, this results in a practical effect which is similar to
the theoretical one. This is clearly demonstrated by the existence of the undesirable
hillsides on the fight sides of all the top graphs of Graphs 1-7.

The hillside was (essentially) eliminated by the a-shift only in the run presented in
Graph 3. In each of our six other runs, the theoretical effect of eliminating the hillside
was approximated by the practical result of a sizable reduction in both the height and
length ofthe hillside. The differences in the hillsides caused by the a-shift is clearly visible
on the fight side in each ofthe top graphs ofGraphs 1-7. The quantitative improvement
factors that resulted from these smaller hillsides are listed in the "lower hillside" column
of Table 6.1.

That each of our computer runs had its own individual features is easily observed
by examining Graphs 1-7. This was even true for the two runs with 676 equations which
had the same matrix, the only difference in the two problems being the two different
randomly generated solution vectors. Just observe the large differences in the top graphs
of Graphs 2 and 3.

Another consequence of using a-shifts is as follows. According to Table 4.1, in five
of our seven computer runs, four to nine less iteration steps were performed before
was updated to the final o. This resulted in four to nine iteration steps being performed
when a lower spectral radius was operative. This reduced the 2-norms ofthe error vectors
by the factors listed in the "Earlier update to final o" column of Table 6.1.

As the spectral radius ofP(q) will be ten or more times the spectral radius of
(when o >_- 1.83 ), it would be reasonable to predict that an a-shift would greatly increase
the size ofthe error vector. In 5, we explained why this does not occur with the adaptive
SOR method where the a-shift is done only after the many SOR iterations (using the
previous o) have already greatly reduced the relative contribution to the error vector
made by the complex eigenvalues (of the previous ’).

Instead, the 2-norms of the error vectors actually decreased at each a-shift. (The
numerical results are tabulated in Table 4.2.) In fact, as the final a-shifts ofour computer
runs were performed, the 2-norms ofthe error vectors decreased by factors ranging from
0.3 to 0.64. See the "last a-shift" column of Table 6.1.

We now present Table 6.1, which tabulates the sizes of the various improvements
(error-ratio drops) that resulted from using the a-shift. The column headings are now
defined.

The error ratio of the 2-norms of the error vectors after Step #n is denoted by Rn
Ile,n)ll/llet’)ll, n O, 1, 2,....

Let Nand N. be the step numbers for the first step using the final w for the unshifted
run and the shifted run, respectively.

The ratio before last update is RN.- 1. This ratio measures the amount ofimprove-
ment that resulted from the a-shifts (not including the last one).

The error ratio drop at the last a-shift is

RN,
RN,
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TABLE 6.1
Error-ratio drops.

Ratio before EarlierLast Lower After the Final errorComputer
last update

a-shift
update

hillsiderun hillside ratio
to final w to final o

625 eqs. 0.94 0.64 0.94 0.55* .31
676 eqs. 0.67 0.5 0.6 0.51 0.41 .042
solution #
676 eqs. 0.39 0.34 0.23** .031
solution #2
1,024 eqs. 0.63 0.47 0.77 0.46 0.55 .057
1,600 eqs. 0.89 0.52 0.76 0.59* .2
PSP .01
1,600 eqs. 0.8 0.56 0.84 0.58 1.8 .4
PSP .5
2,025 eqs. 0.89 0.64 0.88 0.26 0.57 .072

The runs, for 625 equations and for 1,600 equations with PSP .01, ended before the successive error
ratios reached the bottom of the hillside.

For solution #2, the unshifted run updated to the last o first. Also, the run ended before the unshifted
run reached the bottom of the hillside.

The error ratio drop due to the earlier update to thefinal o is

RN
RN,

Let M be the step number at which a run arrives at the bottom of the hillside (i.e.,
the successive error ratio is w ).

The error ratio drop while "going down the hillside" is

RM
RN

Let M2 be the last iteration step number. The error ratio drop after the hillside is
(when applicable)

RM2
RM

Thefinal error ratio is

RN RN RM RM2RM2 RN. X X-X-X
RN.- RN, RN RM

The costs in time involved in the calculations of the a-shifts are inconsequential
since less than six of them are done in each run and each a-shift involves only a single
vector addition and two scalar times vector multiplications.

In future papers, we plan to investigate the effects of a-shifts (i) while using the red-
black ordering, (ii) while using the nonadaptive SOR method, and (iii) on certain worst-
case-type situations for the adaptive SOR method.

7. Conclusions. In our computer runs (all with dictionary orderings) the use of a-
shifts reduced the 2-norms of the error vectors by factors ranging from 0.03 to 0.4. We
note that the implementation of our variation (employing a-shifts) ofthe adaptive SOR
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method is both simple and virtually cost-free. Therefore, it seems appropriate to employ
and to experiment further with these a-shifts whenever the adaptive SOR method (without
a red-black ordering) is being used to solve a system of equations in which Young’s
theory 4 is applicable.
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Abstract. General conditions are derived for order reductions in the marginals of multivariate ARMA
time series models. These reductions are shown to be related to the structure of the autoregressive part of the
model. Particular model structures, such as block diagonal and block triangular, are analyzed as special cases
because of their practical relevance for multivariate time series modeling. It is shown that the occurrence of
order reductions is closely related to the issue of model identification in multiple time series.
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1. Introduction. The general k-variate ARMAk(p, q) model can be written as

(1.1) O(B)zt=O(B)at,

where zt (zit, Zk)’ is a k-variate vector time series, at at, akt)’ is a k-
variate white noise vector with mean 0 and covariance matrix , and (B) and O(B)
are polynomial matrices in B, the backshift operator, of order p and q, respectively, with
roots on or inside the unit circle. (I)(B) and O(B) can be represented as follows:

(B) I-IB Bp

(1.2)
O(B)=I-O1B OqBq

A problem which has been previously studied (see 18 ], 3 is that of determining
the form of the models for the individual series, zt, or the marginal models, in the case
where the vector series is known to follow the form 1.1 ). Stam and Hillmer 14 explore
this problem for the particular case of multivariate ARk( models. The purpose of
this paper is to explore additional aspects related to determination of the marginals
of 1.1 ). In particular, we extend the results of our earlier paper to the more general
ARMA(p, q) case, and characterize more fully the relationship between the multivariate
structure of the autoregressive operator and the marginal models in some specific situ-
ations. We also explore the problem ofthe identifiability ofa particular parameterization
related to the order reductions of the marginal models.

We illustrate by example that order reductions can occur not only when the coefficient
matrices are sparse and contain many zero values, but also when these matrices are dense.

2. Preliminary results. The typical approach to determining the form ofthe marginal
models from the given multivariate model (1.1) is as follows. Define I(I)(B)I and
Adj [(I)(B)] to be the determinant and the classical adjoint of the matrix (I)(B), respec-
tively. Then premultiplying both sides of 1.1 by Adj [(I)(B)] gives

(2.1) (I)(B) Izt idj [O(B)]O(B)at.
It follows from (2.1) that the model for zit, 1,..., k is an ARIMA
m, m2, k )p + q), rn + rn2 kp, where ml is the order of the stationary auto-
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regressive component and m2 is the degree of nonstationarity (unit roots); and that the
models for each of the individual series have identical autoregressive parts. It has been
recognized [18], [3 that the stated orders may be reduced by cancellation of common
factors in the autoregressive and moving average sides ofthe model, but the identification
aspects of such order reductions has not been considered.

We use results developed for the first-order autoregressive case by Stare and Hillmer
[14]. Therefore, it is desirable to write the model 1.1 as a higher-order ARMAkp( 1, q)
model. This can be done by considering

(2.2) (I-O*B)yt=O*(B)bt,

’.. 0)’,where Yt (zt, Zt-p+ 1) t, bt (a’t, 0’,

(I) (I)2 (I)_ (l)p

I

and

B) 0’’’ 0

O*(B)

0

Based upon *, the k-matrix (lh-*)can be defined. Using the expression (2.2), the
results derived by Stam and Hillmer 14] for the first-order autoregressive case will be
extended to general form multiple ARIMA models.

Next, we review some useful results concerning the matrix (lh-*), which depend
on the eigenvalues and eigenvectors of*. It can be shown (see 13 that the eigenvalues
of* are the same as the zeros of libp lhp- p[. If X is an eigenvalue of

*, then any nonzero vector x satisfying (Ih * )x 0 is an eigenvector of I,*. If any
h has algebraic multiplicity greater than its geometric multiplicity, then a nonzero gen-
eralized eigenvector xj satisfying (Ih * )xj. xj._ can be found, where x_ is either
an eigenvector or a generalized eigenvector corresponding to h (see 16, p. 360]).

Let A*(h) be the adjoint of the matrix (Ih *) and define

(2.3) c*(x)=c?, +c*,+ +C),

as the reduced adjoint obtained from A*(h) by cancelling any common factors d(h) in
A* (h), so that C * (h) d(h) A* (h). In addition, the minimal polynomial if(h) corre-
sponding to (Ih *) has the property that ff(h)d(h) II, ,I,* I. The following
lemma is proved in [5, p. 168].

LEMMA 1. Let h be an eigenvalue of* and let vj be the dimension ofthe largest
Jordan block associated with hj. For u 1, vj, let qu denote the number ofJordan
blocks of size vj + u ). For qu > O, let P,h, h 1, qu denote the eigenvector
corresponding to the hth Jordan block ofsize v + u) and let p tub, 2, v +

u denote the (l )st generalized eigenvector of that block. IfC*(k)(hj) is the kth
derivative of C*( h) with respect to h evaluated at h hg, then the column space of
C* (’- )(ha) for n 1, va is spanned by the vectors pluh for u 1, n, in which
qu>0,/= 1,...,n+ 1-u, andh= 1,...,qu.

Results in terms of ha may be expressed equivalently in terms of Bj. / ha. ha =/= 0)
(see 14]). We find it convenient to do so throughout the paper.

Since in 2.2 ), Yt (z, z p + )’, it is sufficient to analyze the marginal models
associated with the first k rows of (I,* (see [15]). Premultiplying (2.2) by A*(B) gives

(2.4) II- O* BIy/= A* (B)O* (B)bt.

By writing out (2.4) according to the partitions introduced below equation (2.2), it
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follows that

where

II (I,* BI z, A, (B)O(B)at
I (* BI Zt-p 1(B)O(B)at

AI(B)’’. Ap(B)
A*(B)

AI(B) Ap(B)
,

is partitioned in the same way as (I)*, so that A0(B is of dimension k k. From
(2.5), A(B) BA_ ,l(B) B-IA(B). Since A(B) is of order at most
kp l, A (B) is of order at most kp (p (k )p. In addition, O(B) is
of order q. Thus the first equation in (2.5) has marginals of maximal order ARIMA
(ml, m, (k )p + q) where ml + m2 kp.

3. Intrablock and local reductions. We are interested in the form of the marginal
models corresponding to the joint model 1.1 ). From (2.1) we know that the model for
zit is ofthe ARIMA form with autoregressive order at most kp and moving average order
at most (k- )p + q. Cancellation of common factors in (2.1) may lead to reduced
orders. We will consider three different types of order reduction. A reduction in every
marginal model within the same subset (block) of mutually Granger causally dependent
variables [7 due to the same cause (condition) will be called an intrablock reduction,
and reduction in only some of the marginal models within a subset of Granger causally
dependent variables will be called a local reduction. The third type of order reduction is
interblock reduction and involves the case where the coefficient matrices can be written
in block diagonal or block triangular form. We first introduce the specific structure of
block diagonal and triangular matrices. Interblock reductions are further specified in 5.

Partition the polynomial matrix O(B) into blocks (I’ij(B), 1, m and j
1, m of dimensions ki X kj where 7’=1 ki k. If O(B) can be written such that
’i(B) 0 whenever #j, we say that I, (B) is block diagonal, and if q,0.(B 0 whenever
< j, we say that I,(B) is block lower triangular. We can partition zt, at, and O(B) in

a way conformable to O(B) so that zt [z’t, zt]’, at [a’lt, at]’ with
and air of dimensions ki 1, and O(B) [O0.(B)] with blocks Oi of dimensions
k X kj.

Each set of block diagonal variables zt can be considered a "subsystem," in which
each variable is Granger causally dependent on each ofthe other variables in the subsystem,
but does not depend on any variables in other subsystems. Similarly, each set zu of lower
block triangular variables does not depend in the Granger causal sense on subsets below
it in the partitioned matrix, and may depend causally on the subsets above it in the
matrix 13 ].

In the remainder of this section, we assume that all variables in the multivariate
time series model have a "feedback" relationship and are causally related in the Granger
sense 6 ], 7 ], 11 ]. Thus, the properties derived in this section relate to intrablock and
local reductions only.

3.1. Intrablock reductions. The following result characterizes the circumstances
under which intrablock reductions occur.

RESULT 1. Suppose Yt (z, z;_p)’ follows the model (2.2) and there is
no block diagonal or block triangular structure within *. Suppose q* has distinct non-
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zero eigenvalues X, m and X0 0, and let ro be the algebraic multiplicity of
o. Let vj be the size of the largest Jordan block in the Jordan canonical form corres-
ponding to Xj, j 0,..., m. Then the model for Zit 1,..., k) is an ARIMA
(m, m2, ro + v + q p) where m + mE v =The proof follows by multiplying both sides of (2.2) by ff*(B), the minimal poly-
nomial associated with I,*. This is the same approach as in Theorem of Stam and
Hillmer 14, p. 91]. The marginal models are represented by the first k rows of the
resulting model

(3.1) *(B)yt=C*(B)O*(B)bt.

Due to the zero coefficients in O*(B), (3.1) can be written as (3.2), where C*(B) is
the upper left k k block of C *(B).

(3.2) * (B)yt C B)O* B)bt.

The result follows directly from (3.2); a detailed proof can be found in [15]. Result
implies that the way to get intrablock reductions in the orders ofthe marginals is to have
common eigenvalues in (I)*. Intrablock reductions apply to each of the marginals in the
block. It is also possible to have order reductions for an individual marginal within
a block.

3.2. Local reductions. Using Lemma and [14], 15], it can be shown that the
eigenvectors and generalized eigenvectors of (I)* play an important role in determining
local reductions in the marginal models. This is summarized in the following result.

RESULT 2. Suppose that after accountingfor intrablock reductions, the multivariate
modelfollows (3.2). Then for a given nonzero eigenvalue j of*, there will be a local
reduction in the marginal modelfor zi ofmagnitude exactly si si <= vj), 1, k if
and only ifthefollowing conditions hold:

(i) All of the eigenvectors ptuh of* for u 1,..., si in which q, > O, l
1, s u and h 1, q, have a zero in the ith row, and

2(ii) At least one of the eigenvectors Psi,h, Psi-1,h,’’’, P,h h "", qu does
not have a zero in the ith row.

The basic idea ofthis result is that local reductions will occur when there is a common
factor in every element of the ith row ofAdj [(B)] that is also included in I,I,(B) I. In
this situation, the common value can be factored out of each element in the ith row of
Adj [q,(B)] and cancelled with the I,I,(B) term for the ith marginal model. Lemma
provides necessary and sufficient conditions on the eigenvalues and generalized eigenvalues
that will result in the above cancellation.

Results and 2 provide necessary and sufficient conditions for intrablock and local
reductions due to the structure of *. In the next section we investigate how intrablock
and local reductions can affect the identifiability of the parameterization (2.1). In 5
we consider the ways in which strategically located zeros in I,*(B) of (2.2) can lead to
interblock reductions in the marginal models.

4. Identifiability. Some authors (e.g., 18 ], 17 ], 3 have suggested that the mul-
tivariate ARMA model in (1.1) be reparameterized as in (2.1) because of the simple
structure of the resulting autoregressive component in (2.1). The results derived in this
paper have relevance for the identifiability of the parameterization in (2.1). In order to
understand the issue, we briefly discuss the concept of identification of multiple ARMA
models. A more complete discussion is given in [8 ]-[ 10] and [12, pp. 801-804].

Assuming that zt conforms to the Gaussian model (1.1), identification requires
unique determination of the values of p and q along with the matrices l, "", p,
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O1, Oq from the covariances ofzt, given a sufficiently large number ofobservations.
If this can be done, the multiple ARMA model is identified. The model (1.1) is not
generally identified without imposing additional restrictions upon the parameters. For
instance, if D(B) is an arbitrary matrix polynomial in B, then the covariance structure
of zt will remain unaffected ifwe premultiply both sides of 1.1 by D(B). Thus, assuming
Gaussian errors corresponding to the given covariance structure of zt, there will be a
likelihood equivalence class of models, all of which will lead to the same likelihood
function. The problem of identification is to constrain the parameters so that a unique
member of this equivalence class is selected.

Hannan[ 10 shows that the following four conditions identify the model 1.1 ):
The leading coefficient in (B) and O(B) is I; (2) The zeros of (B) and O(B)
lie outside the unit circle; 3 The matrix polynomials (B) and O(B) have no common
left divisors, implying that ifD B is a matrix polynomial such that (B) D(B) (B)
and O(B) D(B)OI(B), then ID(B)I is a constant independent ofB; (4) The matrix
[pOq] is of full rank k. Hannan has also shown that when (B) is constrained, the
first three conditions with an alternative fourth condition are sufficient to identify the
model. In particular, if (B) has a specific diagonal form (B) a(B)I where a(B)

al B OtmBm, then the model is identified provided that Ot /= 0 and the first
three conditions mentioned above are met. If (B) is constrained to be lower triangular
with the (i, j)th element denoted by Oii(B), the fourth condition for identifiability is
that b0.(B must not be ofhigher degree than j.(B). A similar condition holds for upper
triangular (B).

Hannan[ 10 points out that issues similar to the identification of 1.1 arise in the
context of control engineering where (1.1) is put in state space form. Akaike [1], [2]
discusses a state space formulation of (1.1) and considers the possibility of achieving
identification ofthe model 1.1 by making use ofa state space representation and results
from control theory. He introduces the idea of "block identifiability," which is based
upon the condition of controllability that is common in the optimal filtering literature.
Hannan 10 and Priestley 12, pp. 801-804 show that "block identifiability" is equivalent
to conditions through (3) above and to Oq being nonsingular when q _>- p, p being
nonsingular if p >- q + 1, and [p Oq] being of full rank. Thus, block identifiability is
often equivalent to the conditions derived by Hannan for the identifiability of 1.1 ).

Suppose that equation (1.1) is identified. Then, if one wishes to parameterize the
model as in (2.1), it does not follow that this parameterization is identified. In particular,
we argue that failure to recognize the types of cancellations discussed in this paper will
result in a model ofthe form (2.1) that is not identified. For instance, consider the model
(2.2), let k* (B) be the minimal polynomial of * (B), and let d(B) be a polynomial
such that *(B)d(B) [*(B)I. It follows that the adjoint A*(B) d(B)C*(B), so
that the matrix d(B)l is a common left divisor of * (B) I and ofA* (B). Thus, ifthere
are intrablock reductions in the marginal models, it follows that d(B) q: and the pa-
rameterization (2.1) is not identified. Intrablock reductions are described by Re-
sult above.

Another instance where (2.1) will not be identified is when 1* (B)[ and every
element in the ith row ofA*(B) have a common factor (B B.i) s (si > 0). In this case
the diagonal matrix D(B) with diagonal elements equal to one, except for the factor
(B B)s’ in the ith position, is a common left divisor of I*(B)II and A*(B). Note
that a common factor in every element ofthe ith row ofA* (B) is equivalent to a common
factor in every element of the ith row ofC*(B) 14], [15 ]. Furthermore, Lemma and
Result 2 show that local reductions imply this situation and will in turn lead to (2.1)
not being identified.
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In this particular instance it is of interest to investigate whether or not the param-
eterization (2.1) is identified after the cancellations mentioned previously have been
made. One way to establish identifiability is to verify Hannan’s conditions. The first
condition is trivial. The second condition is true for (2.1) since the zeros of
Adj (B)].O(B) Adj (B) 1. O(B) are outside the unit circle ifthe zeros of
I’I’(n)l and O(n)l are outside the unit circle. If all the possible cancellations have
been made, the third condition will be satisfied. Finally, the reduced autoregressive op-
erator in (2.1) after cancellations is diagonal and thus lower triangular with the off-
diagonal terms ofthe same or lower degree than the diagonal terms. Therefore the relevant
fourth condition is satisfied.

Thus, if one wishes to use the parameterization (2.1), it is important to recognize
that intrablock and local reductions of the types discussed in this paper will cause iden-
tifiabilit problems due to a common left divisor D(B) 4: I of I*(B)[I. These can be
diagnosed by considering the eigenvalues, eigenvectors, and generalized eigenvectors
of*.

Example 1. As an example ofthe identification problems that can occur ifthe types
of cancellations discussed in this paper are ignored, consider the model (I B)zt
at, where

1.000 0 .500 .500
-.214 .571 -.286 -.071
-.071 143 .571 -.357
.071 .143 .429 1.357

for which the Jordan form A and the matrix of (generalized) eigenvectors P are

0 0 0 -1 2

A= 0 0 0 0 0
0 0 0

P=
-2 0 3

0 0 0 0.5 2 0

A check ofconditions through (4) of 8 verifies that this AR4 model is identified.
Transforming this model as in (2.1) yields

(4.1) -B)3( -.5B)z, Adj [(B)]a

with

(1 _B)2(1 _.857B

-.179B(1 -B)-Adj [(B)]= (_.393B+.464B_)(l_B)
-.07( -B)( -.SB)

-.071B(1 -B)z

.036B( -B)2

-B)( 1.821B + .607B2)
.215B(1-B)(1-.5B)

and it follows that

D(B)

(l-B) :z 0 0
0 (l-B)2 0
0 0 (l-B)
0 0 0

-.5B(1-B)2

(1 -B)2(1 -.75B)
.25 B( + B)( B)
-.SB(1-B)(1-.SB)

-.143B(1 -B)2

-.071B(1 -B)2

(-.644B + .215B2)( -B)
-B)( .5B)( .572B)

0
0
0

(1 -B)(1 -.5B)
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is a common left divisor of B)3( .5 B)I and Adj [O(B)]. Thus, the model in
(4.1) is not identified. If D(B) is factored from both sides, the resulting model is

,I,*(B)=

with

and

O*(B)

O*(B)zt=O*(B)at

(1 -B)(1 -.5B) 0 0 0
0 (1 -B)(1 -.5B) 0 0
0 0 (1 -B)2(1 -.5B) 0
0 0 0 (I-B)2

.857B) -.5B -.071B -. 143B
179B -.75B) .036B -.071B

-.393B+.464B2 .25B(l+B) 1-1.821B+.607B2 -.644B+.215B2

-.071B -.5B .215B .572B)

Some authors have advocated using the model (2.1) when fitting multiple ARMA
models to data, because of the apparent simplicity of the autoregressive component of
this model form. In particular, the form of the autoregressive operator is diagonal with
identical diagonal terms in (2.1) as long as there are no cancellations. As illustrated in
this example, one way to have cancellations (and as a result a nonidentified model) is
to have repeated eigenvalues and/or zeros in the eigenvectors. Thus, the apparent sim-
plicity of (2.1) may be achieved at the cost of a nonidentified model.

5. Special structures. In the previous section, only systems in which all variables
have "feedback" relationships were considered, i.e., the variables were all mutually causally
dependent in the Granger sense and together formed one block. A number of authors
(e.g., [18 ], [3]) have indicated that reductions occur in some of the marginal models if
the (I)(B) operator in 1.2) has a triangular or diagonal form. In this section we establish
sufficiency conditions on the structure of (B) for order reductions. These order reduc-
tions will be referred to as interblock reductions. Note that such reductions are in fact a
special case of local reductions, because in the case of block diagonal or triangular coef-
ficient matrices the associated matrices of eigenvectors can be written in the same block
diagonal or triangular structure. Result 2, applied to the zeros in the off-diagonal blocks
of the matrix of eigenvectors, explains the interblock (local) reductions. Additionally,
all properties of intrablock reductions apply within a given subsystem.

5.1. q, is block diagonal. If q, (B) is block diagonal, it follows from 1.1 that zit as
defined above satisfies

(5.1) ii(B)zit Z Oij(B)ajt.
j=l

However, the fight hand side of (5.1) can be written as a moving average model of order
at most q (see 4, Chap. 4]) so that the model for zit is given by

*(B)ait5.2 ii(B)Zit 0 ii

where @ii(B) is a polynomial matrix of order p and O (B) a polynomial matrix of order
q. From (5.2) it follows that the autoregressive part of the marginal models in the ith
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block depends only upon the properties of,(B) and that Results and 2 can be applied
to ii(B) when determining the marginal models for the ith block. Thus a sufficient
condition for interblock reductions in the marginal models is for (B) to be block di-
agonal.

In the specific situation where (B) (I B) and the matrix is diagonal, the
above arrangement implies that the autoregressive portion of the marginal model for zgt

is 4igB) where b;i is the diagonal term ofthe ith row of. Conversely, it is ofinterest
to investigate under which conditions the knowledge that the autoregressive part of each
of the marginal models is of first order will imply a diagonal form of the multivariate
model. The next result addresses this issue.

RESULT 3. Suppose zfollows the model (I tB)zt O(B)at, and the marginal
model for zit is of the form (1 dPiiB)zit oi(n)ai,(i 1, k), where Oi(B) is a
scalar polynomial in B oforder at most q, and a is white noise. Then it is true that:

Ifthe reductions due to the structure of are associated with one eigenvalue,
then is diagonal oftheform I;

(ii) If the reductions due to the structure of ,b are not intrablock reductions, and
due to more than one eigenvalue, then is diagonal, and (ii =/= (jj if 4 j.

Proof. First, assume that the reductions are due to only one eigenvalue. Since all
the marginals have autoregressive components of order p 1, Result states that the k
eigenvalues of must all be equal and the dimensions of the largest Jordan block must
be 1. This implies that the Jordan form is A 4d, where b is the common eigenvalue.
Since PAP- P[ bI]P-1 $I, it follows that is diagonal and ofthe form desired,
which proves (i).

Next, assume that there is more than one eigenvalue, and that none ofthe reductions
are intrablock reductions. Result 2 implies that every row ofthe matrix P ofeigenvectors
and generalized eigenvectors has k zeros and thus, without loss of generality, can be
taken to be diagonal. If all the eigenvalues of are different, A is diagonal and
PAP- is diagonal. If has a repeated eigenvalue, say a, then A must be of the form

A= 0 a 0
0 0 AI

But as stated above, the eigenvector for a has only one nonzero element, say in row i,
and the generalized eigenvector for a has only one nonzero element in some rowj q: i.
Using Result 2 this implies that the marginal model for zt has an autoregressive order
greater than one, which is a contradiction. Therefore cannot have any repeated
roots. El

The proof of Result 3 implies that in case (i) the autoregressive components of the
marginals must be identical, whereas in case (ii) the autoregressive coefficients must be
all different.

The following example illustrates that one can have first-order autoregressive com-
ponents in the marginal models without a diagonal , and that the coefficient matrix
can even be without blocks of zero coefficients, even if the Jordan form A is diagonal.

Example 2. Suppose zt follows the model (k 4) (I B)zt at with

.875 .175 .025 -.300
350 .650 .350 .000= .225 .525 .675 -.300

-425 .175 .225 .400

The eigenvalues of are ,2 0.3 and X3 k4 1. The geometric multiplicity of
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both repeated eigenvalues is two so that the Jordan form is diagonal. In addition, it can
be shown that the matrix of eigenvectors (those corresponding to , 0.3 written on the
left) is

0 -1 2
2 0P=

-2 0 3
2 0

Result indicates intrablock reductions of order 2 for zit (i 1, 4) and Result 2
gives an additional local reduction of order in each of the four marginal models due
to zeros in the leading eigenvectors. Thus, the marginal models are of the form

0/iin) zit air

where all 0/22 and 0/33 0/44 0.3. Note that the intrablock reductions apply to
all the marginals, but the local reductions are due to the zeros in P and apply to the
individual series. The third and fourth marginal series are stationary AR( processes
with identical autoregressive components, while the first and second series are white noise
after first differencing. It is interesting to observe that even though has two eigenvalues
equal to one, indicating nonstationarity, two of the marginals (z and z4) are stationary,
whereas Zl and Z2 require first differencing rather than second differencing to achieve
stationarity. Also note that in this example d(B) B)( .3//), so that an attempt
to remove nonstationarity by factoring out B)2 fails.

5.2. is block triangular. Interblock reductions will also occur when (B) is block
triangular. We can assume, without loss ofgenerality, that (B) is lower block triangular.
Partition (//) and zt as before. Define 1, (B) ,1 (//),

tjj(//)-[ tj-lj-I(B)’/
0 ] forj=2,.., m,

%,(-)’. "%,_ ,(B)

andjt=(Z’lt, z’rot) for j 1, m. Then, because of the block lower triangular
structure, it follows from 1.1 that the model for jt is

5.3 jj(B),jt Ojj(B)ljt.

Premultiplying. (5.3) by Ajj(B), the adjoint of jj(B), and using the fact that
I&(B)I I-l= I’bii(B)l, since ii(n) is block triangular, gives

J

H [tii(B)ll’jt- jj(B)jj(B)Ijt.
i=1

Therefore, the autoregressive part ofany marginal model in thejth block is 1-[ =, [’bii(B) l,
which is a polynomial in B of order at most p( j

i=, ki), (j 1,’", m). This is
generally oflower order than kp, the order of ,b (B) 1-[ ’= ,bii(B) that would result
from (2.1) and that ignores the special structure of I, (B). Thus there will be systematic
interblock reductions in some of the marginals due to the block lower triangular form.
Results and 2 can be applied further to determine additional intrablock reductions due
to the structure of,I,,(B), 1, m.

In the specific case in which zt follows the model (I B)zt O(B)at with lower
triangular, the above discussion establishes that the marginal models for zit have auto-
regressive parts of order i, and more specifically that the autoregressive part for zit is
equal to I-[j=, jjB). The following result establishes conditions under which the
converse is true.
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RESULT 4. Suppose ztfollows the model (I tB)zt O(B)at, # is nonsingular,
and the only order reductions in the marginal models are due to the (block) triangular
structure of. Ifthe marginal modelfor each zit 1, k) has theform pi(B)zit
Oi(B)ait, where bl(B) blB) and dpi(B) dpiB)i- I(B), 2, k, then

is a lower triangular matrix.

Proof. Let _A_ be the Jordan form of and P be the matrix of eigenvectors and
generalized eigenvectors, so that P PA. Note that there are no systemwide intrablock
reductions because the marginal model for Zkt has an autoregressive component of max-
imal degree, namely k. From the nature of the given marginal models and using Result
2, it follows that thejth row ofP has exactly k -j zeros and that the columns with zeros
also have zeros in every row above the jth row. This structure implies that P or a per-
mutation of the columns of P is a lower triangular matrix. Let S be a matrix derived
from the identity matrix by permutating some of the columns, so that 5; 2 I. Let us
define P PS to be a lower triangular matrix, so that I,P PA, where A SAS. Since

is lower triangular, -1 is lower triangular as well.
Ifthe Jordan form of is diagonal, then is also diagonal and I, PAP -1 is lower

triangular. Thus, we need to consider the case where A has at least one above the
diagonal. In particular, we need to show that/k for this case is lower triangular. To do
this, let a be a repeated eigenvalue of. Further suppose that +I(B) b(B)( aB)
and bi + I(B) i(B)( aB) with < j, so that there is a local reduction corresponding
to a in the ith and jth marginal models. Let i and be the ith and jth column of P,
respectively. Using Result 2,

(5.4) #i Oi -- j,so that i is a generalized eigenvector associated with j. From the equality P p.A_ it
follows that

(5.5)

where ,k is the ith column ofA. But comparing (5.4) and (5.5), 3_; must have a on the
diagonal of the ith row, zeros above the diagonal, and below the diagonal in the ith
column. Therefore

_
is a lower triangular matrix and PAP-1 is lower triangu-

lar.
The following corollary addresses reductions in a bivariate model with a first-order

autoregressive component.
COROLLARY. Suppose zt follows the model (I tB)zt O(B)a/with nonsingular

and k 2. Then there is an order reduction in the marginal models due to the structure

of ifand only if is either diagonal, lower triangular, or upper triangular.
Proof. The discussion of this section implies that there is an interblock order re-

duction of at least one marginal if is diagonal, lower triangular, or upper triangular.
Conversely, if there is an order reduction in both marginal models, then either both
marginals have the same autoregressive components and there was exactly one intrablock
reduction, or they have different autoregressive parameters and there was one interblock
local reduction in each marginal. In either case, Result 3 implies that is diagonal. If
there is an order reduction in only one marginal model, say zlt, then the autoregressive
part of zlt is alB) and that of z2t is alB)( a:zB) for some a and a2, and
Result 4 implies that is lower triangular, in fact, with (])ll O/1 and 22 o2.

6. Discussion. The task of modeling multivariate time series is a complicated one.
In this paper we have analyzed some properties which are inherent to the model structure.
In the modeling phase, these properties, including order reductions of the marginals
based upon the known model (B)zt O(B)at may prove of assistance in selecting the
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final model form. One way to use the results is to compare the marginals derived from
the multiple model with separately (individually) modeled univariate time series. In
practice, this has already been done for bivariate models, where it is relatively easy to
identify the marginal models and their order reductions.

More importantly, the results derived in our paper indicate that intrablock and local
reductions will cause identifiability problems ifthe multiple time series model is analyzed
using (2.1).

Much of the analysis centers around repeated eigenvalues of *. It can be argued
that in checking implied marginals against fitted univariate models as a goodness of fit,
the sampling variability in estimated orders is ignored, and the occurrence of multiple
eigenvalues may be an exception rather than the rule. While further research should
address this issue, there is one important case where repeated roots are very likely in
practice, namely the unit root. Many time series, for instance, virtually all business and
economic time series, are nonstationary. Currently there is no universally accepted meth-
odology on how to model nonstationary multiple time series. The theory presented in
this paper holds implications for how to approach modeling this class of models. This
issue should be investigated in future research.

Aeknoveledgment. The authors thank two anonymous referees for their valuable
comments, which substantially strengthened this paper.
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GLOBALLY AND RAPIDLY CONVERGENT ALGORITHMS FOR
SYMMETRIC EIGENPROBLEMS*

GILES AUCHMUTYf

Abstract. Some special variational principles for finding particular eigenpairs of the weighted symmetric
eigenproblem Ax XMx are described and analyzed. The functions involved are even, fourth-degree polynomials
in x. These variational principles are then used to develop two different numerical algorithms for finding
eigenvalues and eigenvectors. The first algorithm is almost explicit, requiring only the solution of a single cubic
equation at each stage, and is globally convergent. The second algorithm is a modification of Newton’s method
and is cubically convergent to both the eigenvector and the eigenvalue when the desired eigenvalue is simple.

Key words, symmetric eigenproblems, algorithm, variational principles
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1. Introduction. This paper will describe some new algorithms and methods for
finding particular eigenvalues and eigenvectors ofthe weighted symmetric eigenproblem

Ax )Mx.

They are based on some unconstrained variational principles for finding the smallest
or largest eigenvalues of(A, M). Similar variational principles were described and analyzed
by Auchmuty in and 2 ]. Here, by restricting attention to a special case where the
function becomes a polynomial of degree 4 in the variable x, we can derive a number
ofspecial identities which lead to particularly efficient algorithms. Analogously to shifted
inverse Rayleigh iteration, we shall also describe some parameterized functions which
are minimized precisely at eigenvectors of(A, M)corresponding to the eigenvalue which
is closest to and either less, or greater, than a parameter . These functions and their
analytical properties are described in 3 and 4, and general error estimates are proved
in5.

We shall describe two classes of numerical algorithms for finding eigenvalues and
eigenvectors based on these variational principles. The first class are direct descent meth-
ods. We choose directions as in the steepest descent or conjugate gradient methods. The
special form of these functions then provides us with explicit formulae for the distance
to go in the descent direction. This is much more efficient than the usual inexact line
search algorithms. The algorithms are described in 6, while their global convergence
properties and descent estimates are proven in 7.

The other class is based on Newton’s method and is described in 8. When the
desired eigenvalue is simple, this method will be cubically convergent--for both the
eigenvalue and the corresponding eigenvector. This method, however, is not global and
requires the solution of two linear equations involving the same coefficient matrix at
each iteration.

The algorithms described here may well be compared with the Rayleigh quotient
method described in Parlett [6 ]. The dynamical system corresponding to our method is
a straightforward gradient system derived from the even, quartic function being mini-
mized. For almost all initial conditions, the algorithm described in 6 converges to an
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eigenvector associated with the largest eigenvalue Xn of (A, M). The corresponding ei-
genvalue is related to both the value of the function and the 2-norm of the minimizing
vector. Other eigenvectors will only be saddle points of this function as described in the
analysis in ]. In comparison, the dynamics of Rayleigh quotient iteration may be ex-
tremely complicated. This has recently been analyzed in Batterson and Smillie 6 and
some examples have been given in Beattie and Fox [3].

In this paper, in 5-8, we only describe the behavior of the algorithm for the
particular function ( introduced for finding the largest eigenvalue Xn of (A, M). All the
results described here, nevertheless, apply to the other functionals introduced for finding
other particular eigenvalues of (A, M). All the functions have similar forms; they just
involve different matrices.

2. Notation. Here we shall collect some definitions and notation which will be used
throughout this paper. Only real arithmetic and the Euclidean inner product and the 2-
norm on R defined by

n

(x,y) , xjyj and Ilxl[2-- (x,x)
j=l

will be used. Terms from linear algebra will be defined as in Strang [7].
An n n real symmetric matrix A is said to be positive definite if there is a constant

c > 0 such that

(Ax, x) >_- c xll 2 for all x in R".

Whenf " -- is a given function, its derivative, or gradient, at a point x is

Tf(x)= Of(x)Of(x), O--f-f (x)
OX2 OXn

and its Hessian, or second derivative, is the n n matrix

D f x
Ox Ox

When fis continuously differentiable C on n, then a point z in n is said to be
a critical point off, provided

Vf(z) 0.

A critical value of fis the value of fat a critical point.
A critical point z off is said to be nondegenerate ifD2f(z) exists and is a nonsingular,

symmetric matrix.
When z is a nondegenerate critical point, then its Morse index i(z) is the number

of negative eigenvalues of oZf(-7). In particular, if z is a local minimizer of fand is a
nondegenerate critical point, then i(z) 0. If i(z) -> 1, then z will not be a local minimizer.

The function fis said to be coercive on Rn, provided

f(x)
lim

Our interest is in studying the nontrivial solutions of

(2.1) Ax hMx
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where

(A A, M are real symmetric n n matrices; and

(A2) M is a positive-definite matrix.

When x is a nonzero solution of (2.1), it is said to be an eigenvector of (A, M) and
the corresponding value of X is called an eigenvalue. When (A1)-(A2) hold, then it is
well known that (2.1) has n real eigenvalues X =< X2 =< <- Xn and there is a corre-
sponding family of real eigenvectors { eJ" =< j -< n } which may be chosen so that

(2.2) (MeJ, ek)=Sjk for <-j,k<=n.

Here 6jk is the Kronecker delta. Such a set is said to be M-orthonormal. See Parlett
5, 15.3 for more information on this. For convenience in some later results, we shall
put Xo -c and Xn+ c.

When Xj is an eigenvalue of (2.1) we shall define

(2.3) E/={x.,’’(A-XjM)x=O} and S={xrEj" (Mx,x)= 1}.

E is the eigenspaee of (A, M) and S is the set of all normalized eigenvectors of (A, M)
corresponding to Xj. An eigenvalue X is said to be simple if the dimension ofE is one.
In this case Sj consists of exactly two points. If dim Ej d >_- 2, then S will be an infinite,
connected, compact set in R". When (A2) holds, S will be diffeomorphic to a (d- )-
dimensional sphere.

3. Unconstrained variational principles for the extreme eigenvalues. We shall first
describe and analyze certain functions which are minimized precisely at eigenvectors of
(A, M) corresponding to the largest eigenvalue X of (2.1), at least if X, is positive. In
this case both the M-norm of the minimizer and the minimal value of the function are
related to .

Functions ofthe type to be described here were studied in 6 of 1] and in Example
7.3 of 2 ]. In this last example, certain algorithms for finding the corresponding eigenpairs
were described and some general convergence results were proven. Here we shall specialize
to the case where p 4 in these general principles. This makes the function a polynomial
of degree 4 in the n variables Xl, x2, x.

Define the function ( R n - by

(3.1) f(x) (Mx,x)2- 1/2 (Ax,x)
and consider the variational principle () of minimizing f on n and finding

3.2 a inf f (x).
X_

By straightforward calculations, the gradient of f# is

(3.3) V((x) (Mx,x)Mx-Ax
and its Hessian is

(3.4) D2f(x)=(Mx,x)M-A+2Mx(R)Mx
where y (R) z is the rank matrix whose entries are yz.

The basic results about this unconstrained optimization problem are described in
the following theorem and its corollaries.

THEOREM 1. Suppose A, M obey A1)-(A2 and (, are defined by (3.1) and
(3.2). Then

(i) a isfinite and ( attains its infimum on .
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X2 when , is the largest eigenvalue of(A M). ( is(ii) If kn " O, then a -minimized at the points 2 f-e where e is any point in Sn defined by (2.3).
(iii) Ifkn O, then 0 and 2 0 is the unique minimizer offg.

Proof. (i) Since (A2) holds, there exists an m0 > 0 such that

(3.5) (Mx,x) m011 x[I z.
Thus ((x) >= (m/4)[lx][ 4 (llAII/2)llxll . Hence f is coercive on Rn and for any
positive c, the set { x R n: (g (x) =< c } is closed, nonempty, and bounded. Since ( is
continuous, it attains a finite infimum on this set.

(ii)-(iii) If 2 minimizes (g on n, then it must be a critical point of (, so, from
(2.3), it must be a solution of

3.6 Ax (Mx, x)Mx.
Now x 0 is a solution of this and (g (0) 0.

If is a nonzero solution of (3.6), then will be an eigenvector of (A, M) corre-
sponding to the eigenvalue

(3.7) , (M2,Y).
must be positive from (A2). Moreover,

(3.8) (A2,2) (MY, Y)2= X2

and

(3.9)

upon taking inner products of (3.6) with 97 and substituting in (3.1).
When , =< 0, there cannot be any nonzero critical points of (3.6), as such critical

points must be eigenvectors corresponding to positive eigenvalues of (A, M). Thus zero
is the only critical point of (g and it will be the global minimizer of (# with a 0.

When (A, M) has positive eigenvalues, then 2 Ve, with kj. > 0 and e being in
Sj defined by (2.3), will be a solution of (3.6). Thus f()?) (-1/.4_Xj2. from (3.9).
f will be minimized on precisely at those points of the form V Xe with e in S,
fg(2) a (-1/4)2n, and kn being the largest eigenvalue of (A, M). Hence (ii)
holds.

COROLLARY 1. Suppose A, M obey (A1)-(A2) and Xn > O. Then
If X is a simple eigenvalue of (A, M), then the set of minimizers of ( is

{ +_Xen}, where e is a normalized eigenvector of(A, M)corresponding to . Moreover,
D2fg 2) is positive definite with

(3.10)

for all h in gn and where

(D2C(2)h,h ) >= C (Mh,h)

(3.11) C min (2)kn, ’n ’n- 1).

(ii) IfX, is an eigenvalue of(A, M) ofmultiplicity d >- 2, then the set ofminimizers
offg is an infinite compact connected set in andDZfg(2) is singular at each minimizing
vector.

Proof. (i) When X, is a simple eigenvalue of (A, M), then En is one-dimensional
and S, will consist of exactly two points + en. Thus (ii) of the theorem implies the first
part. Substituting for 2 in (3.4) we find that

(3.12) DzJ()) X,M-A + 2XnMe"(R)Me".

Consequently, when { ej -< j =< n } is an M-orthonormal set of eigenvectors of (A, M)



694 GILES AUCHMUTY

it is also an M-orthonormal set of eigenvectors of (D2()), M) and we have

D2q;(’)eJ=
()kn-- ,j)Mej ifl <=j<=n- 1,

2X,Me" when j n.

Thus (3.10) and (3.11 follow upon expanding h in terms of the ej’s.
(ii) When ,n is an eigenvalue of multiplicity d >= 2, then Sn will be an infinite,

bounded, connected, closed set in n and so part (ii) of the theorem implies the same
for the minimizers of fq.

Let : f,e" be a minimizer of fq and choose an e which is M-orthogonal
to e and also is an eigenvector of (A, M) corresponding to the eigenvalue ’n- Then,
from (3.12),

D2C(.)en =0

and so the Hessian is singular at any minimizer of f on n.
The preceding results have described the minimizers of

may have other nonzero critical points which are not global minimizers when (A, M)
has more than one positive eigenvalue. The next corollary describes these; in particular,
it shows that f does not have any local minima which are not global minima.

COROLLARY 2. SupposeA,Mobey (A )-(A2 and k " O. IfY. is a nonzero critical
point off, then

There is a positive eigenvalue , of(A, M) and a corresponding e in S such
that Ve.

(ii) y is a nondegenerate critical point offq ifand only if kj is a simple eigenvalue
of(A, M). In this case, its Morse index i(Y) n -j.

(iii) Ifk < kn, then is not a local minimum of
Also, zero is a critical point off which is not a local minimum. When A is nonsingular,
then zero will be a nondegenerate critical point offq and its Morse index is J where J is
the number ofpositive eigenvalues of(A, M).

Proof. Part (i) was proven in the last part of the proof of Theorem 1.
(ii) When Y ]/e then, from (3.4), we have

D2fq(Y) kM-A + 2kMe(R)Me.

Just as in the proof of Corollary 1, we have

D2((’)ek={ (Xj-xk)Mek2XjMe whenifk 4:j,j k,l<=k<=n’
where { e =<j =< n} is an M-orthonormal set ofeigenvectors of(A, M). Hence D2C())
will be nonsingular if and only if ,j is a simple eigenvalue of (A, M). In this case the
Morse index of will be the number of eigenvalues k of (A, M) with )k > )j.. Thus (ii)
follows.

(iii) For any h in " we have

(+h)= ()+(D2(Y+ rh)h,h)
for some 0 < r < 1. When ewith e in Sj, h ten, and small enough we have

(D2(()+ ’h)h,h) t2(D2()+ rh)e e) <0

from the continuity ofthe Hessian and the formula above. Thus .g is not a local minimizer
of f when < kn.
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We have O2C-(0) -A from (3.4)and thus zero will be a nondegenerate critical
point if and only ifA is nonsingular. The Morse index computation is similar to the one
done above, r-1

If Xn -< 0, then from Rayleigh’s principle we have that (Ax, x) <= 0 for all x in
and the function ( defined by (3.1) is strictly convex. In this case the problem of min-
imizing f is not very interesting. To find k in this case, choose u > IX and replace A
in (2.1) and (3.1) by A + /zM. The eigenvalues now become t + X. and Theorem
implies that

inf [l(Mx, x)Z-1/2((A+uM)x,x)]=-1/4(t+ X.) 2

X_R

with this infimum being attained at A /t + X,e with e in S,. Thus we can always find
the largest eigenvalue and the corresponding eigenvectors of(A, M) by using a functional
of this form.

The values ofthis function f# provide lower bounds on ),, when k is positive. When
((x) < 0, we have, from the theorem, that

and in fact

(3.13)

X >_- -4f(x)

Xn--2" sup /--C(X).
(x) 0

There is a similar variational principle for finding the least eigenvalue X of(A, M).
Define the function f#l N

_
N by

(3.14) I(X) 1/4 (Mx,x)2 + 1/2 (Ax,x)
and consider the problem () of finding

(3.15) al inf fl(X).
x_R

The function 1 differs from f only by a change of sign. It remains a fourth-degree
polynomial in x,..., Xn, which is again an even function. Using exactly the same
proofs as in Theorem and its corollaries, we obtain the following results.

THEOREM 2. Suppose A, M obey (A1)-(A2) and f, a are defined by (3.14)-
(3.15). Then

(i) 1 is finite and ( attains its infimum on ,n.
(ii) If X < O: then a 1 where X is the least eigenvalue of(A, M). fl is

minimized at V Xl e with e being in S.
(iii) IfXl >= O, then a 0 and 0 is the unique minimizer offl on n.
Essentially the most negative eigenvalue of-A is the largest positive eigenvalue of

A. Thus we can also produce analogues of the Corollaries and 2 and this variational
principle provides upper bounds on X as we have

k21 > --4(ffl (X)

so that

when (l(x) < 0.

4. Some parameterized, unconstrained, variational principles. Often we are inter-
ested in finding the eigenvalues of (A, M) closest to a preassigned number t. Such
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problems arise in computing condition numbers, in studying problems of resonance, or
in finding lower or upper bounds on specific eigenvalues. When is not an eigenvalue
of (A, M), define ’( .; )" Rn R by

(4.1) ’(x;tz)

Consider the variational principle (,) of minimizing ’(.; ) on N" and finding

(4.2) 3"(#)= inf (x;u).
xR

This function has the same form as f but with M- in place ofMand (A M)-l
in place ofA. The results about this unconstrained optimization problem may be sum-
marized as follows.

THEOREM 3. Assume A, Mobey (A1)-(A2) and is not an eigenvalue of(A, M).
When , 3’ are defined by (4.1)-(4.2), then

(i) 3"(#) isfinite and( .; #) attains this value;
(ii) If > Xn, then 3"(#) 0 and zero is the unique minimizer ofo(.; #); and
(iii) If X_ < tz < X for some <- k <- n, then "r() -(X u)- and

o( .; ) is minimized at 2 (X )-/Me with e in S.
Proof. When M is symmetric and positive definite, so is M-1 with

(M-x,x) >-[IMI[-ll[xll -
for all x in Nn. Hence (i) here follows just as it did in Theorem 1.

Differentiating (4.1), we find

(4.3) V(x;#)=(M-x,x)M-x-(A-#M)-x.
Thus if2 is a critical point of .; #), then it is a solution of

(4.4) (A #M)-x (M-x,x)M- x.

When 2 q: 0, then 37 M-2 is a solution of

(4.5) (A #M)y (My, y)-iMy
or is an eigenvector of (2.1) corresponding to the eigenvalue

+ (M;,;)
for some _-< j _-< n. Since M is positive definite, this implies X. > g and, moreover,

(4.6)

Take inner products of (4.4) with 2; then

((A uM)-’2,2) (M-I,)2 (Xj-/)-2
so that

u) 1 u)

Thus (,; u) will be minimized when X. is the eigenvalue of (A, M) which is larger
than # and closest to . When > Xn, there is no such eigenvalue so the only solution
of (4.4) is x 0 and it must minimize (.; #) on Nn. Thus (ii) holds.

When X_ < # < X for some -< k -< n, then we take j k above, and 3"(u)-(X #)-2. The corresponding critical point is

e
37 M-2 with e in S,
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upon using (4.5) and (4.6). Thus the function (. ;#) is minimized at 5
(k #)-/2Me with e in Sk and (iii) holds.

When kk- < P < kk, this principle provides upper bounds on kk. Ifo(X; p) < O,
then from (iii) of the theorem we have

(x- )_-< [-(x;u)]-so

(4.7) k <=#+ 1/2[--(X;U)] -1/2

Moreover, we see that lim,_ x 3’(u) -o, and

lim 3’(u) 1/4 (X + X)-2.- X

In fact, when (A, M) has n distinct eigenvalues, the graph of y() may be sketched
as in Fi. 1.

To obtain lower bounds on the eigenvalues of (A, M) or to find the eigenvalue
closest to but less than , consider the function (-; p)" - defined by

(4.8) ,(x;#)= (M-x,x) + 1/2 ((A -#M)-x,x)
and look at the problem of finding

(4.9) 3,(#) inf (x;p).
x

differs from solely by a sign change and this problem has similar properties
to (’).

THEOREM 4. Assume A, Mobey (A1)-(A2) and t is not an eigenvalue of(A, M).
If,. "Y are defined by (4.8)-(4.9), then

(i) 3’() isfinite and( .; #) attains this value;
(ii) Ifu < Xl, then y(#) 0 and zero is theunique minimizer ofl( "; #) on";

and
(iii) When kk < # < kk+ifor some <- k <= n, then y(u) - (kk )-2 and

1( "; p) is minimized at , (# Xk)-/2Mefor any e in Sk.
Proof. This follows just as the proof of Theorem 3 with appropriate sign

changes. F-I
This time, instead of (4.7), we obtain

4(#- X)2 _-< [-o(x, p)] -

FIG. 1. Sketch ofy y(p), when (A, M) has n distinct eigenvalues.
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whenever (x, ) < 0. Thus

kk ][L-- 1/2 --"(X;/)) 1/2

for any such x, and this provides lower bounds on Xk. Also

lim -yl(#) (Xk-- x+ )-2

while

lim ’l () -o-- X

and the graph of "rl() may be depicted as in Fig. 2.
For both of the functions (.; #) and (.; ), we have that the global minima

are nondegenerate critical points if and only if the coesponding eigenvalues are simple
eigenvalues of (A, M), just as was the case for . Also, if is a critical point of

(.; ) (or (.; )) which is not a global minimizer of (or ), then it will not
be a local minimizer either, just as was proven in Corolla 2 of Theorem for .

5. The Hessian and error estimates. From now on we shall restrict our analysis to
the function . Similar results will hold for , (.; ), and (.; ) when the ap-
propriat substitutions are made. Also assume > 0, so the problem remains interesting.

Many of the convergence results in the following sections depend on having infor-
mation on the Hessian quadratic form

(5.1) (D2(x)h,h=(Mx,x(Mh,h-(Ah,h>+2(Mx,h2.

We say that N is strongly convex on a convex subset K of N" if there exists c0 > 0
such that

(5.2) (D(x)h, h) Co h

for all x in K and h in n.
LEMMA 5.1. Suppose A, Mobey (A )-(A2 and h is an M-normalized vector; then

(5,3) moll xll -x(D(x)h,h) 3(Mx,x) X
where mo is defined by 3.5 ).

Proof. From the generalized Schwarz inequality, when M obeys (A2) and
(Mh, h) 1, we have

FIG. 2. Sketch ofy 3’](), when (A, M) has n distinct eigenvalues.
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Also, from Rayleigh’s principle for this problem,

X (Mh, h ) (.Ah, h ) kn(Mh h ).
Substituting these in (5.1), we have

(D2f(x)h,h ) >= (Mx,x)- knZ m011 xl[ 2_ kn,

and also (D2fg(x)h, h) <= 3(Mx, x) Xl, as claimed in (5.3).
In particular, this shows that (q is strongly convex on sets where xll is large. More

importantly, (q will also be strongly convex on a neighborhood of a minimizer
provided the corresponding eigenvalue is simple. Specifically, we have Theorem 5.

THEOREM 5. Suppose A, M obey (A1)-(A2), Xn > 0 is a simple eigenvalue of
(2.1), and 2 is a minimizer of (g. Then there exists an 1 > 0 such that ( is strongly
convex on Kn { x (M(x 2), x .f) <= R2} whenever R < t.

Proof. Let x + k; then from (3.4) we have

(DZ(x)h, h) (D2()h, h) + 4(M, h)(Mk, h) + 2(M2, k)(Mh, h

+ 2(Mk, h) 2 + (Mk, k)(Mh,h)
>-- C1- 6 (M2, 2)1/2(Mk, k)1/2

_
(Mk, k)l(Mh, h

upon using the generalized Schwarz inequality and (3.10).
Thus f will be strongly convex on K provided

(5.4) c(R)= C1-6nR +R>0.
Let/ 9n l/9X- C1; then for R </ we have c(R) > 0 and f will obey (5.2) on
KR with moc(R) in place of Co.

From 3.11 ), we actually have

(5.5) / min [(9- /8kn + ,-1),(3- V)f].
Using a standard argument from convex optimization theory, this leads to concrete error
estimates for and k] as follows.

COROLLARY. Under the assumptions of Theorem 5, whenever x is in KR with R <
t and e(x) IIV(x)ll/moc(g), we have

(i)

(5.6) f(x) -<-_-< (x)IIV (x)II (x),

(ii)

5.7 x 11 --< (x),
where mo is defined by 3.5 and c(R by (5.4).

Proof. Apply Taylor’s theorem to f about x. We have that there exists a in
(0, such that

aj()) aA(x) + (VaJ(x),2_ x) + 1/2 (D2aJ(x+ (-x))(.-x),2-x)
>- f(x)-[[Va3(x)[[ [12-xl[ + 1/2 moc(R)[]2-x]] 2,

using Cauchy’s inequality and Theorem 5.
Now (g() - X2n, so that

(X)>=---Xn>--_ (X)+ moc(R) [11- x[] e(x)12
2

Rearranging this, (5.6) follows.

2moc(R)
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Also, from Taylor’s theorem and the strong convexity of f on KR, we have

f(x) >= f(2) + 1/2 moc(R)l[ x- ll 2

for all x in KR. Thus from (5.6)

1/2 moc(R)llx-ll2<= 1/2 (x) liVe(x) II,
so (5.7) follows. V1

6. Descent algorithms for finding eigenpairs. The functions described in 3 and
4 have two particularly nice properties for minimization algorithms. One is the fact that
they are quartic polynomials, so that an exact line search only requires that we solve a
cubic equation for the steplength. The other is that they do not have any local minima
which are not global minima. Thus a local search is sufficient to determine whether we
have found a minimizer.

Here we shall describe some descent algorithms for these functions which exploit
this special structure of fq in an effective and efficient manner. Recall that a direction h
is said to be a descent direction for at x, provided

(6.1) (7(x), h) < 0.

Whenever x is not a critical point of fq there are such directions. We shall henceforth
assume that

(6.2) a= inf (x)<0.
xrl

This is equivalent to saying that (A, M) has at least one positive eigenvalue. When (6.2)
does not hold and is strictly convex, it is minimized at x 0, and there is no need for
an algorithm to find it.

When h is normalized so that

(6.3) (Mh,h)= 1,

we have that

(6.4) f(x+th)=C(x)+alt+1/2a2t2+a3t3+t4

where

(6.5) al (VC(x),h), a2 (D2(x)h,h), a3 (Mx, h)
with 7(x) and D2(x) being defined by (3.3) and (3.4).

A simple descent algorithm for minimizing follows.

Given a nonzero x in n use steepest descent or a search method to find x
in n with

(6.6) (x)<0.

(2) For k >= 1, let yk zkx with

(6.7) z= (Mx,x)- (Ax,x) 1/2.

(3) Choose a descent vector h g for fg at y to obey (6.3) and

(6.8) (Mxg, h)=O.
(4) Find tk > 0 such that

6.9 fg (y+ th) inf fg (yg + thk).
t>0
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(5) Put xk / yk + tkhC and evaluate

(6.10) r + ,fq(xg + 1).

(6) If rg / 11 > continue, else stop.

In order for (6.7) to be well defined, we must have that (Axk, xk) > 0, for all k >=
1. This is guaranteed if f(xk) < 0 for all k. Moreover, from ( 3.9 we have that if is a
critical value of f, then f() =< 0, so f(x) > 0 implies Vf(x) =/: 0. Thus a steepest
descent algorithm will lead to the set

oo {xczn (x)<O ).
Steps 2-4 divide the minimization into a "radial" minimization in the direction xk

and then into a minimization in a descent direction which is M-orthogonal to xk. This
is done as there are simple explicit formulae for the steplengths zg and t in each of these
directions.

From (3.1) we have

(-x) 1/47-4(Mx,x>z-

and this is minimized in z when z 0 if (Ax, x) O, or else when

2 (Mx,x)-2 (Ax,x).
This leads to the choice of (6.7).

In step (3) we can choose h via a steepest descent, or a sequence of conjugate
gradient directions, subject to the condition (6.8). The condition (6.8) is imposed to
simplify the computation of t in step (4). This is done using the following result.

LEMMA 6.1. Assume A, M obey (A1)-(A2), x is not a critical point of, and h
is a normalized descent directionfor at x obeying (Mx, h ) O. Then there is a unique
positive which minimizes x + th on O, and it is the unique positive solution of
(6.11) p(t) + a2t + a =0

with a, a2 defined by (6.5).
Proof. The condition (Mx, h) 0 implies that a3 0 in (6.4), so f(x + th) will

be minimized either at 0 or at the solution of (6.11 ). Since h is a descent direction,
a < 0, and 0 is not a minimizer.

We have p’(t) 3t2 + a2, so p’ is monotone increasing on (0, ). When a2 >-- 0,
then p will be monotone increasing on (0, and thus there is a unique > 0 obey-
ing (6.11 ).

When a2 < 0, let T (-a2/3) 1/2. Then p decreases on 0, T and p cannot have
a zero there, p is strictly monotone increasing on T, ), so it has a unique positive
zero there. The zero actually minimizes fq on [0, c ), as p’() is positive.

From this lemma, we have that tk in step (4) should be chosen to be the unique
positive solution of

(6.12) t3 + a2t + a=O,
with

6.13 a (Tf#(y), h ) (Ay, h),
(6.14) a2 (D2f#(y)h, h) (My,y) (Ah, h)
from (6.5), (6.8), and (5.1). Note that since y zkx, these can also be expressed in
terms ofx and z.
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To find the solution tg of(6.12 ), we could use either an explicit formula or, preferably,
a safeguarded Newton method.

The stopping criteria is that the point xg+ be an e-critical point of fa. We know
that if a7 is a nonzero critical point of fa, then it will be an eigenvector of (A, M). Hence
we expect that, when e is small enough, xg+ will be an approximate eigenvector of
(A, M). Moreover, by evaluating the Hessian of D2C(xg+ 1), or by performing a local
search, we can see whether xg / is a local minimizer of fa. If so, it will be the desired
minimizer of f; otherwise we continue.

7. Global convergence of the descent algorithm. To prove convergence of this al-
gorithm, we need some descent estimates and certain bounds on the iterates. These are
collected in the following lemmas.

Let { xg:k >_- } be a sequence of points in n defined by the algorithm in 6.
Define ag fa(xg) and rg Vfa(xg). Let

(7.1) oZg= {xe ((x)<__ag};

then since ag+ < a we have g+ k for all k.
LEMMA 7.1. Suppose (A1)-(A2) hold and > O. Ilk 1, and x is in gk, then

211 (Mx x) <2 Xn+--(7.2)
X,

Proof. To prove this, consider the constrained optimization problem ofminimizing
and maximizing m(x) 1/2 (Mx, x) on 6rk.

Since ag < 0, og is a closed, bounded set in R n which does not contain the origin.
m attains its infimum and supremum on this set and by using the extremality conditions,
these occur at Xl Vle and x2 v2e where v < v2 are the solutions of

IV4-- 1/2V2kn__O/k._0

and e" is a normalized eigenvector of (A, M) corresponding to An.
Thus (Mx, x) >= (Mx, Xl ) v and similarly (Mx, x) <= , where

[ / 4ag] 21g.V21--}kn 1--
kn

[ 40tk]<2( )tn+Otk

LEMMA 7.2. Under the assumptions ofthe preceding lemma, we have
(i)

7.3 fa (xk) fg rxk) (Mxk xk) -2(xk, r)2,

(ii)

akl X2 < r- < X2 for all k(7.4) 2(X2n + ak)2 2ag------
Proof. (i) From the definition of G and r, we have

a3(xk) N(rkXk) (Mxk,xk)2( --r) 2.
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Also, ( rk, xk) (Mxk, xk) 2 r ) so substituting this into the preceding equa-
tion, (7.3) follows.

(ii) Let T(X) 2 (Mx, x)-2(Ax, x) for x in gk.
Since f(x) -< ak we have ((Mx, x)2/4)( 2r(x)2) for some =< ak. This

implies that r(x) 2u/(Mx, x). In paicular, z 2ak/(Mx, Xk) 2 with
a<0.

Substitute from (7.2); then

alX < -2a < X
2(X + ak)2= (Mxk,xk)2= 2 Ikl

and thus (7.4) follows.
LEMMA 7.3. Suppose minimizes (t) 4 + at2 bt on [0, with b > 0

and a A for some A > O. Then () q(b), where

-A-b forONb2NA 3,
(7.5) 4(b)=

-b4/3 forbA3.

Proof. Consider

qg(sbl/3)= s2b4/3 ab-2/3 +---
<_1---$264/3 Ab-2/3 +--- S-2

when a -< A. When b2 >- A we have Ab-2/3 -< and then

qg()__< qg(b 1/3)_< - b4/3When b2 __< A 3 take g A-lb2/3" then

so (7.5) holds as claimed. D
COROLLARY. Suppose (A )-(A2) hold with Xn > 0 and { xk k >= } is defined by

the preceding algorithm. Then for any k >- we have

(7.6) f(x + )- f(y) <= (--r(r,hk))
with defined by (7.5) and A 6)in )tl

Proof. We have that f(x(+ l)) (#(y) () where is the solution of(6.12).
Thus the b in Lemma 7.3 is -(Vf(y), h) -r(r, h) > 0 as h is a descent
direction, a in this lemma is a2, so from (6.14), (5.3), and (7.2), we have a2 =< 6)k

X for all k >- 1. Taking A 6Xn X, then the result holds.
To obtain a general convergence theorem for the algorithm described in the last

section we need to be slightly more careful in the choice of the direction h. At each
stage we can write

(7.7) rk= vkMXk + qk

with (Mxk, qk) 0. Then we have (rk, hk) (qk, hk) whenever hk obeys (6.10).
THEOREM 6. Assume (A1)-(A2) hold and n > O. Let F { xk k >-- 0 } be the

descent sequencefor ( defined in 6 with e O. Assume that for all k >= 1, the descent
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direction h is chosen so that

(7.8) ( rk, h k) >_- 6 q h

where > 0 and q is defined as in (7.7). When F is finite, the last point xK is a critical
point of(. When F is infinite, every limit point off is a critical point of(.

Proof. When e 0, the stopping criterion in step (6) is that x/ be a critical point
of (q, so the first part holds.

When F is infinite, then (7.3) and (7.6) imply that

(q(x + )_ (q(x) < -(xk, r’) 2

4(Mx,x) + ’(---g(rk, hk))

(7.9) <-(xg rk)2
/ ,I,(6 [Iqkll

8n
as (Mx, x) -< 2,n for all k >= 1, from (7.2); z >- 1/2 from (7.4), so

-(r,h)>=-llqll Ilhll from(7.8)

>= mV Ilqkll

as h is normalized and (3.5) holds. Take 6 6and use the monotonicity of
to obtain (7.9).

Since F c o it is bounded. Let f be a limit point of F and without loss ofgenerality
assume the whole sequence converges to . Then rk Vc-(xk) converges to
as V( is continuous. Also, f(xk) converges to ((), so from (7.9)

(7.10)

(7.11) Ilqk[I 0.

From (7.11 and (7.7) we must have uM for some u. Substituting this in (7.10),
we have u(:f, M:) 0, which implies that 0 as (M:, ) >= 21kl/x for all k
from (7.2).

Thus ? 0, and is a critical point of Vfq. When F has many limit points, this
argument carries over for each of them, so the theorem holds.

It is worth noting that, in this section, we did not have to assume that the largest
eigenvalue k of (A, M) was simple. Thus the set of minimizers of G may possibly be a
large set and which critical points of (q are found by this algorithm will depend on the
choice of descent directions.

8. Cubically convergent algorithms. Since the methods espoused in this paper for
finding eigenvalues and eigenvectors of (A, M) are based on the unconstrained mini-
mization ofa polynomial, we might well ask about the applicability ofNewton’s method.

Needless to say, Newton’s method will not be a global method. From Corollary
to Theorem l, we also see that if the largest eigenvalue of (A, M) has multiplicity d >-_
2, then the Hessian of( will be singular at every minimizer of(. In this case convergence
will be linear at best.

When )n is a simple positive eigenvalue of(A, M), then all the criteria for Newton’s
method to converge to on a neighborhood of hold. In this case we will obtain quadratic
convergence to both the eigenvector and the eigenvalue.
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With minimal extra work we can obtain a cubically convergent method. When kn
is a simple positive eigenvalue, let/ be defined by (5.5) and KR with R </ be defined
as in Theorem 5. This algorithm may be described as follows.

Given x in KR, e > 0, for k >= 0:
) Let h k be the solution of

(8.1) D2C-(xk)h
(2) Let Xk + be the solution of

8.2 D2((xk)(xk + Xk) --Vq(Xk) VC(Xk + hk).

(3) Put

(8.3) u + = 2/-f(x +).

(4) If V((xk + > continue, else stop.
Note that h k defined by (8.1) is the usual Newton step and we usually solve it by

factorizing the symmetric matrix

(8.4) Df(x) (Mx,x)M-A + 2Mx(R)Mx.
For each k this is a rank perturbation of a matrix of the form

D2fq xk) mkM-A

with mk (Mx, xg), so it is relatively easy to update the factorization. We then solve
(8.2) using the same factorization. That is, (8.1) and (8.2) are two equations involving
the same coefficient matrix and for successive k’s they do not change very much.

THEOREM 7. Suppose (A )-(A2) hoM and k is a simple positive eigenvalue of
(A, M). If x 211 is small enough, then the sequence I’ { x k >= 0 } defined by this
algorithm has a cubic rate of convergence to 2 nen and ,+ converges cubically
to .

Proof. The equation Tf(x) 0 has 2 fnnen as its unique solution on K.
Moreover, f is convex on Kn and oZc exists and is Lipschitz continuous there with
oZc()) being nonsingular since ’n is a simple eigenvalue of(A, M). Then from Theorem
10.2.4 ofOrtega and Rheinholdt [4], there is a neighborhood of.f on which this algorithm
has an R-convergence order of at least three.

We have f() -1/4 X2 and f(xk) - u. Upon using the Taylor expansion of
f about , we find that u also converges to , cubically as there exist positive c, c2 such
that for x- :ll small enough,

cllx-l[==< (x)- (:) <=c21lx-[I 2

from Theorem 5 and Lemma 5.1. Substituting xg for x we have

4c x- 2112 -< ’n- -< 4c211 xg- [I 2.

The same inequality holds with xk+ 1, v+ replacing x, k and then the cubic convergence
of u follows from that of the xk. V1

This shows that this algorithm converges cubically in a similar manner to the Rayleigh
quotient iteration. There are a number of ways of modifying this algorithm to ensure
that (i) the sequence generated is a descent sequence for ( and (ii) the sequence remains
in KR. With such modifications, we can increase its domain of convergence. It is not
clear to us at this time which method is preferable, but the estimates for the domain of
convergence of the method based on this analysis are usually quite small.



706 GILES AUCHMUTY

As described before, we can equally well apply this algorithm to the functions
(x; ) (or ’(x; )), defined in 4, provided that the eigenvalue k closest to U and

greater (less) than # is a simple eigenvalue of (A, M). In the case of we obtain a
cubically convergent algorithm converging to (/ k)-/2Me, where ek is a corresponding
normalized eigenvector of (A, M).

9. Computational observations. The author has implemented some versions ofthe
algorithm described in 6. We have not, however, attempted to make a systematic com-
parison of these algorithms with any of the standard methods for finding specific eigen-
values of symmetric matricesmalthough this is obviously of interest.

It was found that ifwe simply use a standard steepest descent or conjugate gradient
routine to minimize the function, then with random matrices and initial conditions the
convergence could be painfully slow. Introducing step (2) in the algorithm made a big
difference. We implemented steepest descent and conjugate gradient methods with both
the Fletcher-Reeves and Pollak-Ribire updating formulae in the choice of the descent
vector h in step (3). When M I, A a random symmetric matrix, and with n up to 90,
the algorithm described in 6 converged quite rapidly, and stably, to the desired eigen-
vector. Usually it required O(n) iterations where the constant depends on the size ofthe
matrix entries and e.

Close to the minimizer, we may improve the rate of convergence by switching to
the algorithm described in 8. Alternatively, we could use a Newton or quasi-Newton
algorithm. These are easy to implement because of the special form of the Hessian in
(3.4). Each of these steps, however, involves significantly more computation at each
iteration and it is worthwhile enforcing a descent condition as we only have local con-
vergence. Thus a hybrid method using the globally convergent algorithm from 6 initially
and then a higher-order method such as that described in 8 when we are close to the
answer, appears to provide a good, stable method for finding particular eigenvectors and
eigenvalues of symmetric eigenproblems.

Acknowledgments. I would like to thank Albert W.-K. Chan and Guo Lei for their
work on various computations and implementations and C. Lenard for helpful discussions
and references.
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Abstract. This paper introduces, in an effective way, the neat computation ofequilibrium points for certain
classes of n-person games that were introduced as cyclic to the next person.

Key words, equilibrium, computation, N-person games
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1. Introduction. This paper develops the effective computation ofequilibrium points
of a special kind of n-person noncooperative games. These games generalize those com-
pletely mixed games studied recently by Cohen, Marchi, and Oviedo [1 ], which are a
natural extension ofthose introduced by Kaplansky 2 for zero-sum two-person games.

The payoff function of each player is formed by adding a function that depends on
his own actions and the actions of the following player (with respect to some ordering
defined on the set of players) and another function that depends on the actions of the
other players but not on his own strategies.

In this note, we prove a general characterization of equilibrium points. For the
subclass of completely mixed n-person games, that characterization provides a simple
formula for computing all equilibrium points. That is studied in 2.

In 3 we present some particular classes of games for which the set of equilibria
turns out to be unique.

2. Equilibrium points and their characterization. Consider a finite n-person non-
cooperative game

Ia:(Sl, ,Sn’,A1, ,An)

where Si are the strategies of player e N ( 1, n ). Ai is his payoff function. The
mixed extension is given by

F=(A(S), ,A(Sn);E, ,E,,)

where

A(Si)=(ffic=Rlsil tri(Si)>-_O ’si6_Si, o’i(si)-1}
si

is the set of mixed strategies for player N. Sil denotes the cardinality of Si. Ei is
the expected value ofA;, that is,

Ei(trl, trn)= Ei(tri, tr-i) Ai(s1, ,Sn) -[ trj(Sj)
si Sn j

where a-i (o1, oi-1, o’i+1, fin)-
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An equilibrium point of I’ is a point a (ai, a-i) (o-, O-n) such that for
each e N

Ei(ai, a-i)>=Ei(o-i, a_i)

By a classical theorem due to Nash, we always know that any I’ has an equilibrium
point. The great problem is its computation. The following result generalizes for n-person
games that were presented in Marchi and Tarazaga [6].

PROPOSITION 1. A point a is an equilibrium point of F ifand only if O- is a solution
ofthe system

ki--Ei(si, O--i)=0 VSisupp O-i

ki-Ei(si, O--i) > 0 ’si supp O-i

E O-i(si
si

O-i(Si) >=0 i Si-Si

with Xi El(o-i, O--i).
The proof of this result is simple and we omit it here. We refer the reader to Marchi

5 for a similar one.

3. Cyclic games and computation of the equilibrium. In this section we deal with
the class of games described in the Introduction. We say that the n-person game I’ is
cyclic to the next player or briefly cyclic if

(si si )+ a -Ai(si,s-i)=ai +1 i(s_i)modrl.

By mod n we mean, once and for all, that

An(Sn,S_n) aln(Sn,Si + a2n(S-n),
(si, si + a (s_i)and for 4 n, Ai(si, S-i) ai +

Then it is obvious that
2Ei( O’i O--i) ei O-i, O-i + 1) -}- ei (O--i) mod n,

2where e and e; are the respective expectations of a and a,2. As an immediate result,
we have the following proposition.

PROPOSITION 2. A point a is an equilibrium point of I’ ifand only if it is an equi-
librium point ofthe n-person game

I (A(S1), A(Sn); e, en).

The proof is trivial and therefore we omit it.
For each N, we can consider the zero-sum two-person game

ri=(zx(Si),x(&/);ei mod n.

Therefore we can apply the Kaplansky theory. We recall that a completely mixed
zero-sum two-person game is a game where all the optimal strategies of both players are
completely mixed. That is,

ai(Si)>O, ai+l(Si+l)>O

for all si Si and si / Si / . Kaplansky 2 proved that the matrix associated with a
completely mixed game is square and nonsingular.
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Let the matrix iA be the matrix associated with a completely mixed two-person
game I’. Then the optimal strategies might be computed by using the equality

hri + #i[,

where i+1 is now considered a column vector of dimension r. D is the column vector
having all the components equal to one. Its dimension is r. All matrices A are r r-
matrices and are nonsingular. Then

+ tAiiA l[q

and

or

substituting

[-] Tr + #i TiA[q

iA
+ TiA_I> O.

Moreover, Kaplansky 2 has shown that this optimal strategy is unique. This fact
describes the zero-sum two-person game with matrix A.

We now present the following theorem.
THEOREM 3. The point ?r, obtained above, is an equilibrium point ofF’.
Proof. Since we have

iA’i + i[’]

for each N, then for any ai, we always have
Te](i,i+l)--Ai+l--#i--oiiAffi+l:i(ffi,i+l) VO’i,

which says that the point a is an equilibrium point of the game F’.
Now, using Proposition 2, we have that the point constructed above is also an

equilibrium point of the game I’. The corresponding value at this equilibrium point for
player e N is

( nA-l A-1 -1 -1 -1)i-2A A n-lA’i-]TiA-lke] [T--i’ A-I[, 0-2A-I I-lfA-l’ ""’ Sn->-7--iD

At this point we are tempted to ask about the uniqueness of this point in the game I".
Unfortunately, the structure of the set of equilibrium points is so complex that we do
not have uniqueness in F’. Indeed, consider the game with n players where the matrix
A is the identity matrix/r of dimension r. Now the point constructed above is an equi-
librium point. Such a point is

0"i+1-- ,-

for each player N and i /r. However, the point

bi=(1,O,"-,O) VieN
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is also an equilibrium point. Indeed, we have

e](ri, ri + l)= riAi + rIrri + > trIrri + ei(tri, ri + l) Vo’i_m(si).

Moreover, it is possible to prove, as has been done in Marchi 4 ], that the number
of equilibrium points for such a game is

( r )
i=1

Now we would like to give some insight into uniqueness.
We define a cyclic n-person game as completely mixed ifand only ifall its equilibrium

points are completely mixed.
We generalize Theorem of Cohen, Marchi, and Oviedo [1] as follows.
THEOREM 4. Suppose that the n-person game F’ is nonsingular (all A are nonsin-

gular) and completely mixed. Then the game has a unique solution and nonzero values.
The solution and values ofthe gamefor each player are given by

A -l]
O" + [-] TiA -1’ #i TiA

Proof. Since the game is completely mixed, any equilibrium point
(, n) has the form

i(Si)>O Vi VsirSi {1, ,r}.

This implies that for each e N,

Ar + I,ti[.

Since there was a row Si with

(iA + )Si

then ;(si O. This is impossible since the game is completely mixed.
Then, repeating the argument given before Theorem 3, the result holds true. [3

As in Cohen, Marchi, and Oviedo [1], we have that, although it is not surpris-
ing that iA uniquely determines tti, it is somewhat surprising that A uniquely deter-
mines 8i / .

For real matrices {iA } satisfying the hypothesis of Theorem 4, it follows that

where O is the column of r elements O and the inequalities apply element-by-element.
These inequalities do not guarantee that the game F’ is completely mixed, as the

example ofthe game given above shows. However, we point out that the set ofcompletely
mixed n-person games similar to F’ is nonempty.

To see this, we present the following diagonal-cyclic game.



COMPUTATION OF EQUILIBRIUM FOR N-PERSON GAMES 711

Fix ao > O for all 1, n,j 1, r, 2 <- n < r.

2A 0
"air a 2r

iA

0 0 ail 0

air-i+
ir i+2

0 .
air 0

0...0 an1 0

ainr- +
0

ant 0

THEOREM 5. If " is the diagonal-cyclic n-person game given above, then F’ is
nonsingular and completely mixed. Moreover, the game F’ has a unique solution

’i+ l(j)= (IdiiA-l)j 1/ aij--1/air-i+j+ modr
Ij=l

la’i=l/ aij.
j=l

Proof. Clearly A is nonsingular. It is immediate that

0 0 1lair_i+ 2 0

l[iirl/ail 0

0 air-i+

and by the formula

1/]TiA-I=
j

i + l(j)= a 1/air-i+j+ mad r,
j

we have the real computation of an equilibrium point, and no other solution with all
positive elements is possible.

To prove that every solution has all elements positive, an argument similar to that
developed in the proofofTheorem 3 of applies here with n steps instead oftwo. Thus
the game I" is completely mixed. U]
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As an application of the previous theorem, we have that a cyclic game whose first
is diagonal-cyclic is also completely mixed.component ei

It seems of some importance to develop further the theory of completely mixed n-
person games, as well as to apply the theory of perturbation developed in for two-
person games to the cyclic games. We leave this subject for a further study.
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DECOMPOSITION ARRAY GIVEN BY BRENT AND LUK*
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Abstract. A new, efficient, two-plane rotation (TPR) method for computing two-sided rotations involved
in singular value decomposition (SVD) is presented. It is shown that a two-sided rotation can be evaluated by
only two plane rotations and a few additions. This leads to significantly reduced computations. Moreover, if
coordinate rotation digital computer (CORDIC) processors are used for realizing the processing elements (PEs)
of the SVD array given by Brent and Luk, the computational overhead of the diagonal PEs due to angle
calculations can be avoided. The resulting SVD array has a homogeneous structure with identical diagonal and
off-diagonal PEs. Similar results can also be obtained if the TPR method is applied to Luk’s triangular SVD
array and to Stewart’s Schur decomposition array.

Key words, singular value decomposition, systolic arrays, CORDIC, two-sided rotations, VLSI

AMS(MOS) subject classification. 15A 18

1. Introduction. One important problem in linear algebra and digital signal pro-
cessing is the singular value decomposition (SVD). Typical applications arise in beam-
forming and direction finding, spectrum analysis, digital image processing, etc. ]. Re-
cently, there has been a massive interest in parallel architectures for computing SVD
because of the high computational complexity of SVD, the growing importance of real-
time signal processing, and the rapid advances in very large scale integration (VLSI) that
make low-cost, high-density and fast processing memory devices available.

There are different numerically stable methods for computing complete singular
value and singular vector systems ofdense matrices, for example, the Jacobi SVD method,
the QR method, and the one-sided Hestenes method. For parallel implementations, the
Jacobi SVD method is far superior in terms of simplicity, regularity, and local com-
munications. Brent, Luk, and Van Loan have shown how the Jacobi SVD method with
parallel ordering can be implemented by a two-dimensional systolic array 2 ], 3 ]. Various
coordinate rotation digital computer (CORDIC) realizations ofthe SVD array have been
reported by Cavallaro and Luk [4] and Delosme [5], [6].

The Jacobi SVD method is based on, as common for all two-sided approaches,
applying a sequence of two-sided rotations to 2 2 submatrices of the original matrix.
The computational complexity is thus determined by how to compute the two-sided
rotations. In most previous works, a two-sided rotation is evaluated in a straightforward
manner by four plane rotations, where two of them are applied from left to the two
column vectors of the 2 2 submatrix and the other ones are applied from fight to the
row vectors, respectively. In the diagonal processing elements (PEs), additional operations
for calculating rotation angles are required. This leads to an inhomogeneous array ar-
chitecture containing two different types of PEs.

In this paper, we develop a two-plane rotation (TPR) method for computing two-
sided rotations. We show that the above computational complexity can be reduced sig-
nificantly because each two-sided rotation can be evaluated by only two plane rotations
and a few additions. Moreover, the SVD array given by Brent and Luk becomes ho-
mogeneous with identical diagonal and off-diagonal PEs when CORDIC processors are

Received by the editors September 28, 1989; accepted for publication (in revised form) August 2, 1990.
Department of Electrical Engineering, Ruhr-Universitit Bochum, 4630 Bochum, Germany.
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used. In a recent work 6 ], Delosme has also indicated this possibility in connection
with "rough rotations" independently. He has taken, however, a different approach that
is based on encoding the rotation angles. He has still required four plane rotations on
the off-diagonal PEs while diagonal and off-diagonal operations can be overlapped.

Our paper is organized as follows. In 2, we briefly reexamine Jacobi’s SVD method
and Brent and Luk’s SVD array. Then, we develop the TPR method in 3. The CORDIC
algorithm is described in 4, where in particular CORDIC scaling correction techniques
are discussed and examples of scaling-corrected CORDIC sequences are given. In 5, a
unified CORDIC SVD module for all PEs of the SVD array is presented. This module
is compared to those proposed by Cavallaro, Luk, and Delosme in 6. Finally, we stress
the applicability of the TPR method to several other problems.

2. Jacobi SVD method. In this paper, we consider real, square, and nonsymmetric
matrices. Let M eNN be a matrix of dimension N. The SVD is given by

(1) M= UZ, V 7,

where U e NN and V e NN are orthogonal matrices containing the left and fight
singular vectors, and 6NN is a diagonal matrix of singular values, respectively. The
superscript T denotes matrix transpose. Based on an extension of the Jacobi eigenvalue
algorithm [7], Kogbetliantz [8] and Forsythe and Henrici [9] proposed to diagonalize
M by a sequence of two-sided rotations,

(2) Mo=M, Mk+ U[MkVk (k=0, 1,2, ...).

Uk and Vk describe two rotations in the i, j)-plane -< < j _-< N), where the rotation
angles are chosen to annihilate the elements of Mk at the positions (i, j) and (j, i).
Usually, several sweeps are necessary to complete the SVD, where a sweep is a sequence
of N(N /2 two-sided rotations according to a special ordering of the N(N /2
different index pairs (i, j).

For sequential computing on a uniprocessor system, possibly the most frequently
used orderings are the cyclic orderings, namely, the cyclic row ordering

(3) (i,j)=(1,2),(1,3), ,(1,N),(2,3), ,(2,N), ,(N- 1,N)

or the equivalent cyclic column ordering. Sameh [10] and Schwiegelshohn and Thiele
11 have shown how to implement the cyclic row ordering on a ring-connected or a
mesh-connected processor array. Recently, a variety of parallel orderings have been de-
veloped. Luk and Park 12 have shown that these parallel orderings are essentially equiv-
alent to the cyclic orderings and thus share the same convergence properties.

Brent and Luk have suggested a particular parallel ordering and developed a square
systolic array consisting ofIN/2] IN2] PEs for implementing the Jacobi SVD method
(Fig. ). To do this, the matrixMis partitioned into 2 2 submatrices. Each PE contains
one submatrix and performs a two-sided rotation

(4) B=R(O,)TAR(O2),

where
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FIG. 1. The SVD array given by Brent and Luk.

denote the submatrix before and after the two-sided rotation, respectively, and

cos0 sin0)(6) R(0)=
-sin0 cos0

describes a plane rotation through the angle 0. At first, the diagonal PEs (symbolized by
a double square in Fig. generate the rotation angles to diagonalize the 2 2 submatrices
(bl2 bzl 0) stored in them. This means that 01 and 02 are first calculated from the
elements of A and then relation (4) is used to compute bl and b22. We call this the
generation mode. Then, the rotation angles are sent to all off-diagonal PEs in the following
way: the angles associated to the left-side rotations propagate along the rows while the
angles associated to the fight-side rotations propagate along the columns. Once these
angles are received, the off-diagonal PEs perform the two-sided rotations (4) on their
stored data. We call this the rotation mode. Clearly, if we compute the rotation mode
straightforwardly, we require four plane rotations. For the generation mode, additional
operations for calculating 0 and 02 are required.

3. TPR method for computing two-sided rotations. In order to develop the TPR
method for computing two-sided rotations more efficiently, we first discuss the com-
mutative properties of two special types, the rotation-type and the reflection-type, of
2 2 matrices. We define

x

The former is called rotation-type because it has the same matrix structure as a 2 2
plane rotation matrix. Similarly, the latter is called reflection-type because it has the
same matrix structure as a 2 2 Givens reflection matrix 13 ]. Note that x and y must
not be normalized to x2 + y2 1. Using the above definitions, the following results can
be shown by some elementary manipulations.

LEMMA 1. IfAl - /#rot and A2 de/rt, then A1A2 A2A /rot.
LEMMA 2. IfA 11 ref and A2 rot, then A A2 AfA 6 d//ref.
In particular, if we consider two plane rotations, we know the following.
LEMMA 3. If R(OI) and R(02) are plane rotations described by (6), then

R(OI)R(O2) R(O1 + 02) and R(o)TR(02) R(O2 0).
Now, we give a theorem describing the rotation mode of the TPR method.
THEOREM. Ifthe 2 2 matrix A and the two rotation angles O and 02 are given,

then the two-sided rotation (4) can be computed by two plane rotations, ten additions,
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andfour scalings by 1/2"

(8)
p=(a22+al)/2, p2=(a22-a1)/2,

q =(a2-a2)/2, q2 (a2 + a2)/2,

(9) 0_=02--01, 0+ =02-1-01,

=R(0+)(10)
tl ql t2 q2

bll r l- r2, b12 -tl + t2,

b21 + t2, b22 r + r2.

Proof Using (8), the matrix A can be reformulated as

A =A1 +A2 +
ql Pl q2 P2

Clearly, R(01), R(02) in (4) and AI are elements of[rt while A2 belongs to //ref. This
leads to the following reformulation of the matrix B by using Lemmas 1-3"

B=R(O1)rAR(02)

R(O1)rAI R(O2)+R(O1)rA2R(02)

R(O1)rR(O2)AI +R(O1)rR(O2)rA2

=R(O2-O1)A1+R(O2+O1)rA2

rl --tl +
tl rl t2 r2

This completes the proof.
The generation mode of the TPR method follows directly from the above theorem.
COROLLARY. Ifthe 2 2 matrix A is given, we can diagonalize A and calculate

the corresponding rotation angles 01 and 02 by two Cartesian-to-polar coordinates con-
versions, eight additions, andfour scalings by 1/2"

(12)
Pl =(a22+al)/2, P2=(a22-all)/2,

ql =(az--a12)/2, qz=(a21 + a12)/2,

(13)
rl=sign (Pl)/P+q’ r2=sign (pz)P+q’
0_ arctan (ql/Pl ), 0+ arctan (q2/P2),

(14) 01 (0+- 0_)/2, 02=(0+ + 0_)/2,

(15) bl rl r2, b22 rl + r2.

Proof. Regarding 11 ), b12 b21 0 is equivalent to tl t2 0. Equation (13)
follows then from (10). This completes the proof.

In equation (13), we choose the rotation through the smaller angle. All vectors
lying in the first or the fourth quadrant are rotated onto the positive x-axis, and all vectors
lying in the second and the third quadrant are rotated onto the negative x-axis. For
vectors on the y-axis, the rotation direction is arbitrary. Thus, the generated rotation
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angles 0_ and 0/ satisfy 10-l, 10/l 90. This results in

(16) 10 _-< 90 and 102 90,

due to (14).
Equation (16) is important with respect to the convergence of the Jacobi SVD

method. Forsythe and Henrici [9 have proven the convergence for cyclic orderings if
the rotation angles 0 and 02 are restricted to a closed interval inside the open interval
(-90, 90 ). They have also demonstrated that this condition may fail to hold, i.e., 0
and 02 may be _+90, if the off-diagonal elements b2 and b2 in (5) have to be exactly
annihilated. As a remedy, they suggested an under- or overrotation by computing the
two-sided rotation (4) with angles 3’ )01 and 3’ )02 (--1 < -y < and proved
its convergence. In practice, however, the finite machine accuracy in the real arithmetic
allows only an approximative computation of the rotation angles and implies under- or
overrotations. So the Jacobi SVD method converges without using under- or overrotations
as shown by the experimental results ofBrent, Luk, and Van Loan 3 ]. In case ofCORDIC
implementations, the effect of implicit under- or overrotations is more apparent. The
angles +90 can never be exactly calculated because of the limited angle resolution arc-
tan (2 -p) of the CORDIC algorithm, where p denotes the mantissa length.

4. The CORDIC algorithm. In the previous section, we have seen that the main
operations of the TPR-method are plane rotations and Cartesian-to-polar coordinates
conversions. These operations can be carried out by multiplier-adder-based processors
supported by software or special hardware units. An alternative approach is the use of
dedicated processors that usually map algorithms more effectively to hardware. The
CORDIC processor is such a powerful one for calculating trigonometric functions.

The CORDIC algorithm was originally designed by Volder 14 as an iterative pro-
cedure for computing plane rotations and Cartesian-to-polar coordinates conversions. It
was later generalized and unified by Walther [15 ], enabling a CORDIC processor to
calculate more functions, including hyperbolic functions, as well as multiplications and
divisions. In the following, we consider Volder’s CORDIC algorithm because only trig-
onometric functions are involved in SVD applications.

The CORDIC algorithm consists of iterative shift-add operations on a three-com-
ponent vector,

Yi + Yi + riXi! COS (a) i sin (ai) COS (ai) yi

(18) Zi+ Z ,ffiOli (0 < 6 < 1; rri _1; e +1; 0, 1, n ),

in which the iteration stepsize 6g is defined by

19 6i tan (ai) 2-s(i).

The set of integers { S(i)} parametrizing the iterations is called CORDIC sequence.
Equation (17) can be interpreted, except for a scaling factor of

(20) ki 1= Vl q- ,
COS (O/i)

as a rotation of(xi, yi) T through the angle ai, where the sign O" +1 gives the rotation
direction. After n iterations, the results are given by

(21) (Xn)=K(COSa -sin a)(x0)y \sina cosa Y0

(22) Zn Zo
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with the overall scaling factor K Hi ki and the total rotation angle c Zi 6iai. Now,
if the CORDIC sequence satisfies the following convergence condition

n-1

(23) Oli-- Z OljOln-1 (i=0, 1, ,n-2),
j=i+l

we can choose the sign parameter

24) ri I -sign (xiYi)

sign ezi)

to force y or Zn to zero, provided that the input data Xo, Yo, and Zo lie in the conver-
gence region

"-- f arctan (yo/xo)[ fory -- O,
(25) C= Z O/i

;--o Izol fOrZn O.

In this way, two different types of CORDIC trigonometric functions can be computed
(Table ). In the mode Yn -" O, the Cartesian coordinate (Xo, Y0) of a plane vector is
converted to its polar representation, where the parameter e + determines the sign
of the phase angle calculated. When Zn - 0, a given plane vector is rotated through the
angle z0, where e + controls the rotation direction.

In Table 1, the principal value arctan (yo/xo)l <= 90 ofthe inverse tangent function
is calculated when computing Cartesian-to-polar coordinates conversions. Correspond-
ingly, x, may be positive or negative according to the sign of Xo. So, it is guaranteed that
a vector is always rotated through the smaller angle onto the x-axis in accordance with
13 ). In this case, a convergence region of C >= 90 is sufficient for the generation mode

of the two-sided rotation.
One main drawback of the CORDIC algorithm is the need of correcting the scal-

ing factor K that arises during the iterations (17). For example, if we use Volder’s
CORDIC sequence

(26) {S(i)} {0, 1,2,3, ,p-l,p},

with n p + CORDIC iterations for a mantissa accuracy of 2 -p, the scaling factor is
K 1.64676. Compensating this undesired scaling effect with a minimum number of
computations is of particular importance.

Clearly, multiplying Xn and y, in Table by K-1 will degrade the algorithm per-
formance substantially. Most ofthe scaling correction issues are based on shift-add oper-
ations. For a two-sided rotation that is implemented by four plane rotations, each matrix
element undergoes two plane rotations so that the total scaling factor to be corrected
is K2. In this case, Cavallaro and Luk [16] have pointed out that there is a simple
systematic approach for scaling correction when using the CORDIC sequence (26).
They proposed to use [p]4] scaling iterations of the type x -- x 2-2Jx with j J
{ 1, 3, 5, 2[p/4] } and one shift operation 2 -1. The remaining scaling error is

TABLE
CORDIC trigonometricfunctions (e +_ 1).

y. O

x. K sign (Xo) /x) + y0

z. Zo + e arctan (y0/x0)

Zn 0

x,, K(xo cos Zo eyo sin z0)
y., K(exo sin z0 + Y0 cos z0)
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bounded by 2 -p- ,
(27) -2-1I-I (1-2-2J) K2

j6J

P

-2- I-I -2-2J) ]"[ + 2 -2i)
jJ i=0

<2-p- 1.

This approach, however, fails in the TPR method. Here, each matrix element un-
dergoes only one plane rotation. The scaling factor to be corrected is thus K rather than
K2. In order to solve this more difficult problem, different techniques have been developed
in the literature. Haviland and Tuszynski 17 used similar scaling iterations as Cavallaro
and Luk. Ahmed 18 repeated some CORDIC iterations to force K to a power of the
machine radix. Delosme [19] combined both methods of Haviland, Tuszynski, and
Ahmed for minimizing the number ofcomputations. Deprettere, Dewilde, and Udo 20
suggested the double-shift concept.

We designed a computer program [21] for a systematic search of CORDIC
sequences. We allow shifts parameters S(i) (i 0, 1, n l) with differences
S(i + S(i) (0, 1, 2 ) to provide more optimization freedom. For an efficient
scaling correction, we require that the scaling factor K be corrected by a sequence of nk
shift-add operations,

nk

(28) 2-r() I-I + r/(j) 2-r(J)) K + AK (T(j) integers, r/(j) + ).
j=l

These additional scaling iterations are parametrized by the set of signed integers
{ T(O), rt( )T( ), rt(nk)T(n,)}. The total number of iterations is L n + n.

In (28), AKdenotes the remaining relative scaling error after the scaling correction.
We emphasize that this is a systematic error with a constant sign. By contrast, the other
two types of CORDIC errors, the angular error due to the limited angle resolution and
the rounding error, are of statistical nature because they may be positive or negative.
The scaling error is thus more critical with respect to error accumulation when repeated
CORDIC operations on the same data have to be computed as in SVD applications.
Roughly speaking, the total scaling error after k CORDIC function calls increases linearly
with k, a fact that has been verified by our numerical experiments. For this reason, we
require [AK[ to be much smaller than 2 -p.

We found catalogues of CORDIC sequences with complexity comparable to those
of Cavallaro and Luk. In the following, five examples for different mantissa lengths p
16, 20, 24, 28, and 32, including the total number ofiterations L n + ng, the convergence
region C, and the remaining scaling error AK are given:

p=16: {S(i)}={0123... 1516},
{rl(j)T(j)}={l+2-5+9+lO}, L =17+4, C100, AK-2-’6"1, 2

p=20: {S(i)}={0123"" 1920},
{ rt(j) T(j) } { +2 -5 +9 + 10 + 16 },

L 21 + 5, C 100, AK 2-23.05,

When replacing [p/4] by [(p )/4] or [(p + )/4], the upper bound in (27) becomes 2 -p or 2 -p-2,
respectively.

When appending an additional scaling iteration with r/(5)T(5) + 16, the scaling accuracy can be
enhanced to AK 2 -23.



720 B. YANG AND J. F. B(HME

p=24: {S(i)} {1 123345566788910 2324},

{ rl(j) T(j) } { 0 -2 +6 }, L 29 + 2, C 91 o, AK --2 -29"13

p=28" {S(i)}={1123345566788910111213141415... 2728},

{ l(j) T(j) } { 0 -2 +6 }, L 34 + 2, C 91 o, AK 2 -32.53

p=32: {S(i)}={001333456789910... 3132},

{ rl(j) T(j) } { -3 -8 + 16 -25 -27 },
L- 36+ 5, C 145 AK --2 -39.93

Remember that in order to meet the convergence condition (23) and to provide a
convergence region C >_- 90, the minimum number ofCORDIC iterations is p + 1. So,
for all CORDIC sequences given above, the number L (p + of additional iterations
for scaling corrrection is p/4. Moreover, except for the first CORDIC sequence, the
remaining scaling error AKI is significantly smaller than 2 -p. This leads to improved
numerical properties compared with other CORDIC sequences reported in the literature.
We also remark that if the symmetric eigenvalue problem is considered for which a
convergence region of C >= 45 is sufficient [2 ], the total number ofCORDIC iterations
L can be further reduced. An example that is nearly identical to the last CORDIC sequence
given above is

p=32: {S(i)}={1333456789910.-. 3132},

{ rt(j) T(j) } { 0-3 -8 + 16 -25 -27 },
L 34 + 5, C. 55 AK --2 -39.93

For comparison, Delosme 5 has also given an optimized CORDIC sequence for the
same situation. His sequence requires one iteration more (L 40) and achieves a scaling
accuracy of AK 2 -33"16.

We suspect that similar results can also be obtained by using Deprettere’s double-
shift concept. However, this method requires a slightly increased hardware complexity
and will not be discussed in this paper.

5. CORDIC implementation ofthe SVD PEs. For easy illustration, we first introduce
a CORDIC processor symbol as shown in Fig. 2. The descriptions inside the box determine
uniquely the function mode ofthe CORDIC processor according to Table 1. The output
data x and y are assumed to be scaling corrected.

It is now simple to map the operations (8)-( 11 and 12)-( 15 ofthe TPR method
onto a two CORDIC processor architecture. In Fig. 3, the diagonal PEs ofthe SVD array
are implemented by two CORDIC processors and eight adders. The dotted inputs ofthe
adders represent negated inputs. Because the diagonal PEs work in the generation mode,

XO X

Yo zY-" 0 Y

Zo g=+l__, z

FIG. 2. CORDIC symbol.
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FIG. 3. CORDIC implementation ofthe diagonal PE ofthe SVD array.

both CORDIC processors are driven in the "y - 0" mode for computing Cartesian-to-
polar coordinates conversions. In Fig. 4, the off-diagonal PEs working in the rotation
mode are implemented by two CORDIC processors and ten adders. Here, the CORDIC
processors are driven in the "z -- 0" mode for performing plane rotations.

Obviously, both CORDIC implementations have nearly the same architecture. All
PEs of the SVD array can thus be implemented by one unified CORDIC SVD module
(Fig. 5 without considerably increased hardware cost. The different computation modes
of the diagonal and off-diagonal PEs are easily "programmed" by one control bit. The
resulting SVD array is similar to that in Fig. 1, but homogeneous with identical PEs.

We remark that Fig. 5 is more a "graphic program" describing the sequence of
operations to be computed rather than a hardware block diagram. We show in the fol-
lowing that the 12 adders that are paired into three pre-butterflys and three post-butterflys
can be integrated into the two CORDIC processors without separate hardware realizations.
The Jacobi SVD method is a recursive method. Each PE ofthe SVD array has to exchange
data with its diagonal neighbors. Because ofthis data dependency, only recursive CORDIC
processors can be used here. This is an arithmetic unit consisting of mainly three adders
and two barrel-shifters. It carries out the L iterations of the CORDIC algorithm in L
cycles by using data feedback. The two CORDIC processors contained in one CORDIC
SVD module require six adders altogether. So, it is natural to modify the CORDIC
processor architecture slightly and to use the existing six adders for computing both the
pre-butterfly and the post-butterfly operations. The resulting CORDIC SVD module has

Flo. 4. CORDIC implementation ofthe off-diagonal PE ofthe SVD array.
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pre- butterflys post- butterflys

_;/,
FIG. 5. A unified CORDIC SVD modulefor implementing all PEs ofthe SVD array.

the hardware complexity oftwo recursive CORDIC processors and requires a total com-
putation time of L + 2 iterations.

In Fig. 6, the principal architecture of such a two CORDIC processor SVD module
is shown. The dashed lines and boxes represent the additional hardware components

x/’ y y x

FIG. 6. The principal architecture ofthe unified CORDIC SVD module.
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enabling the CORDIC processors to compute the butterfly operations. It is easily verified
that the upper four adders devoted to x and y can perform the following types ofoperations
2-x +__ 2 -1 y (pre_butterfly), x +_ y (post-butterfly), x +__ 2 y (CORDIC iteration and
x __+ 2-Sx (scaling iteration) while the lower two adders devoted to z can compute 2-z

2-1z2 (pre-butterfly), z __+ z2 (post-butterfly), and z +_ a (CORDIC iteration), re-
spectively. The cross switch between the registers "Y" and "X2" is needed to exchange
data when the CORDIC SVD module switches from the pre-butterfly operations into
the CORDIC iterations or from the CORDIC iterations into the post-butterfly operations,
respectively. Then, we see from Fig. 3 that the output data pairs of the pre-butterflys are
(p, pa) and (q, qa), while the desired input data pairs for the CORDIC iterations are
(p, q and (p., q2), respectively. So, p and ql have to be exchanged.

6. Comparisons. We now compare the new CORDIC SVD module with those pro-
posed by Cavallaro and Luk [4] and Delosme [5]. Let 4csvd and Tcsvd denote the area
and time complexity ofa CORDIC SVD module and Acordic and Tcordic those ofa CORDIC
processor, respectively. Cavallaro and Luk have shown that their most efficient parallel
diagonalization method requires Acsvd 2Acordi and Tcsvd 3Tcordic for the diagonal
PEs and Acsvd 24cordic and Tsvd 2 Tcordi for the off-diagonal PEs. By using the TPR
method, we require Tcsvd 2-4cordic and Tsvd Tordi for all PEs. In other words, having
approximately the same hardware complexity, the computation time is reduced by more
than 50 percent.

A comparison to Delosme’s method is more difficult because he follows a quite
different approach. Therefore, only rough performance estimates are given here. In our
method, we compute the rotation angles explicitly. After these computations have been
completed in the diagonal PEs, the angles propagate to the off-diagonal ones. We assume
that the propagation from one PE to its neighbors takes one cycle Tcyle, the time required
for computing one CORDIC iteration. This implies local communications without
broadcasting data. At the beginning of the second propagation cycle, the angles reach
the diagonal neighbors of the diagonal PEs which complete their computations after
Tsvo. This means that the diagonal PEs have to wait for a delay time Tdelay Tcycle +
Tvd before they can exchange data with their diagonal neighbors. The total time elapsed
between two adjacent activities at each PE is thus Tsvd + Tdelay 2 Tcsvd + Tcycle ’ 2Tcodic
because Tcycl is negligible with respect to Tcodic L" Zcyde.

Delosme does not compute the rotation angles explicitly. He rather calculates en-
codings ofthe angles, i.e., sequences of signs 1, and sends them to the off-diagonal PEs.
This enables overlap of diagonal and off-diagonal rotations because the encoding signs
are recursively obtained and become available before the completion of diagonal oper-
ations. Accordingly, no delay time is required Tdelay 0), provided that the SVD array
size (the halfofthe matrix size) is smaller than the number ofCORDIC scaling iterations
nk (for details, see [5 ]). The drawback is, however, that the TPR method cannot be
applied to the off-diagonal PEs. Four plane rotations are hence required, resulting in
Tcvsd 2Tcordic for two CORDIC processors in one module. In other words, the time
complexities Tcsvd + Tdelay of both methods are nearly identical and equal 2Tcordic. If,
however, multiple problems are interleaved, the fraction of idle time that is 50 percent
in our case can be reduced to almost zero. In such a situation, our method provides the
double speed compared with Delosme’s one.

If the propagation time is assumed to be Tcsvd we get the well-known result Tdelay 2 Tcsvd given by Brent
and Luk 2 ].
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In terms of area complexity, both CORDIC SVD modules contain two CORDIC
processors. Our module consists of essentially six adders, four barrel shifters, and one
ROM table containing n angle values. Delosme’s architecture requires four carry-save
adders, four adders, and eight barrel shifters. So, as a rough estimate, both SVD modules
have the same order of area complexities.

Perhaps the most important advantage of Delosme’s approach is the 2-bit wide
horizontal and vertical data connections for sending angle encodings serially rather than
sending the full angle values in parallel. The prices are the upper bound ofthe SVD array
size depending on the number ofCORDIC scaling iterations, the relatively complicated
timing, and a nonregular CORDIC architecture design. We also mention that while
Delosme’s method presumes a CORDIC implementation, the TPR method is applicable
to other computing architectures.

7. Other applications of the TPR method. Another advantage of the TPR method
seems to be the relatively wide range of applications. We indicate some of them in the
following.

For the SVD of a rectangular matrix, a well-known method is first to triangularize
the matrix by QR decomposition and then to apply the Jacobi SVD procedure to the
triangular factor. Luk 22 has shown that both steps can be implemented by one triangular
systolic array. Each PE contains a 2 2 submatrix. It applies two plane rotations (through
the same angle) to the two column vectors at the QR step and a two-sided rotation at
the SVD step. For computing the SVD step, the PE can be realized by the CORDIC
SVD module, as before. On the other side, the two CORDIC processors contained in
the module are also appropriate to perform the two-plane rotations of the QR step. The
CORDIC SVD module presented in this paper thus provides a suitable PE for Luk’s
triangular SVD array.

Stewart 23 has proposed a square systolic array for computing the Schur decom-
position (SD) of a non-Hermitian matrix which, for example, is useful for evaluating
the eigenvalues of the matrix. His approach is similar to the Jacobi SVD method. It is
based on applying a sequence of two-sided rotations to 2 2 submatrices, where the left
and fight rotation angles are identical to make the diagonal submatrices upper triangular.
While the diagonal PEs perform operations different from those in SVD, the off-diagonal
PEs have exactly the same computational task as in SVD computing. Therefore, the
CORDIC SVD module can also be used in Stewart’s SD array.

Even in sequential computations on a uniprocessor system, one can still apply the
TPR method to reduce the computational complexity of two-sided rotations.

8. Conclusion. We have investigated a novel algorithm for computing two-sided
rotations requiting only two plane rotations and a few additions. This results in signifi-
cantly reduced computations of various SVD and SD methods. For parallel implemen-
tations, we have presented a unified CORDIC SVD module for implementing all PEs of
the SVD array given by Brent and Luk. This leads to a homogeneous array architecture
that is simpler in hardware and offers twice the computational speed ofthat of Cavallaro
and Luk. Moreover, we have pointed out that the same CORDIC SVD module can be
efficiently used in other array architectures, such as Luk’s triangular SVD array and
Stewart’s SD array.

Acknowledgments. The authors thank the referees and the editor for their valuable
comments on this paper.
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ON MONOTONE LINEAR OPERATORS AND THE SPECTRAL RADIUS
OF THEIR REPRESENTING MATRICES*

HARRY H. TIGELAAR]"

Abstract. In this paper, linear operators on the space ofp p matrices are considered. Such linear opera-
tors can be represented by p2 p2 matrices. In particular, sums ofKronecker products occur as representing ma-
trices. Let the linear operators s and M’v be represented by the matrices S and U, where U is of the form
U Y Ak (R) k. It is shown that, in order that q%(X) <= q’s(X) for all positive-semidefinite X, it is necessary
that the spectral radii of U and S satisfy the inequality p(U) =< p(S).

Key words, linear operators, positive-semidefinite matrices, Kronecker products, spectral radius of a square
matrix
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1. Introduction. Let Cp*p denote the pE-dimensional space of all complex p p
matrices and cN the N-dimensional vector space of complex N-vectors. With every A e
Cp*p we can associate a vector in CN where N p:, by considering vec (A). The vec-
operation is a linear one-to-one transformation, but when special matrix properties are
involved, it is not always adequate for interpreting a p p matrix as a p:-vector. In
particular, it is difficult to translate a property like positive-definiteness into terms of the
space CN. In this paper, however, we consider linear operators from Cp*p onto itself. In
particular, we are interested in linear operators that leave specific matrix properties as
positive- semi definiteness invariant. It turns out that in that case it makes sense to
analyze the corresponding linear operators from CN onto itself, which are represented
by/92 p2 matrices. Let &’s denote the linear operator corresponding to the p2 p2
matrix S. Then we have the basic relation

1.1 vec (s(X)) S vec (X), X:Cp*p.

In calculating the matrix S for a given linear operator, Kronecker products of matrices
are frequently encountered. Therefore, we briefly outline their properties and the relation
to the vec-operator. When A and B are arbitrary matrices and (A)i2 denotes the (i, j)th
element ofA, then the Kronecker product A (R) B is defined as the (partitioned) matrix,
which is obtained by replacing (A)2 by the matrix (A)0B. When a partition of a matrix
S in equal-sized blocks is given, it is convenient to denote the (r, s)th element of the
(i, j)th block by (S)rs;ij. Thus when S A (R) B, we have (S)rs;O (A)ij(B)rs. In this
paper we only deal with p2 p2 matrices, partitioned into p p blocks. For details on
Kronecker products we refer to ]. We shall list here some properties used in the sequel:

(1.2) (A(R)B)(C(R)D)=(AC)(R)(BD),

(1.3) vec (ABC)=(CT(R)A) vec (B).

Here Cr denotes the transpose of the matrix C (when transposition is combined with
complex conjugation, we write C*).

Let p(S) denote the spectral radius of the square matrix S, i.e., the maximum of
the absolute values of the eigenvalues of S. Then we have, for square matrices A and B,

(1.4) t)(A(R)B) p(A)p(B),
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which follows easily from the fact that the eigenvalues ofA (R) B are precisely the products
of the eigenvalues ofA and B.

The following lemma, which is not easily found in the literature, is a combination
of known results. It relates the spectral radius ofA to A nil, where I1" may be any of
the following three natural matrix norms:

(1.5) IIAIIa=[o(A*A)I
J

LEMMA 1. For every A Cp-p, there exists a constant c such that

(p(A))n<- IlAn[I <=Cnp- l(p(A))n, neN.

Pro@ The first inequality is well known (and holds for all natural matrix norms),
so we only prove the second. From the Jordan decomposition theorem it follows that A
can be written in the form

A =H(A+N)H-1,

where N 0 and A is a diagonal matrix of eigenvalues of A that commutes with
N. Hence

(1.6) A,=H An-
0 k

Since for any of the three matrix norms we have IIA]I o(A), it follows from (1.6) that

A nil HI[ H-Ill
k=0 k

[Igll []H-11I(llNllp-I+

where the last inequality follows from x N x6 + for 0 a N b and x 0. Hence it
follows that

where c does not depend on n.
From the lemma follows the result that the matrix power series Z A converges

absolutely (elementwise) if and only if o(A < 1. This is a special case of a known result
on a more general power series. See, e.g., Theorem 49 of[2 ].

2. Monotone linear operators. For X Cp*p we denote X >_- 0 when X is positive
semidefinite, and for X, Y CP*P we denote X >= Y when X Y >_- 0.

DEFINITION 2.1. The linear operator qo. Cp*p
__

Cp*p is monotone when, for all
X >_- 0, we have &o (X) >_- 0.

From this definition, it follows immediately that for a monotone linear operator
9o, the inequality X >_- Y implies &(X) >= o(y); hence the partial ordering in Cp*p is
invariant.

Examples ofmonotone linear operators are easily obtained. LetA Cp*p be arbitrary
and S A (R) A, where A denotes the complex conjugate ofthe matrix A. Then the linear
operator fts defined by 1.1 is monotone since for X

_
0 we have s(X) AXA * >=

0. More generally, S may be of the form

(2.1) S E (k(R)Ak), AkeCp*p.
k=l
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DEFINITION 2.2. The monotone linear operators is said to be of the Kronecker-
type when S is of the form (2.1).

The following identity is a useful tool when powers of sums of matrices must be
calculated. Let Qi CP*P for 1, 2, m. Then we have

(2.2) Qi Qmj, n,
(mj)j=

where the summation on the fight-hand side is over all mn sequences (mj)’= 1, mj

_
{ 1, m }. It is used twice in the proof of the following lemma.

LEMMA 2. Let S be given by (2.1). Then the elements ofS satisfy the following
inequality:

(2.3) ](sn)ij,rs[ 1/2 [(sn)ij,ij-[--(Sn)rs,rs ].
Proof. By (2.2) we have

[(sn)ij,rs[- k(R)Ak
k ij,

Using (1.2) the last expression equals

((m)(__lmk)@(__lAmk))ij, mk)(=lAmk)ij(=lAmk)rs
<--Z

(ink) k= .ij.k=

Amk
k=l ij

1/2 [(sn)ij,ij-[-(Sn)rs,rs],
where the last equality follows from (2.2) in reverse direction. This proves the
lemma. V1

DEFINITION 2.3. The monotone linear operator .s dominates the monotone
linear operator Set:, denoted by es >= &t’t:, when for all X >= O, X C.p-p, we have
s(X)

_
v(x).

Let denote the linear operator defined by

qo= &t,s and .on OSO- for n 2, 3S

From 1.1 it follows easily that tT for T Sn.
LEMMA 3. When q’s andqvare monotone linear operators, then q’u <= qs implies

Proof. By induction it follows that qo is monotone for all n. Hence for X >= 0 we
have &t’(X) >= 0. Supposing that os dominates qo:, we obtain

+ (x) >- sTj(x) >=t,7;(x) eT:+ (x),

and so, by induction, the lemma is proved. IN
LEMMA 4. v <= s U)ij,O <= S)g,o.
Proof. Let ei denote the (i)th unit vector in Cp. Put X ejef. Then X >_- 0. Fur-

thermore, we have

U)i,i; (ei(R) ei) TU(e(R) e) efoq’t:(X)ei

and a similar expression for (S)ij,i. The result then follows easily.
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We are now ready to state and prove the main theorem of this paper. It relates
dominance of certain monotone linear operators on Cp*p to inequalities between the
spectral radii of their representing matrices on Cn.

THEOREM. If tc is of the Kronecker type, and is dominated by ’s,
then o K) <= S)

Proof. Let
m

K= (A(R)J) and r=o(S).
k=l

Let e > 0 be arbitrary and put

U=(r-t-e)-lK, g=(r+e)-lS.

From o/ __< &t’s it follows thatv -< &t’v and so by Lemma 3 we have &t’ =< &t’ } for
all n e . Hence, by Lemma 4 we obtain

gn
ij, ij . v ij,ij

Using Lemma 2 it follows that

(2.4) I(U")i,rl <= 1/2[(V")O,i+(Vn)r,r].
Since o(V) r(r + e)- < 1, it follows from (2.4) that the series n U" converges
absolutely (elementwise). But then we must have 0(U) < 1, or equivalently o(K) <
r+e.

Since e was arbitrary it follows that 0(K) _-< r. E]

3. Application. As an application of the theory developed in the previous sections,
we shall prove the following interesting result. Let A and B be real p p-matrices satisfying
the condition

(3.1) p(A(R)A+B(R)B)<I.

Then both I A and I B are nonsingular. (It is not essential that A and B are real.
The proof of the statement is simple. Put K A (R) A and S A (R) A + B (R) B.

Then, clearly, we have qo/ __< &t,s and so Theorem implies 0(K) o (A (R) A) < 1. But
this is equivalent to o(A) < 1, which implies that I- A is nonsingular. Because of
symmetry, I- B must also be nonsingular.

The statement can of course be generalized for more than two matrices. It is not
easy to see how such results can be proved without Theorem 1. Conditions like (3.1)
arise in a probabilistic context in the theory of stationary bilinear processes (see [4 ).
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ON THE IDENTIFICATION OF LOCAL MINIMIZERS
IN INERTIA-CONTROLLING METHODS FOR QUADRATIC

PROGRAMMING*
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Abstract. The verification of a local minimizer of a general (i.e., nonconvex) quadratic program

is in general an NP-hard problem. The difficulty concerns the optimality of certain points (which we
call dead points) at which the first-order necessary conditions for optimality are satisfied, but strict
complementarity does not hold. Inertia-controlling quadratic programming (ICQP) methods form
an important class of methods for solving general quadratic programs. We derive a computational
scheme for proceeding at a dead point that is appropriate for a general ICQP method.

Key words, quadratic programming, local minimizer, NP-hardness, optimality conditions
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1. Introduction. The general quadratic programming (QP) problem is to find
a local minimizer of a quadratic function subject to linear inequality constraints. The
form of QP problem to be considered in this paper is

xTHxminimize (X) cTx -- -subject to Ax >_ ,
where H, the Hessian matrix, is symmetric, and 4 is an mL n matrix. Of particular
interest is the nonconvex case, which is characterized by an arbitrary distribution of
positive, negative, and zero eigenvalues in H.

This paper will focus on a specific class of methods for general quadratic pro-
gramming. Inertia-controlling quadratic programming (ICQP) methods use a linearly
independent subset of the constraints, known as the working set, to define a search
direction and multiplier estimates. A distinctive feature of ICQP methods is that con-
straint deletions are restricted in order to control the inertia of the reduced Hessian
matrix, which is never permitted to have more than one nonpositive eigenvalue. The
first ICQP method was proposed by Fletcher [FLE71]; other methods include those
of Gill et al. [GMSW84] and Gould [Gou86].

For any nonconvex quadratic program there may exist certain dead points at
which all quadratic programming methods will find it difficult to proceed (see 2.5
for a precise definition of a dead point). The difficulty arises because the verification
of such a point as a local minimizer of (1.1) is an NP-hard problem--see Murty and
Kabadi [MK87] and Pardalos and Schnitger [PS88]. However, even if lower values
of exist in the neighborhood of a dead point, it may be necessary to delete many
constraints simultaneously to find a direction of improvement. Since existing ICQP
methods are only able to delete one constraint at a time, they may be unable to
proceed from a dead point. This behavior may be contrasted with that of the simplex
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method at a degenerate vertex. The simplex method is able to keep iterating at a
degenerate vertex, but a large number of iterations may be performed, during which
the working set changes but the vertex remains the same. By contrast, existing ICQP
methods usually terminate at a dead point, irrespective of whether or not the dead
point is a local minimizer.

If progress is to be made at a dead point, a scheme must be devised that allows
the possibility of more than one constraint being deleted from the working set at
one time. Moreover, it must be possible to implement the scheme within the general
framework of an ICQP method. Such a scheme is presented in this paper, together
with its computational and theoretical properties. We show that the behavior of the
method at a dead point is similar to that of the simplex method at a degenerate
vertex: the algorithm is able to proceed, but there exists the danger of cycling. Our
method is not guaranteed to prevent cycling at a dead point. However, since the
verification of optimality is NP-hard, no known scheme can be guaranteed to make
progress in a reasonable amount of computational effort.

In an ICQP method, it is sometimes necessary to impose artificial constraints to
ensure that the reduced Hessian is positive definite at the starting point. (The role of
artificial constraints is discussed further in 2.4.) Unfortunately, artificial constraints
may introduce dead points that are not present in the original problem. In 5 we give
a computational scheme that is able to treat artificial constraints without difficulty.

In order to describe the new scheme, we first review results on necessary and suf-
ficient conditions for optimality in general quadratic programming. For a discussion
of these conditions, see, for example, Majthay [MAJ71], Mangasarian [MAN80], Con-
tesse ICON80], or Borwein [BOR82]. The results presented here allow the presence of
artificial constraints in the working set.

2. Background.
2.1. Notation and terminology. Throughout the paper, x will denote the

feasible point of (1.1) to be examined. It will be assumed that m constraints are
in the working set at x, and that the m n working-set matrix and associated m-
vector of right-hand sides are A and b. The vector g(x) is the gradient of at x,
i.e., g(x) c / Hx (we shall omit the argument x when the meaning is clear). The
columns of the matrix Z form a basis for the null space of A; the reduced gradient
and reduced Hessian of with respect to A are then ZTg(x) and ZTHZ. The vector
e will be used to denote the ith unit vector of the appropriate dimension.

A vector p is said to be a descent direction if gTp < 0; a direction of positive
curvature if pTHp > 0; a direction of negative curvature if pTHp < 0; a direction of
zero curvature if pTHp 0; and a feasible direction if Ap >_ 0. A matrix D is said to
be copositive if vTDv >_ 0 for all v _> 0. A constraint ax >_ is said to be active at
x if ax ; inactive at x if ax >/; and violated at x if ax </.

2.2. Assumptions. The following assumptions are used:
A1. The objective function, , is bounded from below in the feasible region.
A2. All constraints active at x are in the working set.
A3. The working-set matrix A has full row rank.
A4. The point x satisfies the first-order necessary conditions for optimality, i.e.,

there exists a nonnegative Lagrange multiplier vector # such that x and #
satisfy the Karush-Kuhn-Tucker (KKT) system

(.,A 0 -# b
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AS. The reduced Hessian matrix is positive definite.

2.3. The inertia of a matrix. Let M be any symmetric matrix. We denote
by ip(M), in(M), and iz(M), respectively, the (nonnegative) numbers of positive,
negative, and zero eigenvalues of M. The inertia of M--denoted by In (M)--is the
associated integer triple (in, in, iz). The following lemma states an important rela-
tionship between the inertia of the KKT-matrix

K= A 0

and the reduced Hessian.
LEMMA 2.1. Given assumptions A3 and Ab, the inertia of the KKT matrix K is

(n,m,O).
Proof. See Gould [Gou85, Lem. 3.4].
Lemma 2.1 implies that K is nonsingular, so that the Lagrange multipliers in

(2.1) are unique.

2.4. Inertia-controlling methods for quadratic programming. Associated
with each iteration of an ICQP method is a linearly independent subset of the con-
straints known as the working set. The working set at the initial point x0 must be
chosen so that the reduced Hessian is positive definite. Thereafter, the working set
changes by only one constraint at each iteration and the reduced Hessian is never
permitted to have more than one nonpositive eigenvalue.

ICQP methods depend critically on a procedure for finding an initial working
set with an associated positive-definite reduced Hessian. In order to ensure that
the reduced Hessian is positive definite, the initial working set may need to include
"artificial" constraints that are not specified in the original problem. (The original
constraints of the problem will be referred to as regular constraints.) The only re-
quirement for an artificial constraint is that it be linearly independent of the other
constraints in the working set. An artificial constraint does not restrict the feasible
region, since the direction of the inequality is not defined. As soon as an artificial
constraint is removed from the working set, it is eliminated from the problem.

The type of artificial constraint depends on the form of the particular QP method.
For example, the initial working set will often vary with the method used to solve the
KKT system. A simple example of a problem requiring artificial constraints is given
in 5. We emphasize that artificial constraints are not part of the original problem,
but are an artifact of the solution method.

Once a constrained minimizer has been found, an ICQP algorithm deletes one
constraint from the working set and finds either a feasible descent direction or a
feasible direction of negative curvature. Constraint deletion is permitted only when
the reduced Hessian matrix is positive definite.

All ICQP methods generate search vectors and multipliers that satisfy the KKT
equations. However, since the equations may be solved either implicitly or explicitly,
one ICQP algorithm may appear to be very different from another. In this paper,
only the form of equations to be solved is stated. For a discussion on the relationship
between different ICQP methods, see Gill et al. [GMSW88].

Dead points associated with only regular constraints are discussed first. In 5, we
consider the case when artificial constraints are present.

2.5. Dead points. If A contains only regular constraints, a dead point is defined
to be a point that satisfies assumptions A4 and A5 with one or more zero components
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in the Lagrange multiplier vector #. We emphasize that such a point may not be a
local minimizer.

Since a dead point satisfies the first-order necessary conditions for optimality,
there exists no feasible descent direction. Therefore, it is necessary to find a feasible
direction of negative curvature if an ICQP method is to proceed to find a local mini-
mizer. Unfortunately, it may be impossible to compute a feasible direction of negative
curvature by deleting only one constraint at a time, as can be seen from the following
problem.

minimize -xlx2

subject to 0<_xl_<l, 0<_x2_<l.

If the starting point is the origin, and both active constraints are in the working set,
assumptions A1-A5 are satisfied. However, if either of the constraints is deleted from
the working set, the resulting reduced Hessian is positive semidefinite and singular.
Therefore, no feasible direction of negative curvature may be computed by deleting
only one constraint. Since constraint deletion is permitted only when the reduced
Hessian is positive definite, no more than one constraint may be deleted from the
working set and an ICQP method cannot continue at this point, even though the
origin is not a local minimizer.

In this situation--where neither a feasible descent direction nor a feasible direction
of negative curvature may be found by deleting only one constraint--it is necessary
to develop a scheme for deleting more than one constraint simultaneously if an ICQP
method is to proceed.

2.6. Optimality conditions. In this section we review the necessary and suf-
ficient conditions for x to be a local minimizer under assumptions A1-A5. It will
be necessary to distinguish between constraints with positive and zero multipliers.
Without loss of generality we may assume that the rows of A are ordered such that

where A+ corresponds to rows with positive Lagrange multipliers and A0 corresponds
to rows with zero Lagrange multipliers. Let m+ denote the number of rows in A+, and
let mo denote the number of rows in Ao. Also, let + denote the vector containing
the m+ positive components of .

The following two necessary and sucient conditions for z being a local minimizer
for (1.1) when assumption A2 holds are given by Majthay [MAJT1] and eontesse
Icons01.

C1. The point z satisfies the first-order necessar conditions for optimality, i.e.,
there eists eonnegative agrnge mltiplier vector , sch that nd
stisf the KKT equations

H A z -c

C2. It holds that dTHd 0 for all d such that A+d- 0 and Aod O.
In his proof, Contesse derives an alternative formulation of condition C2 involving

the set of generators for the finite cone

{p A+p- O, Aop >_ 0}.
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This formulation is described in Theorem 3.6 below. For completeness, Contesse’s
proof is included with a notation relevant to our assumptions.

3. A proof of the optimality conditions. Let Y+ denote the n x m+ matrix
whose jth column y+j is defined to be the unique vector satisfying the equation

(3.1) A+ 0 0 -pj ey
Ao 0 0 -/ 0

and let Yo denote the n mo matrix whose jth column Yoj is defined to be the unique
vector such that

(3.2) A+ 0 0 -Ay 0
Ao 0 0 -t? ej

Equations (3.1) and (3.2) imply that the computation of y+j and Yoj involves
solving the KKT equations with a unit right-hand side. For a detailed discussion of
the properties of the KKT equations in this context, see Gould [Gou86, Thm. 2.3].

Given Y+ and Yo, let M denote the n n matrix M Z Y+ Yo ).
LEMMA 3.1. The matrix M is nonsingular.
Proof. It is enough to show that the columns of M are linearly independent.

Assume that

Mv Zvz + Y+v+ + Yovo O.

Successive premultiplication of Mv by A+ and Ao gives v+
columns of Z are independent, it follows that vz 0.

LEMMA 3.2. The sets

and Vo 0. Since the

and (p p--- Zvz + Y+v+ + Yovo, v+ >_0, Vo>_0}

are identical.

Proof. From Lemma 3.1 it follows that the columns of Z, Y+, and Yo span
Consequently, any p in n may be written in the form p Zvz + Y+v+ + Yovo, for
some suitably dimensioned vectors Vz, v+, and Vo. Premultiplication of p by A yields

Ap Ao P Vo

Hence, the vector Ap is nonnegative if and only if v+ and Vo are nonnegative.
We now show that verification of the optimality of x is equivalent to finding a

local solution of a special quadratic program.
LEMMA 3.3. The vector x is a local minimizer of (1.1) if and only if p 0 is a

local minimizer of the quadratic program

minimize gTp + 1/2pTHp
(3.3) P

subject to Ap >_ O.

Proof. The Taylor-series expansion of gives gTp+ 1/2pTHp (x+p)--(x). The
vector Ap is nonnegative if and only if A(x + p) >_ Ax. Since every active constraint
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is included in A, the point x will not be a local minimizer of (1.1) if and only if
there exists an infinite sequence xk}=l converging to x such that Axk

_
b and

9(xk) < 99(x). We need consider only those constraints in the working set because
assumption A2 guarantees that if (xk)= converges to x, all other constraints will
be satisfied for k sufficiently large. Similarly, the zero vector will not be a local
minimizer of (3.3) if and only if there exists an infinite sequence (pk}k= converging

pkTHpkto zero such that Apk >_ 0 and gTpk q_ < O. The proof is complete if we let
xk x q-pk.

LEMMA 3.4. All elements of the matrices ZTHy+ and ZTHYo are zero.

Proof. Direct substitution into (3.1) yields ZTHy+j 0 for j 1,..., m+ and
direct substitution into (3.2) yields ZTHyoj --0 for j 1,..., mo.

Lemmas 3.3 and 3.4 are now combined to show that the verification of x as a
local minimizer is achieved by solving the QP problem

(3.4)

minimize
vE

subject to

T TZTHZvz + vT+y+THY+v+#+v+ + 5Vz
+ vT+y+THYovo + 1/2vToYoTHYovo

v+ >_ O, Vo >_ O.

LEMMA 3.5. The vector x is a local minimizer of (1.1) if and only if zero is a
local minimizer of (3.4).

Proof. Problem (3.4) is derived from problem (3.3) by using the transformation

p Mv Zvz + Y+v+ + Yovo.

Assumption A4, equations (3.1) and (3.2), and Lemma 3.4 are used to simplify the
objective function. The feasible region is obtained by using Lemma 3.2. Finally,
Lemma 3.3 implies that zero is a local minimizer of (1.1) if and only if it is a local
minimizer of (3.4). D

Using these results it is possible to pose the problem of determining local opti-
mality as a copositivity problem, as the following theorem shows.

THEOREM 3.6 (Contesse ICON80]). The point x is a local minimizer of (1.1) if
and only if YoTHYo is copositive.

Proof. Assume that YoTHYo is not copositive. Then there exists a nonnegative
vector Vo such that VoTYoTHYoVo is negative, and zero is not a local minimizer of (3.4).
Lemma 3.5 implies that x is not a local minimizer of (1.1).

Assume that YoTHYo is copositive. If zero is not a local minimizer of (3.4), there
must exist an infinite sequence {vk}= converging to zero such that

T k kT T k k T k v+Ty+ HYov + v#+v+ + 1/2vz Z HZvz + 1/2v+Ty+ HY+v+ + k T k kTYoTHYovk
where Vo and v+k are nonnegative.
copositive, it must hold that

Since ZTHZ is positive definite and YoTHYo is

#+v+ + v+ i+ hi+v+ + v+
At least one component of v+k must be positive, since the left-hand side is zero when

v+k is zero. Since #+ is a positive vector, it must have a positive least component/_train,
and we may write

mine V+ q-V+ 1"_ _t-//’+V+ q-V+
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where e is a suitably dimensioned vector with unit components. If both sides of this
last equation are divided by the positive quantity eTvk+, we obtain the inequality

(3.5)
1 k T k 1 k T kTy+ HY+v+ + Ty+ HYov < O.min -- 2eTvk+ v+ eTvk+

V+

If we now consider this inequality as k goes to infinity, we note that min must be
nonpositive, which contradicts the assumption that #+ is a positive vector. Hence,
the zero vector is a local minimizer of (3.4) and Lemma 3.5 implies that x is a local
minimizer of (1.1).

From this theorem, it follows that if we are able to check the mo x mo matrix

YoTHYo for copositivity, we are able to determine if x is a local minimizer.

4. On the copositivity of a matrix. It was shown in the previous section that
the verification of optimality of a dead point x is equivalent to checking if the mo mo
matrix YoTHYo is copositive. Once Yo has been computed, the matrix YoTHYo may
be calculated by direct matrix multiplication. However, the following lemma shows
that the solutions of the equation (3.2) for j 1,..., mo provide the columns of the
matrix YoTHYo

LEMMA 4.1. /f 0j satisfies (3.2), then YoTHYoej --Oj for j 1,..., mo.
Proof. Direct substitution into (3.2) yields YoiHyo
Copositive matrices have been studied extensively (see, e.g., Cottle, Habetler,

and Lemke [CHL70] and Pereira [PER72]). The problem of deciding if a given matrix
is copositive has been shown to be NP-hard (see Murty and Kabadi [MK87] and
Pardalos and Schnitger [PS88]). Therefore, no computationally tractable method for
solving the general problem is known.

However, there are special situations in which a matrix may be simply checked
for copositivity. Two such situations are discussed in the following lemmas.

LEMMA 4.2. If the elements of the matrix YoTHYo are nonnegative, it is copositive.

Proof. If YoTHYo is not copositive, there must exist a nonnegative vector Vo
such that voTYoTHYovo < 0. This is clearly impossible if all elements of YoTHYo are
nonnegative. [:]

LEMMA 4.3. If a diagonal element of YoTHYo, say yoHyoi, is negative, the matrix
is not copositive. Moreover, the vector yoi is a feasible direction of negative curvature.

Proof. If TYoiHYoi < 0, then clearly yoi is a direction of negative curvature. Lemma
3.2 implies that Yo is a feasible direction, as required.

It is also straightforward to check for copositivity when YoTHYo is a 2 2 matrix
with nonnegative diagonal elements.

LEMMA 4.4. A 2 x 2 real symmetric matrix P with nonnegative diagonal elements
is not copositive if and only if its determinant is negative and its off-diagonal elements
are negative. Moreover, if P is not copositive, the eigenvector corresponding to the
negative eigenvalue is a positive vector.

Proof. See Cottle, Habetler, and Lemke [CHL70, Thm. 3.1].
As a consequence of Lemma 4.4, the following lemma is immediate.
LEMMA 4.5. Let YoTHyo have nonnegative diagonal elements and a 2 2 principal

submatrix P with negative determinant and negative off-diagonal elements. A feasible
direction of negative curvature for YoTHYo is the no-vector whose nonzero elements
are the components of the eigenvector corresponding to the negative eigenvalue of P.

Proof. It follows from Lemma 4.4 that the eigenvector corresponding to the neg-
ative eigenvalue of P has nonnegative components. This eigenvector, when extended
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by adding zeros in the remaining (no 2) positions, is a feasible direction of negative
curvature.

Now we propose a scheme for the verification of local optimality based on the
lemmas above. First, it is shown that artificial constraints cause no additional diffi-
culties.

5. Artificial constraints in the working set. From the earlier discussion,
it is clear that there may exist certain dead points at which the verification of local
optimality is very difficult. In this section we demonstrate that this inherent difficulty
need not be exacerbated by the presence of artificial constraints.

To simplify the discussion, it will be necessary to distinguish between artificial
and regular constraints. Accordingly, we partition A0 and Yo such that

Ao= A and Yo=(Y Ya ),

where the subscript "R" denotes regular constraints and the subscript "A" denotes
artificial constraints. Let m denote he number of rows ofA and let ma denote the
number of rows of Aa. Also let denote the jth column of Y and let ya denote
the jth column of Ya. When artificial constraints are present, we must redefine a
feasible direction to be a vector p such that A+p >_ 0 and Ap >_ 0 (note that the sign
of Aap is not restricted).

It is also necessary to use the following slightly modified version of assumption
A4:

A4. The point z satisfies the first-order necessary conditions for optimality, i.e.,
there exists a Lagrange multiplier vector # (#+ # # )T, with #+ _> 0,
# _> 0, and #a 0, such that z and # satisfy the KKT equations

H A+T AT AT x -c

A+ 0 0 0 -#+ b+
A 0 0 0 -# b
A. 0 0 0 -#. b.

The difference between assumptions A4 and A4 is that the Lagrange multipliers of the
artificial constraints are required to be zero. If an artificial constraint has a nonzero
multiplier, it could be deleted from the working set to yield a feasible descent direc-
tion. Therefore, assumption A4 is appropriate for x being a constrained stationary
point. Consequently, a point x is said to be a dead point if it satisfies assumptions
A4 and A5.

Unfortunately, dead points may be added to the problem by imposing artificial
constraints. Consider the problem

minimize x x2

subject to -l<_xl_<l, -l<_x2_<l.

If the starting point is (0, 0), no regular constraints are active, and artificial constraints
are needed to define a positive-definite reduced Hessian. If artificial bound constraints
x 0 and x2 0 are imposed, assumptions A!-A3, A4, and A5 are satisfied.
However, as in problem (2.2), the origin is not a local minimizer and no feasible
direction of negative curvature may be obtained by deleting only one artificial bound.

It might appear that an arbitrary (unknown) number of artificial constraints must
be deleted to give a feasible direction of negative curvature (if one exists). However,
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we shall show below that such a direction may be computed by making only one or two
artificial constraints leave the working set. Our approach is to use the solution of (3.1)
and (3.2) to identify those constraints in the working set that may be deleted to yield
a positive-definite reduced Hessian. A similar approach is given by Gould [Got86,
Thm. 2.3] and reviewed in the following lemma.

LEMMA 5.1. If a constraint corresponding to a positive diagonal element of
YoTHYo is deleted from A, the resulting reduced Hessian is positive definite.

Proof. Let yos correspond to the deleted constraint ax >_ i3s. Lemma 3.1 implies
that Yos is independent of the columns of Z and it follows from (3.2) that Aoyos
and A+yos 0. Therefore, a basis for the new null space is obtained by adding the
column yos to Z. Lemma 3.4 implies that ZTHyos is zero. Hence, the fact that yHyos
is positive implies that the new reduced Hessian remains positive definite.

In order to distinguish between artificial and regular constraints we partition

YoTHYo such that

YoTHYo ( yTHy yTHya
yTHya yTHya )"

It follows from Lemma 4.3 that if a diagonal element of yTHya is negative,
feasible direction of negative curvature can be computed. By Lemma 5.1 it follows
that if a diagonal element of yTHy is positive, the corresponding artificial constraint
can be deleted and the new reduced Hessian will be positive definite. Clearly, unless all
diagonal elements of yTHy are zero, either a feasible direction of negative curvature
can be computed or an artificial constraint can be deleted.

TLEMMA 5.2. /f tWO diagonal elements of YATHYA, say yasHyas and yTAyHYAj are

zero, and yTAsHyaj is nonzero, the point x is not a local minimizer. Moreover, either
yai Yaj or Yas + YAj is a feasible direction of negative curvature.

Proof. Direct calculation yields

(Yas + Yag)TH(yai + Ya./) (Yas TVaj) H(vas Vaj) 2vTsHvaj O.

Hence, either Yas + YAj or YaS YAj is a direction of negative curvature. Feasibility
follows from the relations A+(yas + Yaj) 0 and Aa(yas + Yaj) O.

This lemma demonstrates that unless the matrix YfHYa is zero, either a feasible
direction of negative curvature can be computed or an artificial constraint can be
deleted.

LEMMA 5.3. /f the diagonals of yTHya are zero, and an element of yTHya
(say TymHyaj) is nonzero, the point x is not a local minimizer and a feasible direction
of negative curvature may be computed.

Proof. Let p be a vector of the form asym + ajyaj. Direct calculation yields that
p is feasible if as is nonnegative. The quantity pTHp may be expressed as

pTHp= ( as aj
YaTiHym ymHyaj
yaHYaj 0 aj

Consider the 2 2 matrix T given by

T RiHYi YiHyaj
yTiHYAj 0

Since ynTHy,j is nonzero, T has one negative and one positive eigenvalue. It has
orthogonal eigenvectors, since it is a real symmetric matrix. Hence, as and aj may
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be chosen so that p is the eigenvector corresponding to the negative eigenvalue, with
i nonnegative. For those values of i and j, the vector p will be a feasible direction
of negative curvature.

Clearly, whenever a component of yTaHyA is nonzero, either an artificial con-
straint can be deleted or a feasible direction of negative curvature can be computed.
To summarize, the following result holds when artificial constraints are present in the
working set.

THEOREM 5.4. If yTHyA has nonpositive diagonal elements, then x is a local
minimizer of (1.1) if and only if yT HyR is copositive and yT HY and yTHy are
zero.

Proof. If yTHy or yTHy are nonzero, there exists a feasible direction of
negative curvature and x cannot be a local minimizer.

Assume that yTHYR is not copositive. In this case, a feasible direction of negative
curvature may be computed and the local optimality of x is contradicted.

Assume that yTHy is copositive and yTHyA and yTHy are zero. Using a
similar analysis to that for the regular-constraint case, we can make the following
assertions. As in Lemma 3.2, partition the vector Vo such that

and replace the constraint vo _> 0 in (a.4) by v _> o. If x is not a local minimizer of
(1.1), there must exist an infinite sequence {vk}’= converging to ero such that

1 k T k 1 k1 kTy+THY+vk+ - v+Ty+ HYava + Ty+THYvk < O.min -- 2eTv+ V+ eTv+ eTv+
V+

Again, if we consider this inequality as k goes to infinity, we obtain the required
contradiction.

Consequently, if assumptions A1-A3, A4, and A5 hold, the artificial constraints
will cause no extra problem in determining if x is a local minimizer. There remains
the hard question of verifying that the matrix yTHy is copositive.

6. Computation of directions of negative curvature. In this section, we
propose an extension to ICQP methods that will allow progress to be made at a dead
point. Algorithm 6.1 provides a means of computing a direction of negative curvature
by making one or two active constraints inactive. Lemma 6.1 below indicates that the
algorithm will terminate with either a direction of negative curvature or the conclusion
that x is a local minimizer.

LEMMA 6.1. Algorithm 6.1 will terminate in at most mo steps. Moreover, if
termination occurs without the computation of a direction of negative curvature, x is
a local minimizer of (1.1).

Proof. At each step, either the algorithm terminates or a constraint is deleted
from the working set. Since there are only mo constraints to delete, the algorithm
must stop in at most mo steps.

If yTHy has a positive diagonal element, the corresponding artificial constraint
is deleted. Since this deletion will be repeated until every diagonal element of yTHy
is nonpositive, we may assume that yTHyA has nonpositive diagonal elements. At
this point, if no direction of negative curvature is computed, the matrices yTHy and
yTHy will be zero at each subsequent step of the algorithm. Either the algorithm
detects that the matrix yTHyR is copositive, or a constraint corresponding to a
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positive diagonal element of yTHye is deleted. If the algorithm terminates without
having computed a direction of negative curvature, the algorithm has determined that
a local minimizer has been found with respect to the constraints that are still present
in Ae. However, this conclusion still holds if the deleted constraints are added again,
since deletion of constraints may only increase the size of the feasible region. [2

ALGORITHM 6.1. An algorithm for finding a direction of negative curvature
repeat

Compute YoTHYo; Initialize mA and
if (mA > 0) then

k argument satisfying maxi yTiHYAi;
if T O) then(YAkHYk >

Delete artificial constraint k; go to again; (see Lemma 5.1)
end if;
k - argument satisfying mini yTiHyi;
if T 0) then(YAkHYk <

P -- YAk; go to exit; (see Lemma 4.3)
end if;
k, -- arguments satisfying maxi,j ]yTiHyj];
if T(yAkHyl O) then

P -- YAk -t-YAl; gO to exit; (see Lemma 5.2)
else if (me > 0) then

k, - arguments satisfying maxi,j
if (yTAkHYel O) then

Compute p; go to exit; (see Lemma 5.3)
end if;

end if;
end if;
if (me--0) or (mini,y yeTiHyey >_ O) then

x is a local minimizer; go to exit; (see Lemma 4.2)
end if;
k - argument satisfying mini T

if T 0) then(YekHYek <
P - Yek; go to exit; (see Lemma 4.3)

end if;
for i-ltome do

forj-i/ltome do
T T T 2 O)negdet - (YeiHYei YeyHYej HYej

if (negdet)and (yeTUyej < 0) then
Compute p; go to exit; (see Lemma 4.5)

else if (me 2) then
x is a local minimizer; go to exit; (see Lemma 4.4)

end if;
end do;

end do;
Tk -- argument satisfying maxi yeiHyei;

Delete regular constraint k; (see Lemma 5.1)
label again:

until exit occurs;
label exit:

Hence, if Algorithm 6.1 does not terminate at a given step, a constraint with a
positive diagonal element of YoTHYo is deleted. Recall that Lemma 5.1 implies that
the new reduced Hessian is positive definite whenever a constraint corresponding to
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a positive element of YoTHYo is deleted.
The amount of work needed at each step may be reduced by updating Yo and

YoTHYo To show this, we assume that the normal of the constraint aTx >_ is
deleted from Ao corresponding to a positive diagonal element of YoTHYo Partition Ao
such that

Ao ( Aol

In order to state the results in compact form, let A denote the matrix whose jth
column is Aj in (3.2) and let denote the matrix whose jth column is 0j. With this
partition of Ao, let the induced partition of Yo, A, and O be given by

Yo- (Yol Yoi ), A At ,)ti ) and 0
Oil Oii

With this partition equation, (3.2) may be written in compact form as

(6.1)

H A+T A ai Yol yoi 0 0

A+ 0 0 0 -A1 -Ai 0 0
Aol 0 0 0 --11 -Oli I 0

ate 0 0 0 --Oil -Oii 0 1

Let Yo, A, and denote the solution of (3.2) in the next step of Algorithm 6.1.
Then, Yo, A, and O will satisfy the equation

A+ 0 0 -A 0
Aol 0 0 -0 I

LEMMA 6.2. The quantities 0 and Yo may be obtained from the solution of (6.1)
as

0 OiO and o Yo YiOTi

Proof. The matrices t0 and o satisfy the equation

(6.2)

H AT+ A as o 0

A+ 0 0 0 - 0
Ao 0 0 0 -0 I
aT 0 0 0 0 acTo

Equations (6.1) and (6.2) imply that the barred quantities may be obtained from
the equations

(6.3a) 1?o Yol + YoiaTo,
(6.3b) A A + AiaTlYZo,
(6.3c) 0 Oll -- 01ia/T]o,
(6.3d) 0 O + OaTo

It follows from Lemma 4.1 that O YoTHyo. Hence, O is a symmetric matrix
with Oi 0T. Equation (6.3d) implies that 01T +0iiaTo 0. The fact that aTix >_
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is associated with a positive diagonal element of YoTHYo implies that Oii is positive.
Substitution in (6.3a) and (6.3c) yields the desired result.

Hence, only a rank-one modification of Y0 and YoTHYo is needed at each step of
Algorithm 6.1.

T TLEMMA 6.3. Assume that yoiHyoj is zero and yoiHyoi is positive at one step of
Algorithm 6.1. Also assume that the constraint with normal AToei is deleted at this
step. At the next step, the column of YoTHYo corresponding to the constraint with

Tnormal AToej is modified only by deletion of the zero element yoiHyoj.
Proof. Lemma 6.2 implies that the rank-one modification of column j is zero

Twhen yoiHyo is zero.

LEMMA 6.4. If, in one step of Algorithm 6.1, it holds that the matrices ynTHyA
and yTHyA are zero, then they will remain zero.

Proof. Since both the matrices yTnHy and yTHy are zero, the only way the
algorithm does not terminate is when a regular constraint corresponding to a positive
diagonal element of ynTHyR is deleted. Lemma 6.3 implies that the matrices ynTHy
and yTHy will remain zero. Only one column of zeros from y,THyA is deleted at
each step.

Hence, once the matrices yTHy and yTHy are zero, they remain zero.
LEMMA 6.5. /f yTn HyR is positive semidefinite and yTn Hy and yT Hya are

zero, then Algorithm 6.1 will determine that x is a local minimizer in at most
steps.

Proof. Lemma 6.4 implies that the matrices yTHyA and yTHy will remain
zero until the algorithm terminates. Hence, the only iteration when the algorithm
does not halt is when regular constraints corresponding to positive diagonal elements
of yTHyR are deleted. Therefore, at most mR steps may be taken in the algorithm.

Assume that the algorithm terminates without determining that x is a local min-
imizer. It follows that a direction of negative curvature must have been computed.
But Lemma 6.2 implies that the matrix of the next step is obtained as

Sylvester’s law of inertia, (see, e.g., [GV89, p. 416]) implies that In (O) In ()-
In (0i). At the initial iteration, is positive semidefinite. The value of the scalar 0
is positive. Hence, will have no negative eigenvalues. It follows by induction that
no direction of negative curvature can be computed.

Hence, if ynTHyR is positive semidefinite, Algorithm 6.1 determines that x is a
local minimizer.

7. Changes in the working set. In this section the changes in the working
set are described. In the proposed algorithm, either one or two constraints in A will
become inactive. In an ICQP method, only one constraint is added or deleted at a
time. However, we shall give a scheme that allows deletion of two constraints at a
dead point, maintaining the properties of an ICQP method, i.e., the reduced Hessian
having at most one nonpositive eigenvalue and the working-set matrix having full
row rank.

When a direction of negative curvature, p, is computed, the objective function is
strictly decreasing along that direction. The boundedness of a in the feasible region
guarantees that a sufficiently large step along p will violate a constraint. Let ak denote
the normal of the first constraint that is violated. In order to determine how to update
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A, it is necessary to know if ak is dependent on the rows of A. The following lemma,
given by Gill et al. [GMSW88], shows how linear independence may be checked.

LEMMA 7.1. Consider the equations

( H AT w

The vector ak is dependent on the rows of A if and only if the vector is zero in the
solution of (7.1).

Proof. Suppose tha ak is dependent on the rows of A. In this case, there must
exist a vector v such that ak ATv, and w is zero in the solution of (7.1).

Assume that w is zero in the solution of (7.1). It follows that ak ATv, and ak
is dependent on the rows of A.

When the algorithm is applied, either one or two constraints leave the working
set. The following sections show how to update the working-set matrix.

7.1. One constraint becomes inactive. Assume that p is given by p Yoi
and let aTix >_ denote the constraint that leaves the working set.

LEMMA 7.2. Assume that p is computed by deleting one constraint from the
working set. If ak is independent of the rows of A, it is added to A, while a is
maintained in A as an artificial constraint. If ak i8 dependent on the rows of A, ak
and a are exchanged. In either case, the resulting reduced Hessian is positive definite
and working-set matrix has full row rank.

Proof. If ak is independent of the rows of A, the new reduced Hessian remains
positive definite since only one more constraint is added to the working set. Also, the
new working-set matrix has full row rank.

Now assume that ak is dependent on the rows of A. If ak and a are exchanged,
the rows of the new working set will span the same space as the rows of A. Hence,
the new reduced Hessian is positive definite. Also, the new working-set matrix has
the same number of rows as the old one, and therefore it has full row rank.

Hence, after having either added ak or exchanged ak and ai, the new reduced
Hessian is positive definite and the new working-set matrix has full row rank.

7.2. Two constraints become inactive. Assume that p is given by p oiyoi+
ajyoj, where ai and (j are both nonzero. Let ai and ai denote the normals of the
constraints which leave the working set, and let A2 denote the submatrix of A that
remains when ai and aj are removed.

LEMMA 7.3. Assume that ak Av2 + aivi + ajvj. Then it cannot hold that
v =v =0.

Proof. Assume that ak Av2. Premultiplication by pT yields pTak O. But
this could not hold since ak becomes violated when a sufficiently large step along p is
taken.

LEMMA 7.4. Assume that p is computed by making two active constraints inactive.

If ak is independent of the rows of A, it is added to A, while ai and aj are maintained
as artificial constraints. If ak is dependent on the rows of A and Ivil > Ivl, ak and
ai are exchanged. If ak is dependent on the rows of A and Ivil

_
Ivy I, ak and ay are

exchanged. In each case, the new reduced Hessian is positive definite and the new
working-set matrix has full row rank.

Proof. Assume that ak is independent of the rows of A. The new reduced Hessian
remains positive definite since only one more constraint is added to the working set.
Also, the new working-set matrix has full row rank.
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Assume that ak is dependent on the rows of A. Lemma 7.3 implies that at least
one of the scalars v and vj is nonzero. Hence, by performing the specified exchange,
the rows of the new working set will span the same space as the rows of A. Hence,
the new reduced Hessian will be positive definite. Also, the new working-set matrix
has the same number of rows as the old one, and therefore it has full row rank. v1

Hence, after having either added ak or exchanged either ak and ai or ak and
aj, the new reduced Hessian is positive definite and the working-set matrix has full
row rank.

8. Verification of local optimality. In this sectionwe describe a complete
algorithm for checking if a given dead point x is a local minimizer. In Algorithm 8.1,
a direction of negative curvature is found by making one or two constraints leave the
working set at a time. If no such direction exists, Algorithm 6.1 yields the result that
x is a local minimizer.

ALGORITHM 8.1. An algorithm checking for local optimality
repeat

Apply Algorithm 6.1;
local_minimizer Algorithm 6.1 implies that x is a local minimizer;
if (local_minimizer) then

go to exit;
else

ak -- constraint that is first violated along p;
a - maximum feasible step along p;

Solve ( H AT ) ( w ) (aok)A 0 v (see Lemma 7.1)
indep - (llwll > 0);
nr_ inactiv - number of constraints that become inactive;
if (nr_ inactiv 1) then

ai -- constraint that becomes inactive;
if (indep) then

Add ak
else

Exchange ak and ai; (see Lemma 7.2)
end if;

else
ai, aj - constraints that become inactive;
if (indep) then

Add ak
else

if (Ivil > Ivjl) then
Exchange ak and ai; (see Lemma 7.4)

else
Exchange ak and aj;

end if;
end if;

end if;
if(a>0) then

x - x + ap;
local_minimizer - false;
go to exit;

end if;
end if;

until too many iterations;
label exit:

If constraints corresponding to positive diagonal elements of YTHYR are deleted
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in Algorithm 6.1, assumption A2 will no longer hold. In this case, if a direction of
negative curvature is computed, the resulting maximum feasible step could be zero
and there is a danger of cycling.

However, if Algorithm 8.1 terminates, it will provide either a feasible direction
of negative curvature along which a nonzero step may be taken or the information
that x is a local minimizer. As shown in 6, the algorithm will terminate with the
information that x is a local minimizer in the special case when the matrix yTHyR
is positive semidefinite.

9. Conclusions. When solving a general quadratic programming problem there
may exist certain dead points at which it is very difficult to verify optimality. We
emphasize that this difficulty is inherent to the problem, and is independent of the
solution method.

In this paper, the verification of optimality has been discussed within the context
of an inertia-controlling method. We have derived a computational method appropri-
ate for general ICQP methods that will attempt to determine if a dead point is a locM
minimizer. The use of artificial constraints may introduce additional dead points. It
has been shown that the new procedure does not terminate at such points, unless
they are local minimizers.

However, the verification of optimality in the general case is an NP-hard problem,
so we would not expect to find a procedure capable of solving a general problem in a
reasonable amount of computational effort. In our scheme, there is a potential danger
of cycling, and a more elaborate scheme is needed to guarantee the solution of the
problem in a finite number of iterations.
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Abstract. The Smith normal form of a polynomial matrix D(s) Q(s) + T(s) is investigated,
where D(s) is "structured" in the sense that (i) the coefficients of the entries of Q(s) belong to a field
K, (ii) the nonzero coefficients of the entries of T(s) are algebraically independent over K, and (iii)
every minor of Q(s) is a monomial in s. Such matrices have been useful in the structural approach
in control theory. It is shown that all the invariant polynomials except for the last are monomials in
s and the last invariant polynomial is expressed in terms of the combinatorial canonical form (CCF)
of a layered mixed matrix associated with D(s). On the basis of this, the Smith form of D(s) can
be computed by means of an efficient (polynomial-time) matroid-theoretic algorithm that involves
arithmetic operations in the base field K only.

Key words. Smith normal form, structural controllability, matroid-theoretic algorithm, mixed
matrix, combinatorial canonical form (CCF)
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1. Introduction. The Smith normal form (e.g., [4], [181) of a polynomial matrix

D(s) is of fundamental importance in many fields of mathematical sciences. In control
theory (e.g., [20]), for example, the controllability of a linear time-invariant descriptor
system

(1) F+/-(t) Ax(t)+ Bu(t)

with state-vector x and input-vector u is known to be equivalent to the condition that
the Smith form of D(s) (A- sFIB is equal to (IlO).

In the structural approach to control systems, as initiated by Lin [7], graph-
theoretic methods have been developed under the assumption that all the nonzero
numbers characterizing a dynamical system (e.g., the nonzero entries of the matrices
A, B, and F in (1)) are algebraically independent parameters. As a refinement of
such a graph-theoretic approach, matroid-theoretic methods for structural analyses
of dynamical systems have been developed under a more realistic assumption that
the coefficients are classified into independent physical parameters and dimensionless
fixed constants (see [9]-[11], [12], [14], [17]).

In the matroid-theoretic methods, we encounter a class of polynomial matrices

D(s) QD(S) + TD(S) which are "structured" in the sense that (i) the coefficients
of the entries of QD(S) belong to a field K, (ii) the nonzero coefficients of the entries
of TD (s) are algebraically independent over K, and (iii) every minor of QD (s) is a
monomial in s. This means in particular that D(s) is a mixed matrix with respect
to K(s). (See Example 3.1 for a concrete instance of such a matrix and 2 for the
definition of a mixed matrix.) In applications to control systems, we usually have
K Q (the field of rational numbers) and the third condition reflects the consistency
of equations with respect to physical dimensions (see Remark 3.2 for the physical
background). Note that the so-called structured matrix that has independent nonzero
coefficients is the special case where QD(S) O.
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In this paper we investigate the Smith normal form of such a polynomial matrix

D(s). First, in 2, we show some preliminary results on mixed matrices. The main
theorems are given in 3, which state that all the invariant polynomials of D(s) except
for the last are monomials in s and the last invariant polynomial can be expressed in
terms of the combinatorial canonical form (CCF) of a layered mixed matrix associ-
ated with D(s). On the basis of this, we present in 4 an efficient matroid-theoretic
algorithm using weighted matroid-intersection algorithms (e.g., [6], [21]) for comput-
ing the Smith form of D(s); in particular, the degrees of invariant polynomials can
be computed in polynomial time. The algorithm is practical, involving arithmetic
operations in the base field K only. As an application of the present results to con-
trol theory, we obtain an alternative efficient algorithm for testing for the structural
controllability in the sense of [11].

.2. Preliminaries on mixed matrices. This section gives some properties of
mixed matrices to be used in this paper (see [10], [13], and [14] for other properties).
The notion of mixed matrix was introduced by [15].

For a matrix A, the row set and the column set of A are denoted by Row(A) and
Col(A). For I c_ Row(A) and J c_ Col(A), A[I, J] means the submatrix of A with
row set I and column set J. The (multi)set of nonzero entries of A is denoted by
Af(A). The zero/nonzero structure of a matrix A is represented by a bipartite graph
G(A) (Row(A), Col(A),Af(A)) with vertex set Row(A) t2 Col(A) and arc set Af(A);
G(A) has an arc from i e Row(A) to j e Col(A) if A has a nonzero entry at the
position (i, j). The term-rank [19] of A is equal to the maximum size of a matching
in G(A).

Let K be a subfield of a field F. A matrix A is called a mixed matrix with respect
to K if

(2) A-- QA + TA,

where
(i) QA is a matrix over K, and
(ii) TA is a matrix over F such that the set Af(TA) of its nonzero entries is

algebraically independent over K.
The following identity is fundamental. It can be translated nicely into the matroid-

theoretic language and enables us to compute the rank of A by an efficient algorithm
using arithmetic operations in the subfield K only.

THEOREM 2.1 (rank identity [15]). For a mixed matrix A QA + TA,

rank A max{rank QA[R- I, C- J] + term-rankTA[I, J] I C_ R, J C_ C},

where R Row(A) and C Col(A). [:]

A matrix A is called a layered mixed matrix (or an LM-matrix) with respect to
K if it takes the following form (possibly after a permutation of rows)"

such that
(i) Q (Qij) is a matrix over K, and
(ii) T (Tij) is a matrix over F such that the set Af(T) of its nonzero entries is

algebraically independent over K.
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In other words, an LM-matrix is a mixed matrix (2) such that the nonzero rows
of QA and TA are disjoint.

An LM-matrix A of (3) is associated with a set function p as follows. Set
Row(Q) RQ, Row(T) RT, and Row(A) R; then R- RQ A RT. The
column sets of A, Q and T, being identified with one another, are denoted by C;
Col(A) Col(Q) Col(T) C. Put

p(I, J) rank Q[I, J], I c R, J c C,

F(I, J) U {i e I ITij 0}, I C_ RT, J C C,

(I, J)- IF(I, J)l, I c_ RT, J C C,
p(I, J) p(I N RQ, J) + "(I RT, J) IJI, I c R, J c C.

The function p" 2R x 2C - Z is known to be bisubmodular"

p(I1 [.) 12, J1 J2) + p(I1 I2, J1 [A J2) _< p(I1, J1) -+- p(I2, J2),
Ii C_R, Ji c_c (i--1,2).

Put

(5) L(I)= {J C C Ip(I,J) <_p(I,J’),v J’ C C}, ICR.

Based on the rank identity in Theorem 2.1 and the min-max formula for the
matroid-union of Edmonds [2], we can prove the following identity, an extension of
the well-known min-max characterization (e.g., [6], [8]) of the term rank of a matrix
or the maximum matching in a bipartite graph, which is ascribed to Egervry, Khnig,
Hall, Rado, Ore, and others.

THEOREM 2.2 ([10], [16]). For an LM-matrix A,

rank A[I, J] min{p(I, J’) I C_R, J C_C. D

By the admissible transformation for an LM-matrix A of (3), we mean the trans-
formation of the form:

where S is a nonsingular matrix over the subfield K, and Pr and Pc are permutation
matrices. The admissible transformation brings an LM-matrix into another LM-
matrix and two LM-matrices are said to be LM-equivalent if and only if they are
connected by an admissible transformation.

Remark 2.1. An electrical network is typically described by means of a layered
mixed matrix when currents in and voltages across branches are chosen as the el-
ementary variables (see, e.g., [5]). In that case, the Q-part represents Kirchhoff’s
current and voltage laws, which, as is well known, can be written down in a number
of different ways. The LM-equivalence accounts exactly for the degree of freedom in
expressing these conservation laws.

It is known that there exists a finest block-triangular matrix, say A, among the
matrices which are LM-equivalent to A (cf. Theorem 2.3 below). This is called the
combinatorial canonical form (or CCF for short) of A. Since the transformation
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(6) is more general than mere permutations of rows and columns, the CCF is a
generalization of the canonical decomposition due to Dulmage and Mendelsohn [1] of
a bipartite graph.

The column set Col(A) of the CCF is partitioned into blocks as

(7) {Co; C1, c; c}

with reference to L(R) (cf. (5) for notation), which is a sublattice of 2C. We denote
by

(8) (R0; R,..., R;R}

the partition of the row set Row(A). Note that

RkCRL-O ifkTl,(k, 1} C_ (0,1, b, oc},

CkCCL-O ifkTl,(k, 1} c_ (0,1, b, oc},

and

Rk 7 , C 7 fork-1,...,b,

whereas R0, R, Co, and C can be empty.
A partial order, denoted as , is induced among the blocks of (7) from the lattice

L(R). We assume here that the blocks are indexed so that Ck C implies k <_ (1 <_
k, <_ b). Ck - C will mean that Ck C and Ck 7 C; and Ck- C will mean that
Ck - CL and there does not exist Cm such that Ck - Cm - C.

THEOREM 2.3 ([10], [16]). The CCF A of an LM-matrix A has the following
properties:

(a) A is block-triangularized with respect to the partitions (7) and (8), i.e.,

A[Rk,C] O if O <_ < k <_ oc.

Moreover, the partial order on {Ck k 1,..., b} induced by the zero/nonzero struc-
ture of t agrees with the partial order

_
defined by the lattice L(R); i.e.,

A[Rk, Ct] 0

A[Rk, Ct] 0
(l<_k,l<_b),

(l<_k,l<_b).

(b)

IRol < ICol if R0O,
(>0) for k=l,...
if Co q).

,b,

(c)

rankA[R0, Co] IR01,
rank A[Rk, Ck] IRkl ICkl

rankA[R, Co] ICl.
for k 1, ,b,



SMITH FORM OF STRUCTURED MATRICES 751

(d) A has the finest block-triangular .form among the matrices that have the prop-
erties (b) and (c) and are LM-equivalent to A. D

The submatrices AIR0, Co] and A[R, C] are called the horizontal tail and the
vertical tail, respectively.

Remark 2.2. The CCF is uniquely determined so far as the partitions of the
row and column sets, as well as the partial order among the blocks, are concerned,
whereas there remains some indeterminacy in the numerical values of the entries in
the Q-part. We sometimes refer to a CCF, instead of the CCF, in order to emphasize
this numerical indeterminacy.

An LM-matrix A is called LM-irreducible or simply irreducible if its CCF does not
split into more than one nonempty block, that is, if (a) b 1 and Co R -q}, (b)
b 0 and Ro q}, or (c) b 0 and Co q}. Each block A[Rk, Ck] of the CCF above is
irreducible for k 0, 1,..., b, cx). The irreducibility of an LM-matrix is characterized
by the function p of (4) as follows.

THEOREM 2.4 ([10], [16]). Let A be an LM-matrix with R Row(A) and C
Col(A).

(a) In the case where IRI ICI (> 0)"

A is irreducible =v p(R, J) > p(R, O) p(R, C) (- 0), VJ O, C.

(b) In the case where

A is irreducible p(R, J) > p(R, C), VJ C.

(c) In the case where

A is irreducible p(R, J) > p(R, ) (-- 0), VJ # .
A minor (subdeterminant) of A is a polynomial in T Af(T) over K. Let

dk(T) E K[hr] denote the kth determinantal divisor of A, i.e., the greatest common
divisor of all minors of order k in A as polynomials in T over K.

THEOREM 2.5. Let A be an irreducible LM-matrix with respect to K; put R
Row(A), C Col(A).

(a) In the case where IRI ICI (> 0):

dk(T) e K {O} for k l,. IRl -1

and

dlRI(T) det A # 0.

(b) In the case where

d(T) e K- {O} for k l,..., IRI.
(c) In the case where

dk(T) eK-(0} fork

Proof. First note that rank A min(IRI, ICI) if A is LM-irreducible.
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Case (a). It suffices to show that dlRl_ E K, since dk-1 divides dk for k
1,..., IRI. We will show that no t E T can appear in dlRl_l. Suppose that t is
contained as the (i, j) entry of A, where i RT and j C. By Theorem 2.4(a) we
see that

p(R-i,J) >_O V J C_C-j,

since

and

p(R i, J) >_ p(R, J)- 1 >_ 0 ifOJC_C-j

p(R- i,J) O ifJ=q).

It follows from Theorem 2.2 that det A[R-i, C-j] O. Obviously, det AIR-i, C-j]
does not contain t and is a multiple of dlRl_ 1. Therefore, dlRl_ does not contain t.

Case (b). Though the claim in this case follows easily from the argument in [11],
we give a simpler direct proof here. Similarly to Case (a), it suffices to show that
no t e T can appear in dlR Suppose that t is contained in column j C. By
Theorem 2.4(b) and Theorem 2.2 we see that rank A[R, C- j] IRI. In other words,
there exists J c_ C- j with IJI IRI such that det A[R, J] O. The rest of the proof
is similar to the one for Case (a).

Case (c). Suppose that t E T is contained in row i RT. By Theorem 2.4(c) we
see, just as in Case (a), that

p(R-i,J) >_O, V J C_C.

Then rank AIR- i, C] IC by Theorem 2.2 and the rest of the proof is similar to
the one for Case (a). [:]

It is known [13] that det A is an irreducible polynomial in the ring K[q’ if A is a
nonsingular and irreducible LM-matrix. Combining Theorem 2.5 with this result we
obtain the following statement. The special case of this statement when rank A IR
has been noted in [14].

THEOREM 2.6. Let A be an LM-matrix of rank r with respect to K. The decom-
position of the rth determinantal divisor dr(T) of A into irreducible factors in the
ring KIT] is given by

b

dr(T) c. H det i[Rk, Ck],
k--1

where A[Rk, Ck] (k- 1,..., b) are the irreducible square blocks in the CCF of A, and
e K- {0}.
With an m mixed matrix A Q + TA wih respec o K, we associate a

(2m) (m + n) LM-matrix

(9) A -diag [tllm tin] TA

where t,..., tm are new indeterminates (in F). Note that rank. rank A + m.
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3. The Smith normal form. In the first section, the main results of this paper
are presented as Theorems 3.1 and 3.2, and are illustrated in Example 3.1. Their
proofs are postponed to the second section.

3.1. Theorems. Let D(s) be an m n polynomial matrix in indeterminate s
over a field F represented as

(0) D(s) Qn(s) + TD(S),

where
(i) the coefficients of the entries of QD(S) belong to a subfield g of F,
(ii) the nonzero coefficients T (c_ F) of the entries of TD(S) are algebraically

independent over K, and
(iii) every minor of QD(S) is a monomial in s over K.
The first two conditions imply that D(s) is a mixed matrix with respect to the

rational function field g(s). The last condition (iii) is known (cf. [9], [10]) to imply
that

(11) QD(S) diag [st1, sr’] QD(1). diag Is-el, s-c]

for some integers ri (i 1,...,m) and cj (j 1,.-.,n). This means in particular
that each entry of QD(S) is a monomial in s over K. See Remark 3.2 at the end of
this section for the physical motivations for such classes of matrices.

Let dk(s) denote the kth determinantal divisor of D(s) over F for k 1,-.., r,
where r rank D(s). Then the kth invariant polynomial ek(s) of D(s) is expressed

dk(s) for k-- 1,..., r,(12) ek(s) dk-l(s)

where do(s) 1 by convention. The Smith normal form of D(s) is given by

E(s) diag [el (s),..., er(s), 0,.-., 0].

We choose dk(s) and ek(s) to be monic.
The main objective of this paper is to show that the Smith form E(s) of D(s)

has special properties, as stated in Theorems 3.1 and 3.2 below. The former refers to
ek(s) for k 1,..., r- 1, whereas the latter refers to er(s). Based on these theorems
we shall give in 4 an efficient algorithm for computing the Smith form of D(s). For
a polynomial we denote by "ord" its order, i.e., the lowest degree of a nonvanishing
term in it.

THEOREM 3.1. The determinantal divisors of D(s), except for the last, are mono-
mials:

(13) dk(s) spA

where

for k-- 1,-..,r- 1,

(14) p min(ord detD(s)[I, J] lII IJI k} for k 1,...,r- 1.

Hence the invariant polynomials, except for the last, are also monomials:

(5) ek(s) Sp-p- for k 1,...,r- 1,
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where Po 0 by convention.
We now turn to the last invariant polynomial er(s). Just as in (9), we associate

with D(s) an augmented (2m) (m + n) matrix

(16) b(s) b(s; t) [t/m,...,
with indeterminates t (t,... ,tin) in F, where

2(s)- (ImIQD(s)), (s; t)- (-diag Its,... ,t]lTD(s)).

It is not difficult to see that

is equivalent, as a polynomial matrix in s over F, to

o

and hence the Smith form of D(s) is embedded in the Smith form of D(s; 1) as

(17) (Im O )o

In particular, er(s) is equal to the lt invariant polynomial of (s; 1).
Since D(s; t) is an LM-matrix with respect to N(s), we can talk of its eel, say

O(s; t); et {D(s; t) l 0, ,..., b,} denote the family of its irreducible diagona
blocks. As mentioned in Remark 2.2, there is some indeterminacy in the entries of
D(s; t). The following theorem states that e(s) is characterized by those diagonal
blocks when they are appropriately chosen; in particular, the statement of the theorem
presupposes that we can choose D(s; t) in such a way that the diagonal blocks are
polynomial matrices in s. See Lemma a.1 in a.2 for the concrete choice of D(s; t).
TOaM a.2. The rth

9iven b
b

(la) d(s) s de (s; 1)
/=1

for some {0}, where p p +p with

p min{ord act D(s;t)[I,

and {D(s;t) O, 1,...,b,} denotes the fmil
appropritel chosen CC D(s; t)

b

(20) e(s) . s"-p- det (s; 1)
/=1

with p_ given by (14). D
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Remark 3.1. In the case where D(s) itself is an LM-matrix, there is no need to
introduce the augmented LM-matrix D(s; t). The claims in Theorem 3.2 remain valid
when we redefine D to be an appropriately chosen CCF of D. [:]

Remark 3.2. The class of polynomial matrices considered in this paper has been
proposed by Murota in the context of structural approach to dynamical systems (see
[9], [10]). Here we will explain, only briefly, the physical observations which motivate
such classes of matrices.

The decomposition (10) into two parts with the properties (i) and (ii) reflects
the way we recognize the structure of a physical/engineering system. It is based on
the distinction between "generic system parameters" and "fixed constants," which are
dubbed as "accurate" and "inaccurate" numbers in [15] as follows:

(1) Inaccurate numbers. Numbers representing independent physical parameters
such as resistances in electrical networks which, being contaminated with
noise and other errors, take values independent of one another, and therefore
can be modeled as algebraically independent numbers; and

(2) Accurate numbers. Numbers accounting for various sorts of conservation laws
such as Kirchhoff’s laws which, stemming from topological incidence relations,
are precise in value (often +1), and therefore cause no serious numerical
difficulty in arithmetic operations on them.

The last condition (iii), being concerned with the "accurate numbers," represents
the consistency with respect to physical dimensions. The "accurate numbers" usually
represent topological and/or geometrical incidence coefficients, which have no physical
dimensions, so that it is natural to expect that the coefficients of the entries of QD(S)
are dimensionless constants. On the other hand, the indeterminate s corresponds, in
the context of dynamical system theory, to the differentiation with respect to time
and therefore should have the physical dimension of the inverse of time.

If the matrix D(s) is to represent a physical system at all, relevant physical
dimensions are associated with the columns and rows of D(s). Choosing time as
one of the fundamental dimensions, we denote by -cj and -ri the exponent to the
dimension of time associated, respectively, with the jth column and the ith row.
The principle of dimensional homogeneity then requires that the (i, j) entry of D(s)
should have the dimension of time with exponent cj -ri. Combining this fact with
the observations on the nondimensionality of the coefficients of QD(S) and on the
dimension of s, we are led to the condition (iii). D

Example 3.1. The theorems above are illustrated here for a 5 5 matrix

(21)

with

Xl X2 X3 X4 X5

wl 0 0 1 + p18 38 P2
w2 8 1 1 0 P3 q- P48

D(s) w3 2s2 2s 2s 0 p5s

W4 0 0 0 82 P6
W5 283 282 282 0 8 q-p782

Row(D) {wl, w2, w3, w4, w5 }, Col(D) {Xl, x2, x3, x4, X5 }.
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This matrix is expressed as D(s) QD(S) + TD(S) in the form of (10) for K Q
with

(22)

Xl x2 x3 x4 x5

Wl 0 0 1 3s 0
w2 s 1 1 0 0

QD(8) w3 282 2s 2s 0 0
w4 0 0 0 82 0
w5 283 282 282 0 8

and

(23)

Xl x2 x3 x4 x5

wl 0 0 p18 0 p2

w2 0 0 0 0 P3 + p4s

TD(S)- w3 0 0 0 0 p5s

w4 0 0 0 0 P6
w5 0 0 0 0 p782

Here

T {P,P2,P3,P4,P5,P6,PT}

is the set of algebraically independent parameters, and QD(S) satisfies (11) with

rl r2 1, r3 --/’4 2, r5 3; Cl C4 0, C2 C3 1, c5 2.

The augmented LM-matrix D(s; t) of (16) is given by

(24) (s)

Wl W2 W3 W4 W5 Xl X2 X3 X4 X5

1 0 0 1 3S 0
1 S 1 1 0 0

1 282 28 28 0 0
1 0 0 0 S2 0

1 2S3 2S2 2S2 0 S

and

(25) T(s; t)

Wl w2 w3 w4 w5 Xl x2 x3 x4 x5

--t 0 0 p18 0 P2
--t2 0 0 0 0 P3 + PaS

--t3 0 0 0 0 p5s

--t4 0 0 0 0 P6
-t5 0 0 0 0 p782

We find (by the algorithm of 4) the following CCF D(s; t) of/(s; t); note that the
diagonal blocks are polynomial matrices in s, whereas a fraction "-3/s" is contained



SMITH FORM OF STRUCTURED MATRICES 757

in an off-diagonal block:

(26) D(s;t)-

Xl x2 Wl

1

X3

1
Pl 8

x4 w4 w3

1
0

W5 W2 X5

1

P2

P6
0 -2s 0
1 -2s2 8

0 0 p5s

-t5 0 p782
0 -t2 P3 + p4s

We have nonempty tails:

Xl x2

1),

Doo(s;t)

W3 W5 W2

1 0 -2s
0 1 -282

--t3 0 0
0 -t5 0
0 0

X5

p5s

p782
P3 q- P4s

and b-- 3 square diagonal blocks:

Wl x3

--tl pls

X4

t)
W4

The CCF reveals that

r rank D(s) 4 (< 5).

Then, according to Theorem 3.2, we see that

d4(s) a4. spa. (pls + 1). s2. (-1),

where a4 -1/pl to make d4(8) a monic polynomial. We can compute p 0 and
p 1 (by the algorithm given in 4) to obtain p4 p +p 1. Therefore,

d4(s) s3" (s + l/p1).

As for the other determinantal divisors, we obtain

dl (s) d2(s) d3(s) 1

(again by the algorithm given in 4). Hence the Smith form E(s) of D(s) is given by

E(s) diag [1, 1, 1, s3(s + l/p1), 01.
This example will be considered again in Example 3.2.
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3.2. Proofs. This section gives the proofs for Theorems 3.1 and 3.2. Example 3.2
at the end of this section will serve to give concrete ideas for the following derivation.

The matrix D(s;t) of (16) plays the primary role here, since the Smith form of
D(s) is obtained from that of/)(s; 1), as noted in (17). Recall that /)(s;t) is an
LM-matrix with respect to K(s) and note that (11) implies

(27) O(s) diag [sr, sr’] 0(1)" diag [s-r, s-r’ s-C, s-C’].

The CCFs of D(s; t) and D(1; t) are closely related as follows, where it should
be noted that/)(1;t) is an LM-matrix with respect to g. By virtue of (27), /)(s;t)
and/)(1; t) share the same function p of (4), so that they have the same partition of
the column set C Col(D) in their CCFs. We denote by {Co; C1,’", Cb; C} the
common partition of C; it is assumed as before that Ck -< C1 implies k < (1 < k,
l<_b).

Suppose that S is a nonsingular matrix over K such that

is the CCF of/)(1; t). If we define

(29) S(s) diag [srl, Sr’] S. diag Is-r1, s-r’]

with reference to (27), we see

is the CCF of/)(s; t).
In general, the transformation (30) is not qualified as an equivalence transforma-

tion of D(s; t) as a polynomial matrix in s, since S(s) can involve negative powers of s.
The following lemma claims, however, that we may restrict ourselves to a unimodular
transformation of the form (30) if we do not care about the upper off-diagonal blocks.

LEMMA 3.1. There exists a unit lower-triangular polynomial matrix L(s) over

K[s] such that

L(s)
o oz ) b(s; t)P 

is in the same block-triangular form as a CCF/)(s; t) of/)(s; t), and that the diagonal
blocks of/)(s; t) coincide with those of D(s; t). We can choose n(s) in the form

L(s) diag [srX, sr’] L. diag [s-, s-’]

with a unit lower-triangular matrix L over K.
To prove this lemma we will briefly review the construction of CCF. The matrix

S in (28), which is most important, is obtained through Gauss-Jordan-type row-wise
elimination operations on Q(1) as follows. We fix an arbitrary ordering of RQ
Row() and set (0) (1).

First we find a basis of the row vectors of the submatrix (0)[RQ, Co] by collecting
independent row vectors according to the fixed ordering of RQ. That is, let RQO be
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the subset of Re that minimizes max(Re0 (the maximum row index in Reo with
respect to the ordering of Re) subject to

IReol rank ((o)[Reo Co] rank ((o)[Re, Co].

Then the row vectors of (()[Re Reo Co] can be expressed as linear combinations
of those of Q()[Reo Co]. Hence, for a unit lower-triangular matrix L() the modified
matrix ((x) L(O)((o) satisfies

Q(I[Re Reo, Co] O.

Next, let Rex be the subset of Re Reo that minimizes max(Rex subject to

IRe1[- rank ((x)[Rex, Cx]- rank ((x) IRe Reo,

Then, for another unit lower-triangular matrix L(1), the matrix ((2) L(X)((1)
satisfies

IRe (Reo Re1), O.

Continuing in this way, we find a sequence of unit lower-triangular matrices

L(O) L(1) L(b)

such that

(- L(b)... L(X)L()(() L(1)

satisfies

[RQk, Ct] O if0<_l<k<_

where

L L(b) L(X)L()

is a unit lower-triangular matrix over K.
To obtain the CCF/(1; t) of/(1; t), we further eliminate the blocks of [Rek Ct]

for k < as far as possible by premultiplying ( with a unit upper block-triangular
matrix U over K. Then the matrix S of (28) is given by

S=UL.

by
As for the T-part, we define the partition {RTO; RTX,’" ,RTb; RT} of Row()

RTk YTk YT,k-1 for k 0, 1,..., b, ,
where

k

YTk U{i e Row() ij 0, j e Ct}
/-----0

for k 0, 1,..., b, x,
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and we set YT,-1 by convention. Then the partition {R0;R1,...,Rb;Ro} of
R Row() in its CCF is given by Rk RQk U RTk. The permutation matrices Pr
and Pc are introduced to bring the CCF into an explicit block-triangular form.

Based on the construction of D(s; t) described above, we can prove Lemma 3.1.
Define

(31) L(s) diag [srl, sr’] L. diag [s-l, s-’]

and

By the construction above, /)(s; t) thus defined has the same block-triangular form
and the same diagonal blocks as the CCF D(s; t); i.e.,

(33) /)(s; t)[Rk, C] O if 0

(34) k 0,

Note that/)(s; t) and D(s; t) do not coincide in the upper off-diagonal blocks.
In the construction of CCF we have assumed that an ordering of RQ is given

arbitrarily. Now we choose this ordering with reference to ri of (27) in such a manner
that

(35) rl

_
r2

_ _
rm.

Since L is lower-triangular, this ordering guarantees that L(s) of (31) be a polynomial
matrix in s. Thus Lemma 3.1 is established.

Lemma 3.1 shows that/)(s; t) and/)(s; t) share the same Smith form, since they
are connected by a unimodular transformation. On the other hand,_(17) shows that
the Smith form_E(s) of D(_s) is embedded in the Smith form of D(s; 1). We will
show here that D(s; t) and D(s; 1) are related by "scaling" and their Smith forms are
essentially identical. This will establish a link among the Smith forms, which may be
schematically displayed as

(36) D(s) (+r) b(s; 1)(a+r) b(s;t) I..,emm+__.3.1

We write/)(s; t, T) for (s; t) to explicitly indicate its dependence on the coeffi-
cients T in TD(S). By the definition (16) we see

(37) O diag[tl,...,tm] /)(s;1, T/t),

where the expression Tit in the last factor means the substitution of /ti for if
E T is contained in row i of/)(s; 1, T). This means that the determinantal divisors

of/)(s; t, T) an_d/)(s; 1, T/t), as polynomials in s over F, are identical. Therefore, the
Smith form of D(s; 1, T) is obtained from that of/)(s; t, T) by setting t tm
1, and conversely, the Smith form of/)(s; t, 7") is obtained from that of/)(s; 1, T) by
replacing with /ti if E 7" is contained in row i.
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Based on (36) we may concentrate on the Smith form of b(s;t). Regarding
/(s;t) )(s;t, T) as a matrix over the rng K[s,t, 2z], we denote by k(s;t) (e
K[s, t,) the kth determinantal divisor of D(s; t) for k 1,..., r / m. Then

(38) dk(s) ak" k+m(S; 1) for k 1,.-.,r,

where ck (e K(T) C_ F) is introduced since the determinantal divisor dk(s) was
defined to be a monic polynomial in F[s]. Since is in the block-triangular form (33)
with full-rank diagonal blocks (cf. (34) and Theorem 2.3(c)), we have

b

r + m rank E RI+ Cc I,
/=o

and therefore a nonvanishing minor of/) of order r + rn is expressed as

(39)

b

det/)JR0, J]" det [I, C]. II det/)[Rt, Ct]
/=1

b

det D[Ro, J]. det D[I, Co]. H det D[R, C]
/=1

for some J c_ Co and I E R. Then Theorem 3.2 follows from (38) and (39) and the
lemma below.

LEMMA 3.2.

gcd{detD(s)[Ro, J] lJ -IR01, J c_ Co}- co. sp

gcd{detD(s)[I,C]llII levi, I c_ R} sp

where so,a E F, and

p0 min{ord det/)(s)[R0, J] lJI IRol, J c_ Co},
pr min{ord det/)(s)[I, C] III ICI, I c_ R}.

Proof. Regarding D(s)[Ro, Co] as an irreducible LM-matrix with respect to K(s),
we obtain the first identity from Theorem 2.5(b). The second follows similarly from
Theorem 2.5(c). [:]

Finally, Theorem 3.1 follows from (38), (39), Theorem 3.2, and the lemma below.
Note that the essential claim of Theorem 3.1 is that dr-l(S) is a monomial in s over
F.

LEMMA 3.3. For 1,..., b,

gcd{detD(s)[I, J] lII [J[ IRtI- 1, I c_ R, J c_ Ct}

is a monomial in s over F.
Proof. Regarding D(s)[R, C] as an irreducible LM-matrix with respect to g(s),

we can apply Theorem 2.5(a) to establish the claim. [:]

Example 3.2. The derivations above are illustrated here for the 5 x 5 matrix D(s)
considered in Example 3.1. First note that (35) is satisfied. The CCF D(s; t), given
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in (26), of D(s; t) is obtained by means of S(s) U(s)L(s) with

(40)

Wl W2 W3 W4 W5

Wl 1
W2 1

L(s) w3 -28 1
w4 1
w5 -282 1

(41)

Wl )2 W3 W4 W5

wl 1 -3/s
w2 1

U(s) w 1
w4 1
w5 1

Note that L(s) is a unimodular polynomial matrix in 8 over Q. Using L(s) we obtain
the block-triangular matrix/(s; t) of (32) as follows:

(42) b(s; t)

Xl x2 Wl x3 x4 w4 w3 w5 w2 x5
s 1 1 1

P2

P6
1 0 -2s 0
0 1 -282 s

-t3 0 0 pbs

0 -t5 0 p782
0 0 -t2 P3 q- p4s

As claimed, the matrix is a polynomial matrix in s and it agrees with D in the
d_iagonalblocks. Also, notice the difference between the zero/nonzero structures of
D and D. In particular, we can exchange the positions of the two blocks {Wl, x3}
and {x4} in D without destroying the block-triangular structure if we accordingly
exchange^the corresponding rows, whereas these two blocks must be arranged in this
order in D to make it into a block-triangular form. In other words, the square diagonal
blocks are partially ordered as

{Wl,X3} - {W4}, {X4} - {W4}

with respect to the zero/nonzero structure in D, whereas they are totally ordered as

{Wl, X3} - {X4} - {W4}

4. Algorithms. This section describes efficient matroid-theoretic algorithms for
computing the Smith form of D(s) on the basis of Theorems 3.1 and 3.2.

First we point out that the degree Pk of dk(8) given in Theorem 3.1 can be
computed by solving an independent assignment (or equivalently, weighted matroid-
intersection) problem [6], [21]. This is an obvious adaptation of the result of [17],
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in which the maximum degree, instead of the minimum order in (14), of kth order
minors is investigated.

We associate with D(s) QD(S) + TD(S) a bipartite graph G G(D) (V, E)
having vertex bipartition V V+ U V- with

V+ RT (2 RQ kJ CQ, V-=RUC,

where RT and RQ are disjoint copies of R Row(D), and CQ is a disjoint copy of
C Col(D). By oQ RUC --. RQ UCQ and 0T R --, RT we will denote the natural
correspondences between the copies. The edge set E is defined by

E {(oQ(i), i) i e R} U {(oQ(j),j) [j e C}
U {(oT(i), i) i e R} U {(oT(i),j)lTij(s 7 O, i e R,j e C},

where Tij(s) means the (i,j) entry of TD(S).
We introduce matroid structures on V+ and V-. First define

Z:- {(I, J) IQD[I, J] is nonsingular, I c_ R, J c_ C},
/2Q {(Q(I), oQ(J)) (I, J) e

and then consider two families of subsets of V+ and V-, respectively, defined as

+ {u+ c_ v+ (a u+,c u+) e c, Iu+l IRI + k},
; {U- c_ V- U-

_
R, IU-I IRI + k}.

These two families define matroids on V+ and V-, respectively. To be more precise,

Bk+ forms the base family of a matroid of rank JR[ + k which is the direct sum of a
linear matroid of rank IR[ representable over K and a uniform matroid of rank k; and

B- forms the base family of another matroid of rank IR[ + k which is the direct sum
of a uniform matroid of rank k and a free matroid of rank [R[.

A matching M in G is called an independent assignment if O+M E B+k and
O-M B, where 0+M (respectively, 0-M) denotes the set of end vertices of M in
V+ (respectively, V-).

In addition, we will introduce a weight function E -- Z with reference to the
degrees of the entries of QD (s) and TD (s). Using the numbers ri and cj in (11), we
define, for e E,

(43) (e) ord Tij(s)
0

if e ( (i),i),
if e=(gac(j),j),
if e (o (i), j),
if e (T(i),i),

iR,
jeC,

R, j C,
iER,

where ord Tij(s) denotes the order of Tij(s), i.e., the minimum degree of a nonvanish-
ing term in Tij (s).

We now give a combinatorial characterization of Pk in terms of an independent
assignment problem.

THEOREM 4.1. The degree of the kth determinantal divisor dk(s) (for k <_ r- 1)
is given by

pk nn M) + ri
iR

for k 1, r 1,
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where the minimum on the right-hand side is taken over all independent assignments
M in G(D) with matroids defined by B+ and B-.

Proof. It follows from the result of [17] that the right-hand side above is equal to
the right-hand side of (14) in Theorem 3.1. D

Now we describe an efficient algorithm for computing the rth determinantal di-
visor dr(s) of D(s) given in Theorem 3.2. From the argument in 3.2 the following
procedure suggests itself.

1. Find the partition {Co; C1,.’., Cb; C} of Col(D) in the CCF of the aug-
mented matrix D of (16) associated with D(s) (by the algorithm of [10],
[16]).

2. Find the lower-triangular matrix L over K with reference to the ordering (35)
(by means of a variant of Gaussian elimination described in 3.2).

3. Compute the diagonal blocks Dk D[R, C] =/3[R, C] (k 0, 1,..., b, )
of the CCF of D (according to Lemma 3.1).

4. Compute p0 and P7 in Lemma 3.2 (by applying Theorem 4.1) and set

+

Then

b

dr(s) r" sp H det Dt(s; 1)
/=1

(cf. (lS)).
The combinatorial characterizations established in Theorem 4.1 and the procedure
above provide us with an efficient and practical way of computing the Smith form of
D(s) by means of well-established algorithms for the independent assignment problem.
See also [3] for a recently developed faster algorithm for this problem.

Note also that deg dr(s) can be determined from Theorem 3.2 by further comput-
ing deg det Dk for k 1,-.., b by the algorithm of [9], [10], and [17].

5. Conclusion. In this paper we have revealed the simple structure of the Smith
normal form of a "structured" polynomial matrix. The proposed algorithm for com-
puting the Smith form gives an alternative way of testing for the structural control-
lability of a control system (1) if it is applied to D(s) (A- sF B), as already
mentioned in the Introduction. The result obtained in this paper will find applications
to many other control-theoretic problems. For example, it reveals some nice prop-
erties of the Smith-McMillan form of the transfer matrix of a structured descriptor
system.

Acknowledgments. The author thanks Professor S. Shin of the University of
Tsukuba for indicating relevant literature and A. Sugimoto for pointing out flaws in
an earlier version of this paper.
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MINIMAX POLYNOMIAL PRECONDITIONING
FOR HERMITIAN LINEAR SYSTEMS*

STEVEN F. ASHBYt

Abstract. This paper explores the use of polynomial preconditioning for Hermitian positive
definite and indefinite linear systems Ax b. Unlike preconditioners based on incomplete factor-
izations, polynomial preconditioners are easy to employ and well suited to vector and/or parallel
architectures. It is shown that any polynomial iterative method may be used to define a precondi-
tioning polynomial, and that the optimum polynomial preconditioner is obtained from a minimax
approximation problem. A variety of preconditioning polynomials are then surveyed, including the
Chebyshev, de Boor and Rice, Grcar, and bilevel polynomials. Adaptive procedures for each of these
polynomials are also discussed, and it is shown that the new bilevel polynomial is particularly well
suited for use in adaptive CG algorithms.

Key words, conjugate gradient methods, polynomial preconditioning, minimax approximation,
adaptive procedure
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1. Introduction. This paper surveys recent and ongoing research in polynomial
preconditioning for Hermitian linear systems Ax b. Such systems arise in many sci-
entific applications. For example, the matrices resulting from finite difference and
finite element methods are often Hermitian positive definite (hpd), whereas the ma-
trices arising in the numerical solution of Stokes flow and constrained minimization
problems are typically Hermitian indefinite (hid). Since these matrices are usually
large and sparse, an iterative method is required. If A is hpd, the classical conjugate
gradient method of Hestenes and Stiefel [26] is applicable. This method, which we call
CGHS, minimizes the A-norm of the error over a Krylov subspace. If A is hid, CGHS
is not applicable, but the conjugate residual method is. This method minimizes the
Euclidean norm of the residual over a Krylov subspace.

Unfortunately, these CG methods may converge slowly if A is ill-conditioned,
in which case a preconditioner is needed. Preconditioners based on incomplete fac-
torizations [10], [20], [30] are particularly popular, and especially effective on scalar
machines. On more advanced vector and vector/parallel machines, however, these
preconditioners usually perform poorly because of their sequential nature. To ob-
tain efficient preconditioned CG methods for these new architectures, we will employ
polynomial preconditioning. That is, we will apply a CG method to

(1.1) C(A)Ax C(A)b

where C(A) is a preconditioning polynomial and C(A) is the associated polynomial
preconditioner. We will assume that C(A) has real coefficients, in which case both
C(A) and C(A)A are Herraitian. The matrix A is assumed to be nonsingular.

Polynomial preconditioning has several advantages. First, it is simple: there
are only two intrinsic operations, matrix-vector multiplication (rnatvec) and vector
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addition (saxpy). The user need only specify the polynomial degree and initialize
a few parameters; the preconditioning may be implemented automatically. There
is no complicated programming as with an incomplete factorization, nor is there
any expensive preprocessing. Since polynomial preconditioning requires only matrix-
vector multiplication, it is ideally suited to "matrix-free" computations [9].

Polynomial preconditioning is also versatile, the key to which is commutativity:
a polynomial in A commutes with A. Moreover, it is possible to choose the polyno-
mial so that the preconditioned matrix, C(A)A, is hpd. In particular, it is possible to
transform an indefinite matrix A into a positive definite C(A)A. This makes practica-
ble several CG methods; see [4], [6], and [7]. Polynomial preconditioning also may be
combined with other preconditionings. For example, if an incomplete factorization is
effective, it can be further accelerated with a polynomial preconditioner. Specifically,
one applies CG to

(1.2) C(M-1A)M-1Ax C(M-IA)M-b
where M represents the incomplete factorization.

The main advantage of polynomial preconditioning is its suitability for vector
and/or parallel architectures. If the matvec is vectorizable, as when A has a regular
sparsity pattern, polynomial preconditioning is effective on vector machines [5], [6],
[16], [27], [28], [31]. In contrast, incomplete factorizations are difficult to vectorize,
especially for the nonexpert. It is also possible to chain the matvecs implicit in the pre-
conditioning, thereby enhancing data locality and reducing memory traffic [12], [13],
[38], [41]. Polynomial preconditioning is also effective on parallel machines [11], [31],
especially those on which inner products are a bottleneck. This is so because polyno-
mial preconditioned CG methods converge in fewer steps than unpreconditioned CG,
and thus compute fewer inner products, albeit at the cost of several matvecs per step
instead of one. However, in many applications the matvec is parallelizable, and so
we can expect an overall reduction in CPU time by substituting matvecs for inner
products on some architectures.

1.1. Purpose of paper. Since the effectiveness of polynomial preconditioning
has been demonstrated in a variety of recent papers [1], [2], [4], [5], [6], [11], [16], [27],
[28], [31], [37], [38], we will not present numerical results. Instead, this paper endeavors
to explain the design of optimum preconditioning polynomials for Hermitian linear
systems. Our main purpose is to survey various minimax preconditioning polynomials,
discuss their relative merits, and describe an adaptive procedure for each. (See [4]
and [7] for a discussion of the many ways in which polynomial preconditioning can
be used in CG methods.) We will first show ( 2) that any residual polynomial,
and hence any polynomial iterative method, may be used to define a preconditioning
polynomial. To obtain an optimum C() we will consider a minimax approximation
problem. The resulting preconditioner is optimum in that it minimizes a bound on the
condition number of the preconditioned matrix C(A)A. In the hpd case ( 3),
is obtained from a scaled and translated Chebyshev polynomial; in the hid case ( 4),
it is obtained from the de Boor and Rice (DR) residual polynomial [15]. We will
also discuss the related Grcar preconditioning polynomial. We then introduce ( 5)
the bilevel polynomial for hid A and contrast it with the DR polynomial. Since each
of these polynomials requires estimates for the extreme eigenvalues of A, adaptive
procedures for dynamically determining them are needed. Adaptive procedures are
described at length in [4]-[6] for the Chebyshev, DR, and Grcar polynomials, and so
we will discuss only their salient features. We then propose an adaptive procedure for
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the bilevel polynomial and discuss its advantages over those for the DR and Grcar
polynomials.

Note that much of this material first appeared in [4].
2. Preconditioning polynomials. In this section we show that any residual

polynomial, and therefore any polynomial iterative method, may be used to define a
preconditioning polynomial C(A). Moreover, we show that the preconditioning may
be effected by executing m steps of the polynomial iterative method. This leads to
an inner/outer formulation for polynomial preconditioned CG methods. To obtain an
optimum preconditioning polynomial we consider a minimax approximation problem;
the polynomial is optimum in that it minimizes a bound on the condition number of
the preconditioned matrix C(A)A. This result is obtained for both Hermitian positive
definite and indefinite matrices A.

2.1. Richardsons method. To illustrate the connection between residual and
preconditioning polynomials we first consider aichardson’s method [3], [15], [23], [29],
[35]. Let x0 be an initial guess vector and let TO, T1, be nonzero iteration parameters.
Richardson’s iteration is defined by

(2.1) rj b- Axj
(2.2) xj+ xj + Tjrj.

In practice, only m iteration parameters are used and the iteration is restarted every
m steps. This yields a cyclic iteration called Richardson’s method, the period of which
is m. Of course, to execute the method one must have the Tj. These parameters may
be obtained from the roots of a residual polynomial, as now shown.

The residual at step m, rm b- Axm, is first expressed in terms of the desired
iteration parameters. Equation (2.2) yields rm (I- Tra-lA)tin-i, and thus

m-1

(:’a) II
j=O

If we introduce the polynomial

m--1

(2.4) Rm(A) H (1 TjA),
j=0

equation (2.3) may be rewritten as

(2.5) rm Rm(A)ro.
Note that Rm (0) 1. Such a polynomial is called a residual polynomial. Any residual
polynomial defines a Richardson method: the T are the reciprocals of the roots of
Rm()). The goal is to find that Rm(A) for which Richardson’s method converges most
rapidly in some sense.

One way to obtain optimum convergence is to make Ilrjll2 as small as possible.
Although the method of conjugate residuals minimizes Ilrjll2 over a Krylov subspace,
it does so by dynamically computing a different residual polynomial at each step.
In the present context, the polynomial is sought a priori. If A is Hermitian, it is
possible to minimize a bound on Ilrmll2/llroll2 after one period. To see this, consider
the Euclidean norm of (2.5); it gives

(2.6) Ilrmll2 < IIRm(A)II2 p(Rm(A))
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where p(G) is the spectral radius of the matrix G. Next let S be a compact set, and
for f a continuous function on S, define

(2.7)

This norm is called the uniform norm; note its dependence on the set S. If the
spectrum of A, denoted a(A), lies in S, then p(Rm(A)) <_ IIRmllS, and (2.6) gives

(2.8)

If IIRmllS < 1, Richardson’s method converges. Moreover, the "smaller" S is, the
more rapid the convergence.

The minimax residual polynomial is defined to be that residual polynomial for
which IIRmllS is minimized. It is the solution of the following minimax approximation
problem:

(2.9) min IIRIIs min max IR(A)I
REarm REarm )S
R(O)--I n(O)--1

where rm {p p is a real polynomial of degree m or less}. In other words, the
minimax residual polynomial is that residual polynomial deviating least from zero on
S. The roots of this polynomial define an optimum Richardson’s method in the sense
that the bound (2.8) is minimized.

2.2. The minimax preconditioning polynomial. We will next show how
one may use the minimax residual polynomial to define an optimum preconditioning
polynomial. Specifically, we will show that the optimum C(A) is derived from the
solution of a constrained minimax approximation problem, the error in which is a
minimax residual polynomial. The derivation will illustrate the connection between
residual and preconditioning polynomials. We begin with first principles.

We wish to chose C to accelerate convergence of the conjugate gradient method.
One way of doing this is to choose C(A) A-I, for example, by choosing C(A) A-1
on some set S D a(A). Since A is Hermitian and nonsingular, we may assume that S
is a subset of the real line that excludes the origin. Adopting the minimax definition
of "..," we shall seek the polynomial that minimizes II1- C(A)Alls. That is, we seek
the best polynomial approximation to 1 from among all polynomials of degree m or
less having a root at zero. If p,(A) C(A)A is this polynomial, the problem may be
recast as a constrained minimax approximation problem:

(2.10) min ]]1 p]Iz.
p Tr

p(0)--0

In other words, we wish to choose p, so that the eigenvalues of the preconditioned
matrix p,(A) are as tightly clustered around 1 as possible. In this way we expect to
accelerate convergence of the CG method. Since pro(A) is the preconditioned matrix,
we call Pm() the preconditioned polynomial.

Note that the error in (2.10), em 1- Pro, is a residual polynomial. Prob-
lems (2.9) and (2.10) are therefore equivalent, and so the minimax preconditioned
polynomial may be obtained from the minimax residual polynomial. The associated
preconditioning polynomial is given by

(2.11) C(A)
1 era(A)

A
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which is indeed a polynomial in A because era(O) 1. It may be shown that this C(A)
is optimum in that it minimizes a bound on the condition number of pro(A); see 3
and 4. It also minimizes [40] the relative error in the related approximation problem
mince,_l [IA-The minimax preconditioning polynomial is attractive for several reasons. First,
its behavior is well understood. For example, the minimax preconditioned polynomial
pro(A) equioscillates about 1 over the set S. This means that the preconditioning
polynomial C(A) is unbiased in its suppression of the error: no portion of the set S
is preferred over another. Second, if a(A) C S, then a(p(A)) C [1- e,l
where em= [[1- Pm[[S. Since em < 1, the minimax preconditioned matrix, pro(A),
is hpdeven if the original matrix A is indefinite. This makes possible a variety of
CG methods [7]. Also note that the spectral condition number of pro(A), (pm(A)),
satisfies

(2.12) a(Pm(A)) < 1 + em

when a(A) C S. This bound yields an estimate of the number of CG steps required
for convergence. One needs approximately

(2.13) ln(/2)
ln(Cf)

steps to reduce the error by an amount 6 [25], where

CV(p (A))
1

+ 1

is the CG convergence factor for the hpd matrix pro(A). If the eigenvalues of p(A)
are uniformly distributed throughout [1- era, 1 + e], then (2.13) is fairly accurate.
For other properties of pro(A), see 3 and 4.

2.3. The need for adaptive procedures. Recall that the uniform norm is
defined with respect to a compact set S, which we have assumed contains the spectrum
of A, a(A). Unfortunately, such a set S is seldom known a priori, and so we need
to determine it dynamically. We will do this by way of an adaptive procedure, which
dynamically determines an S D a(A) by computing eigenvalue estimates for A from
the CG iteration parameters. To make the task a bit easier, we will make some
assumptions about the set S. Since A is Hermitian nonsingular, it is reasonable to
take S to be the union of a finite number of disjoint closed intervals, each excluding
the origin. In particular, if A is hpd, we will assume S [c, d], 0 < c d. If A is
hid, we will assume S [a, b] U [c, d] a b < 0 < c d. These choices for Sare
attractive because only a few extreme eigenvalues of A are needed. Since the interior
eigenvalues of an indefinite matrix are the most difficult to ascertain, we will pay
special attention to the behavior of the DR, Grcar, and bilevel polynomials when b
and/or c is inaccurate.

2.4. Inner/outer iterations. Equation (2.11) may be used to derive a precon-
ditioning polynomial from any residual polynomial. This implies that any polynomial
iterative method may be used to define a preconditioning polynomial. It also suggests
an inner/outer formulation for the implementation of polynomial preconditioned CG
methods: One uses an inner iteration to implement the preconditioning required in
the outer CG iteration.



MINIMAX POLYNOMIAL PRECONDITIONING 771

To elucidate, consider a polynomial iterative method for the linear system A2 v.
Let 2, be the mth iterate and let m v A2, be the corresponding residual. By
definition, these residuals satisfy m Rm(A)o, where Rm is a residual polynomial.
(In general, a polynomial iterative method is defined by a family of residual poly-
nomials, which may depend on the right-hand side vector v.) If we begin with an
initial guess of 20 0, we obtain , R,n(A)v. Next let Pm and C be defined by
Rm(A) I- pro(A)= I- C(A)A. This gives

(2.15)

and

(2.16)

m Rm(A)v (I- C(A)A)v

which implies 5Cm C(A)v. Suppose we now wish to use C(A) as a preconditioner
in a conjugate gradient method. To effect the preconditioning step in this outer
iteration, we must compute w C(A)v for some vector v, usually the residual. If
the polynomial iterative method is independent of the right-hand side vector, as are
Chebyshev and SSOR, this may be done by carrying out m steps of the polynomial
iterative method. The mth inner iterate is the desired preconditioned vector C(A)v.
Note that we need only m-1 matrix-vector multiplications because the corresponding
residual need not be computed. If the polynomial iterative method depends on the
right-hand side vector, as do CG methods, each inner iteration will yield a different
polynomial preconditioner, one that is dependent on the vector being preconditioned.
This may or may not be allowable.

2.5. Other preconditioning polynomials. A simple preconditioning polyno-
mial is based on the Neumann series. Let A M- N and consider

(2.17) A-1 (M N)- (I + G + G2 + G3 +...)M-where G M-N. If p(G) < 1, the series converges. We obtain our approximation
to A- by truncating the Neumann series [2], [11], [16], [28]. The advantage of this
approach is its simplicity: there are no parameters to estimate. Unfortunately, it may
yield a poor preconditioner. For example, one can usually do much better with the
minimax preconditioning polynomial [28].

Although we have chosen to work in the uniform norm, other norms are of interest.
For example, one might consider a weighted least squares norm, which is induced by
the inner product

(2.18)

where w is a nonnegative weight function (not identically equal to zero). The weighted
least squares polynomial is that one minimizing II1- Pllw. Since least squares polyno-
mials are orthogonal, they satisfy a three-term recursion, which permits efficient and
stable computations. Shad [37], [38], [39] has advocated these polynomials, as have
Smolarski and Saylor [42].

Finally, we remark that polynomial preconditioning may be combined with other
preconditionings. For example, if an incomplete factorization is effective, it can be
further accelerated with a polynomial preconditioner. Specifically, one applies the CG
method to

(2.19) C(M-IA)M-Ax C(M-A)M-b
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where M-1 represents the inner preconditioning. Note that ifM and A are Hermitian,
then so is the total preconditioner C(M-IA)M-. Several CG methods are applicable
under certain conditions; see [1], [2], and [7]. Observe that the m-step method of
Adams [1], [2] may be viewed in this light" here M is the SSOR splitting and the
preconditioning step is effected by carrying out rn steps of SSOR.

3. The Chebyshev preconditioning polynomial. In this section we discuss
the Chebyshev preconditioning polynomial for hpd matrices A. Unlike the other
polynomials we will survey, this polynomial is explicitly known: it is obtained from a
shifted and scaled Chebyshev polynomial. We will assume a(A) C S [c, d], where
0 < c _< d are given. Ideally, c Ac nd d Ad, the extreme eigenvlues of A, in
which case the Chebyshev preconditioning polynomial is optimum. Since A and d
are seldom known a priori, we need an adaptive procedure for dynamically determining
them. Manteuffel has devised such a procedure and we will describe it. We remark
that Rutishauser [36] was the first to propose Chebyshev polynomial preconditioning
for the conjugate gradient method; his motive was to mitigate the rounding errors
in CG. We advocate polynomial preconditioning because it is well suited to vector
and/or parallel machines.

Recall that the minimax preconditioned polynomial pro(A) is derived from the
approximation problem (2.10). The solution to this problem is well known for S

where Tin(x) is the ruth Chebyshev polynomial of the first kind. The associated
Chebyshev preconditioning polynomial is given by C() Pm()/. This polynomial
may be evaluated via a three-term recursion, which is computationally ecient and
stable. Thus, to implement the preconditioning, we need only take m steps of the
Chebyshev iteration. Neither the powers of A nor the polynomial coecients are
formed explicitly.

3.1. Some properties. A Chebyshev preconditioned polynomial is illustrated
in Fig. 3.1. Observe that it satisfies the interpolatory constraint, pro(O) O, and
equioscillates about 1 over the interval c,d]. If a(A) C c,d], then a(pm(A)) C
[1 -m, 1 + m], and so (2.12) holds. Moreover, m is minimized (with respect to S)
when c c and d d.

nora (3.1) we find m l-Pms T((d+c)/(d-c)), which is a monoton-
ically increasing function of a d/c. Thus, the optimum Chebyshev preconditioning
polynomial depends only on the condition number of A: if a(A) a(A), then
a(pm(A)) a(pm(A)). This is not true in the indefinite case, where the condition
number is a poor indicator of the CG rate of convergence. The relationship between
the condition numbers (i.e., convergence factors) of hpd A and pro(A) is illustrated
in Figs. 3.2 and 3.3. In the first figure we plot the convergence factor (2.14) of pro(A)
as a function of m for several a(A); in the second figure we plot CE(pm(A)) against
CE(A) for various m. Note that a(pm(A)) may be made as small as desired by taking
m large enough: For any 5 > 1, if

cosh- ((a+(a)-)
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Pro( x

-X
c d

3.1. Chebyshev preconditioned polynomial (m 5) ]or S [1, 20].

then (pm(A)) < 5. Of course, as m increases, each CG iteration becomes more
expensive, requiring m matvecs instead of one. The optimum m is that one for which
the total CPU time required to solve the linear system is minimized. Numerical
experiments [4], [5], [31] suggest that low degree (2-16) preconditioning polynomials
are usually best for hpd A, and that the optimum m tends to increase with t(A).

An attractive feature of the Chebyshev polynomial preconditioner is its optimal-
ity: it minimizes a bound on (pm(A)). This is a consequence of the following.

THEOREM 3.1. A solution to

(3.3) min n  xxes IC()l
c=_, minxes Ic()l

is given by the Chebyshev preconditioning polynomial [5], [27].
If a(A) c S, the ratio in (3.3) gives a bound on the condition number of pro(A).
Moreover, this bound is minimized (with respect to S) when S E(A) [Ac, Adj. A
similar results holds for the de Boor and Rice polynomial of 4.

The discussion and theorem above assume that the smallest and largest eigen-
values of A, Ac and ,d, are known. If one bases the Chebyshev polynomial on any
other endpoints, the resulting preconditioner is not optimum. It is even possible to
choose c and d so that (pm(A)) > (A), thereby slowing convergence. It is therefore
important to have accurate estimates for Ac and Ad. Such estimates may be obtained
from the CG iteration parameters. This is equivalent to dynamically determining
the optimum polynomial preconditioner. The resulting adaptive CG algorithm works
remarkably well in practice in that it quickly and accurately determines Ac and ,kd.
We describe this idea next.
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3.2. An adaptive procedure. In this section we discuss adaptive CG algo-
rithms. Such an algorithm performs a sequence of iterations, each of which uses the
same CG method, but a different preconditioner. Within a given iteration, the CG
method is applied to C(A)Ax C(A)b, where C(A) is the current preconditioning
polynomial. Information from the current iteration is used to obtain a better pre-
conditioner ((A), which is then used in the next iteration. In this way the adaptive
algorithm dynamically determines the optimum polynomial preconditioner for A.

Determining this optimum preconditioner is equivalent to determining a set S
[c, d] that contains the spectrum of A, a(A). Ideally, S E(A) _= [Ac, )d]. Since the
extreme eigenvalues of A are seldom known a priori, S is only an approximation to
E(A). The purpose of the adaptive procedure is to improve this approximation. Since
a detailed discussion and numerical results are given in [4] and [5], we will sketch only
the essential elements.

Given a set S c E(A) and a minimax preconditioning polynomial C(A), the CG
method is applied to C(A)Ax C(A)b. After a prescribed number of steps, say l,
the adaptive procedure is called:

(1) Compute eigenvalue estimates for pro(A) C(A)A.
(2) Extract eigenvalue estimates for A and update S.
(3) Determine the new preconditioning polynomial.
(4) Resume or restart the iteration, whichever is appropriate.

After another l steps, the adaptive procedure is called again, and so on until conver-
gence.

Eigenvalue estimates for Pm (A) are easily obtained from the CG iteration parame-
ters by exploiting the equivalence of the CG and Lanczos algorithms [7], [14], [21], [22].
In particular, after k steps, one may obtain k eigenvalue estimates for pro(A) from a
k k Hermitian tridiagonal matrix of iteration parameters, k. If (it, y) is an eigenpair
for k, then (it, x) is an approximate eigenpair for pro(A), where x PkD-l/2y, Pk
is a matrix whose columns are the B-orthogonal CG direction vectors, and Dk is a
diagonal matrix. See [7] for details. One may show that it E Tl(pm(A)), the convex
hull of a(pm(A)). Moreover, as k increases, it converges to an eigenvalue of pro(A).

After an eigenvalue estimate it for pro(A) is computed, we obtain an eigenvalue
estimate for A by determining the inverse image(s) of it. If it has several inverse
images, it is important to choose one that lies in E(A). Since it E (pm(A)), this
may always be done. Otherwise, the set S might be irrevocably and improperly
expanded, which would slow convergence of subsequent CG iterations.

As shown in Fig. 3.4, this is easy to do when m is odd. Since we wish to expand S,
we may discard any eigenvalue estimate it for p,(A) lying in [1- ,, 1 + e,] because
each of its inverse images lie in S. Thus, suppose there is an eigenvalue estimate

it [1- era, 1 + em]. Since Pro(A) is monotonically increasing for m odd and A S, it
has a unique inverse image, which is our eigenvalue estimate for A. Specifically, if we
compute it1 < 1- era, the left endpoint c is decreased to A (0, c). If we compute
it2 > 1 + era, the right endpoint d is increased to ,2 (d, (:x:)). In this way the set
S is dynamically enlarged until it captures the spectrum of A. Once the new S is
determined, a decision is made whether to resume the outer iteration using the current
polynomial, or to restart using the new polynomial. This decision is based on (2.13)
using the convergence factors for the current and new preconditioning polynomials.

So far we have assumed that m is odd, which is important for two reasons. First,
if m were even, an eigenvalue it < 1 -em would have two inverse images, only one
of which must be an eigenvalue estimate for A. If we choose the wrong one (or take
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FIG. 3.4. The Chebyshev adaptive procedure for hpd A.

both), we might enlarge S beyond E(A). Second, if d is too small, as is usually the
case in the early stages of the adaptive algorithm, then the preconditioned matrix
might be indefinite--which can cause difficulties for many CG methods. By choosing
m odd we avoid both these difficulties. In particular, note that Podd(A) is hpd for any
set S. This makes possible robust adaptive CG algorithms.

3.3. Other adaptive algorithms. The adaptive procedure described above
uses information from only the extreme eigenvalues of pro(A) to update the set S.
Freund [19] has recently proposed approximating the distribution of the eigenvalues
of A by computing all the Lanczos eigenvalue estimates. (Recall that the CG rate of
convergence is determined by the eigenvalue distribution, not the condition number of
A.) He then uses this approximate distribution to obtain a weighted minimax precon-
ditioning polynomial. Preliminary results indicate that the resulting preconditioner
is often superior to the one based on the Chebyshev polynomial. Unfortunately, there
is no guarantee that the preconditioned matrix will be hpd for all S. It is also unclear
whether this idea can be developed into an adaptive algorithm.

The hybrid algorithm of O’Leary [14], [32] is an interesting alternative to the
adaptive algorithms described above. The idea is to iterate with CG, compute es-
timates for Ac and Ad, and then switch to a cheaper Chebyshev iteration based on
these estimates. The initial guess for the Chebyshev iteration is the most recent CG
iterate. The adaptive Chebyshev algorithm of Hageman and Young [25] is yet another
alternative.

4. The DR and Grcar preconditioning polynomials. In this section we
discuss the de Boor and Rice (DR) and Grcar preconditioning polynomials for Her-
mitian indefinite (hid) matrices A. We will now assume a(A) C [a, b] U [c, d], where
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a _< b < 0 < c _< d. Ideally, a Aa, b b, C ’c, and d ,d, the four extreme
eigenvalues of A. As we will see, the dynamic determination of these eigenvalues is
much more difficult than in the hpd case. In particular, we must contend with the
problem of ambiguity. An adaptive procedure for this case has been proposed in [6];
we will outline it below.

Once again consider the minimax approximation problem (2.10), which seeks to
cluster the eigenvalues of pro(A) around 1. De Boor and Rice [15] were the first to
study this problem for S [a, b] U [c, d], but they were interested in using the roots
of the related residual polynomial to define an optimum Richardson’s method (recall

2). We use the polynomial Pm to define an optimum polynomial preconditioner
C(A) for conjugate gradient methods.

4.1. Behavior of the DR polynomial. When d- c b- a, the DR minimax
polynomial is obtained from a Chebyshev polynomial [29]"

1-
Tk(q2(O))

where k [m/2J and

(4.2) q2()- 1 /
ad bc

maps both intervals of S to [-1, 1], each one monotonically. Note that Pm has even
degree. Thus, for equal length intervals, the DR polynomial of odd degree has leading
coefficient zero, which cannot happen in the hpd case. If we fix $1 [a, b] and let
$2 [c, d] move away from the origin, we find that em decreases. In particular,

+
In practice, the intervals of S seldom have the same length, in which case the

DR polynomial is not explicitly known. However, by simply extending an endpoint
until the two new intervals have the same length, one may use (4.1). Unfortunately,
this idea has a serious drawback. If the two intervals of S differ greatly in length, the
polynomial based on the extended interval pair will yield an inferior preconditioner.
For this reason we seek the DR preconditioned polynomial for S consisting of two
intervals of unequal length.

De Boor and Rice found this polynomial as the solution of an extremal prob-
lem [15]. One may also use the Grcar characterization theorem (GCT) [23]. This
result, which generalizes the well-known theorem of Chebyshev, characterizes the
equioscillation property of the error in constrained (interpolatory) minimax approxi-
mation. (Although the GCT may be used to characterize preconditioned polynomials
for any number of disjoint intervals, we consider just two intervals to facilitate the
development of adaptive procedures.) In general, there is no explicit formula for the
DR polynomial, but it may be found, for example, by a Remez algorithm. Rather
than compute the polynomial coefficients with respect to the usual power represen-
tation, it is better to express the DR polynomial in terms of Chebyshev polynomials.
One may then use Clenshaw’s rule to stably and efficiently evaluate the polynomial.
The powers of A are not computed. See [4] for a discussion of the Remez algorithm
in this context.

The GCT may be used to show that the behavior of the DR polynomial illustrated
in Fig. 4.1 is typical. Note that the polynomial equioscillates about 1 over [a, b], satis-
fies the interpolatory constraint by passing through the origin, and then equioscillates
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FIG. 4.1. DR preconditioned polynomial (m S) for S [-10,-2] U [7, 13.2].

about 1 over [c, d]. The relative minimum between b and c is a consequence of having
disjoint intervals. There also may be an outside extremum, depending on the inter-
val pair. For example, in Fig. 4.1 there is a relative maximum to the right of d. If
d- c- b- a, this "outside" extremum would be inside S. Finally, we note that the
same polynomial can be the minimax polynomial for more than one set S, something
that cannot happen in the hpd case for m > 1. See [4] for a detailed characterization.

4.2. Some properties. If a(A) c S, then a(pm(A)) C [1 era, 1 + em], where
m < 1 for m > 1 [15]. In other words, we have transformed the Hermitian indefinite
matrix A into an hpd pro(A). This makes possible several CG methods [6]. As with
the Chebyshev polynomial, em is minimized (with respect to S) when S E(A)
[Aa, Ab] U [Ac, Ad]. Since p,(A)is hpd, (2.12)and (2.13) hold. Unfortunately, there
is no explicit formula for e,, and so it is impossible to accurately predict how many
CG steps are needed for convergence. (To determine era, one must first determine
the polynomial.) It is possible, however, to obtain a crude estimate of the number of
CG steps required for convergence by using (4.1) to bound era. We remark that one
can also use this bound to estimate the rate of convergence for the unpreconditioned
conjugate residual (CR) method.

Since em is a nonincreasing function of m, we can make the condition number of
pro(A) as small as desired by making m large enough. Unlike the hpd case, however, m
does not depend solely on the condition number of A. We might have (A1) (A2),
and yet (pm(A)) (pm(A2)). What matters is the relative lengths of the intervals,
as well as their location relative to the origin. This is not completely unexpected
because (A) is a poor indicator of the CR rate of convergence for hid matrices. One
may show that (pm(A))

_
t(A2) for m > 1, and so a polynomial preconditioned CG
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method will converge faster than CGHS applied to the normal equations. In general,
high degree (20-50) polynomials are best for hid A [4], [6]. This is in contrast to the
hpd case, where low degree polynomials are usually best.

The DR preconditioning polynomial enjoys an optimality property similar to that
of the Chebyshev polynomial, but with a subtle difference.

THEOREM 4.1. A solution to

maxes C(A)A(4.3) min
cem- mines C(A)A

c()>0,

is given by the DR preconditioning polynomial [6].
In other words, the DR preconditioning polynomial minimizes a bound on (pm(A))
among those polynomials for which pro(A) is hpd. We must impose this condition
because the intervals are disjoint. If one simply seeks to minimize (Pm(A)), one would
not necessarily obtain the DR polynomial. We note that t(pm(A)) is minimized with
respect to S when S E(A).

4.3. The Grcar preconditioning polynomial. In this section we consider
the Grcar preconditioned polynomial. It is obtained from the following minimax
approximation problem:

(4.4) min Ill -plls.
PEm
(o)=o
pl(0)--0

By adding the second constraint, pP(0) 0, we may devise CG methods that minimize
the Euclidean norm of the true error without resorting to some form of the normal
equations [7]. The implication of this added constraint on the behavior of the Grcar
polynomial is even more important, as we shall see.

One may again use the GCT to characterize the behavior of the Grcar precondi-
tioned polynomial, which is illustrated in Fig. 4.2. The polynomial, pm(i) C(A)A
F(A)2, equioscillates about 1 over [a,b], has a double root at the origin, and then
equioscillates about 1 over [c, d]. In general, there is a relative maximum between the
intervals, which is a consequence of the double root. As with the DR polynomial,
there may be an outside extremum, depending on the interval pair. We note that
the DR and Grcar polynomials behave similarly when b -c. To understand why,
consider Figs. 4.1 and 4.2. As c -b, the DR relative minimum moves toward the
origin, and so the DR polynomial begins to look like the Grcar polynomial. Mean-
while, the Grcar relative maximum moves into S, and so the Grcar polynomial begins
to look like the DR polynomial. When a -d and b -c, the two polynomials
coincide. See Table 4.1.

Although motivated by the desire for a specific CG method, the real advantage
of the Grcar polynomial is its utility for robust adaptive CG algorithms. During the
early stages of an adaptive algorithm, estimates for the extreme eigenvalues are likely
to be poor; the inner endpoints are especially difficult to ascertain. Because of this,
the DR preconditioned matrix might be indefinite, which is a problem for many CG
methods. The Grcar preconditioned matrix, on the other hand, is hpd for any b and
c, assuming a a and d )d (see below). This makes possible robust adaptive CG
algorithms.

Of course, there is a drawback to the Grcar polynomial: In general, it is a poorer
preconditioner than the DR polynomial because it has larger oscillations, a result of
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FIG. 4.2. Grcar preconditioned polynomial (m 8) for S [-7,-2] U [6, 9.2].

TABLE 4.1
DR versus Grcar: c--b, d increasing.

m 14 S [a,b] U [c,d]
a b c d

-10.0 -1.0 1.0 2.0
-10.0 -1.0 1.0 5.0
-10.0 -1.0 1.0 10.0
-10.0 -1.0 1.0 100.0
-10.0 -1.0 1.0 1000.0
-10.0 -1.0 1.0 10000.0

Norm of residual poly
DR

0.1037e/00
0.3082e/00
0.4630e+00
0.9245e+00
0.9923e+00
0.9999e/00

Grcar
0.1301e/00
0.3214e/00
0.4630e/00
0.9270e/00
0.9926e/00
0.9999e/00

Convergence factor
DR Grcar

0.5200e-01
0.1579e/00
0.2454e/00
0.6693e/00
0.8832e/00
0.9877e/00

0.6534e-01
0.1651e/00
0.2454e/00
0.6741e/00
0.8852e/00
0.9877e/00

adding the second constraint. See Table 4.2. Note that the superiority of the DR
polynomial increases as c moves away from -b. (We remark that the one interval
Grcar polynomial [4] has little merit compared to the Chebyshev polynomial.)

4.4. An adaptive procedure. The task of dynamically determining S for hid
A is more difficult because there are four extreme eigenvalues to estimate: Aa, Ab,
Ac, and Ad. Nonetheless, the adaptive procedure is basically unchanged: we iterate,
compute eigenvalue estimates for Pro(A), recover eigenvalue estimates for A, update
the set S, and then resume or restart, whichever is appropriate. The difficulty lies
in recovering estimates for the extreme eigenvalues of A from those for pro(A). Since
the adaptive procedures for the DR and Grcar polynomials are essentially the same,
we shall focus on the former.

As before, let # be an eigenvalue estimate for pro(A). We wish to determine
an inverse image E E(A), which is possible because it E (pm(A)). Since it
[1-em, 1+em] has an inverse image in the currently known set S, we cannot confidently
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TABLE 4.2
DR versus Grcar: c moving away from -b.

m--14 S ---[a, Ib] U C, d]
a b c d

-10.0 -1.0 1.0 105.0
-10.0 -1.0 1.5 105.5
-10.0 -1.0 2.0 106.0
-10.0 -1.0 5.0 109.0
-10.0 -1.0 10.0 114.0
-10.0 -1.0 100.0 204.0

Norm of residual poly
DR

0.9303e+00
0.8986e+00
0.8686e+00
0.7157e/00
0.5445e/00
0.1768e/00

Grcar
0.9325e+00
0.9283e/00
0.9288e/00
0.9317e/00
0.9357e/00
0.7595e+00

Convergence factor
DR Grcar

0.6806e/00
0.6245e/00
0.5808e/00
0.4214e/00
0.2961e+00
0.8912e-01

0.6852e+00
0.6767e/00
0.6777e/00
0.6834e+00
0.6917e/00
0.4602e+00

expand S, and so we will assume # [1 era, 1 + m]. Depending on the parity of m
and the nature of the outside extremum, there may be as many as five inverse images,
only one of which is necessarily an eigenvalue estimate for A. We will now briefly
describe an adaptive procedure for resolving this ambiguity. This description, which
is culled from [6], is given here so that the reader may better understand the adaptive
procedure proposed in the next section for the bilevel polynomial.

The essence of the adaptive procedure is the extraction of eigenvalue estimates
for A from those for p,(A). To simplify this task, we will assume a Aa and d Ad.
That is, we will assume that the algebraically smallest and largest eigenvalues of A are
known. This is not unreasonable since these are the easiest to estimate, for example,
via the power method, Gershgorin’s theorem, or conjugate residuals. An eigenvalue
estimate # for pro(A) now has at most two inverse images of interest.

To see how we might choose between these two inverse images, consider Fig. 4.3.
First notice that # < 1-m because a(A) C [a,d]. If#-- #1 < 0, there are two
inverse images of interest, 1 < A2, both of which lie in (0, c). To guarantee that the
new set S lies in E(A), we will decrease c to 2. If the eigenvalue of A is nearer A1,
subsequent calls to the adaptive procedure will converge to it. Next suppose # 0.
There is a single inverse image in (0, c), and this is our eigenvalue estimate for A.
Finally, suppose # #2 E (0, 1- era). There are again two inverse images of interest,, and Ap, but now one is negative and the other is positive.

A heuristic scheme for choosing the proper inverse image in this case is given
in [6]. The basic idea is this: We find an approximate eigenvector for A, calculate
the corresponding Rayleigh quotient, compute an error bound for this approximate
eigenpair, and then use this bound to determine which inner endpoint to move, and by
how much. An approximate eigenvector x for pm(A) is easily obtained from the CG
iteration parameters; recall 3.2. This vector x is either an approximate eigenvector
of A, or the linear combination of two approximate eigenvectors, the eigenvalues of
which have opposite sign. Once x and its corresponding Rayleigh quotient, At, are
determined, we may calculate an interval known to contain a true eigenvalue of A,

(4.5) IA - -< IIAx- _=
I1 11 .

To be specific in the sequel, we will assume A > 0. If [A 5, A + 5] C (0, c), c may
be decreased to A + 5, and the new set is S [a, b] U [A + 5, d] C E(A). But suppose
Ar- 5 <_ 0 or Ar + 5 >_ c. In neither case may we confidently expand S, so the current
CG iteration is resumed. If subsequent calls to the adaptive procedure continue to
find #, but fail to expand S, we will take S [a, An] U [Ap, d].
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FIG. 4.3. The DR adaptive procedure for hid A.

This heuristic is deficient in several respects. First, to compute x PkDl/2y,
we must store several past CG direction vectors. If storage is limited, only a few
may be kept, which may impair the accuracy of # and x. Second, the calculation
of 5 requires one A-matvec, one saxpy, and one norm computation. This expense is
nontrivial. It is also possible to update S incorrectly. In the next section we will see
how the bilevel polynomial leads to an adaptive procedure that avoids the first two
problems.

Finally, a few words on an adaptive procedure for the Grcar polynomial. The
situation is similar to that for the DR polynomial. Once again, the main difficulty is
with an eigenvalue estimate # for pro(A) that lies in (0, 1 -e), in which case there are
two inverse images of opposite sign. The above strategy may be used to resolve this
ambiguity. The case # > 1 + e is analogous to the case # < 0 for the DR polynomial.

5. The bilevel preconditioning polynomial. In this section we introduce the
bilevel preconditioning polynomial for hid A. This polynomial, which leads to a new
class of preconditioners for Hermitian indefinite matrices, is fundamentally different
from those considered thus far. We have heretofore chosen the preconditioning poly-
nomial C(A) so that the eigenvalues of the preconditioned matrix are clustered around
1. In the case of the DR polynomial, this means transforming an indefinite matrix A
into an hpd Pm (A). Let us now take a different approach: Instead of forcing the pre-
conditioned matrix to be hpd, we will allow it to be indefinite, but choose C(A) so that
the eigenvalues of pro(A) are clustered. For example, we might choose C() so that
the negative eigenvalues of A are clustered around -1 and the positive eigenvalues of
A are clustered around /1.

This idea, which is due to Freund [17] and Grcar [24], is motivated by the following
well-known property of conjugate gradient methods: they converge in at most k steps,



MINIMAX POLYNOMIAL PRECONDITIONING 783

where k is the number of distinct eigenvalues of the preconditioned matrix. By clus-
tering the eigenvalues of pro(A) around -1 and +1, we hope to speed the convergence
of several CG methods. A numerical study of bilevel polynomial preconditioned CG
methods is planned. In this paper we wish only to introduce the polynomial, discuss
its essential features, and mention some important variants. We will also propose an
adaptive procedure for the bilevel polynomial and show that it has several advantages
over those for the DR and Grcar polynomials.

5.1. The approximation problem. We will again assume a(A) C S [a, b] U
[c, d], a _< b < 0 < c < d. The bilevel polynomial is obtained from the following
minimax approximation problem:

(5.1) min IIf-Plls
pEr
p(O)=O

where

(5.2) f(A) { -1 if A e [a,b],
+1 if A E [c,d].

Unlike our previous approximation problems, the error in (5.1) is not a residual poly-
nomial.

We may use the GCT to characterize the equioscillation property of the error
in (5.1), which allows us to characterize the behavior of the bilevel preconditioned
polynomial. The polynomial in Fig. 5.1 is typical. It equioscillates about -1 over
$1 [a, b], passes through the origin, and then equioscillates about 1 over $2 [c, d].
As with the DR and Grcar polynomials, there may be an outside extremum, depending
on the interval pair. There is also at most one extremum in [b, c]. If this extremum
is positive, it is a relative maximum; if it is negative, it is a relative minimum. Thus,
any # E [-1 + era, 1- ,] has a unique inverse image in (b,c), which is important in
the adaptive procedure described below.

If a(A)C S, then a(pm(A))C I-i-era,-1 +em]t2[1--em, 1 +em]. If em is small,
the eigenvalues of pro(A) are tightly clustered, and the CG method will converge
rapidly. Although we can make em as small as desired by taking m large enough, the
cost per CG step increases with m. The optimum value of m is likely to depend not
only on the particular problem, but also on the computer architecture (cf. [6], [8]).

If m _> 1, there is no clustering of eigenvalues, and Pm(A) might even be singular.
Fortunately, it is easy to show that

(5.3) e, < el
p v

<1
p+v

where v min{Ibl, c} and p- max{lal, d}. This follows from the next lemma.
LEMMA 5.1. The linear bilevel polynomial.for [a, b] U [c, d] is p() 2A/(p + v).

Combining this with our earlier characterization of the bilevel polynomial gives the
following result.

THEOREM 5.2. Let Pro(A) be the solution to (5.1). Then Pm() < 0 for [a, O)
and Pm() > 0 for e (0, d].
Although the bilevel polynomial preconditioned matrix pro(A) is hid, Theorem 5.2
implies that C(A) is hpd when a(A) C [a,d]. This observation, which is due to
Otto [33], means that the preconditioned conjugate residual method is applicable [7].
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p (X)

FIG. 5.1. Bilevel preconditioned polynomial (m 12) for S [a, b] U [c, d].

The DR preconditioning polynomial is optimum in the sense of minimizing a
bound on the condition number of the preconditioned matrix, which is required to be
hpd. It is unclear whether a similar result holds for the bilevel polynomial. To obtain
an optimum preconditioning polynomial for indefinite matrices, Freund has suggested
minimizing the asymptotic rate of convergence [18].

5.2. Comparison with the DR polynomial. It is natural to ask which is
better, the DR or bilevel preconditioning polynomial. A precise answer depends on
several factors, including the eigenvalue distribution before and after preconditioning,
the relative location and lengths of $1 and $2, and the degree m. However, we
may perform an a priori analysis based on convergence factors. Recall that the DR
convergence factor is

(5.4) CFdr V- 1 1 + 6m
vf+ 1’ ’= 1-6m

where 25m is the magnitude of the oscillations in the DR preconditioned polynomial.
Since the bilevel polynomial preconditioned matrix is indefinite, (pm(A)) is a poor
indicator of the CG rate of convergence. Notice, however, that the bilevel precon-
ditioning polynomial C(A) maps $1 and $2 onto two new intervals of equal length,
I1 [-1- era,-1 + era] and I2 [1- era, 1 + era]. We may therefore obtain an
estimate of the bilevel convergence factor from (4.1) [4, p. 14]. In particular, we may
show

(5.5) CFbi <_ i- 1 1 +em
+1 V/-m’ -- 1--era
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TABLE 5.1
m and em for which CFbi CFdr., , CF

0.9 0.3929 0.6268
0.99 0.7527 0.8676
0.999 0.9144 0.9562
0.9999 0.9721 0.9860

Thus, the bilevel preconditioning polynomial is better when

<_ V’I + 5m V’I 5m
V/1 + 5m + /1 5m

In Table 5.1 we list a few values of 5m and give the corresponding value of em for which
CFbi CFdr. When the DR preconditioned matrix is well-conditioned, em must be
much smaller than 5m before the bilevel polynomial bests the DR polynomial. As
increases, the bilevel polynomial is more likely to be superior.

The key question is this: for which interval pairs is the bilevel polynomial superior
to the DR polynomial? Numerical experiments in [4] and [6] suggest that the DR
preconditioning polynomial performs best when d- c b- a, in which case the
DR polynomial is obtained from a Chebyshev polynomial; recall (4.1). Preliminary
numerical results suggest that the bilevel polynomial performs best when b ,, -c and
one interval, say $1, is much shorter than the other. In this case the bilevel polynomial
is a Chebyshev polynomial; see below.

5.3. A family of bilevel polynomials. In (5.1) we chose to cluster the negative
eigenvalues of A around -1 and the positive eigenvalues of A around +1. An obvious
generalization is to cluster the negative eigenvalues around some constant "), < 0.
This flexibility might lead to a smaller era, and consequently faster convergence of the
CG method. It also allows one to take into consideration the location of $1 and $2
relative to the origin. For example, Freund [18] has suggested (d + c)/(b + a), the
ratio of the interval midpoints. Alternatively, one might take /= c/b. Unfortunately,
Theorem 5.2 does not necessarily hold for ’ : -1, which is a serious deficiency. An
important open question is this: for which S and , does Theorem 5.2 hold?

When one interval, say S, is much shorter than the other, one may choose "), so
that the bilevel and Chebyshev preconditioned polynomials coincide. To elucidate, let
p,(A) be the Chebyshev preconditioned polynomial for $2. If $1 is sufficiently short,
one may choose , so that I’- Pm())l < em for A e S1. Thus, by the GCT, pro(A) is
the bilevel preconditioned polynomial for S U $2.

The bilevel preconditioning polynomial C(A) maps two intervals of arbitrary
lengths, $1 and $2, into two new intervals of the same length, I and I2. One
might obtain faster convergence of the CG method by preserving the relative in-
terval lengths. For example, Freund has suggested [18] employing the weight function
w (b- a)/(d- c) on $1. This idea leads to a weighted minimax approximation
problem:

(5.7) min ]]w(f P)lls
p_.rm
p(0)=0
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where

(5.8) f(A) ( ’ if A E [a,b], I w if A E [a,b],
1 ifAe[c,d], w(A)= 1 ifAe[c,d].

Note that (2.10) and (5.1) are both instances of (5.7).
By introducing a weight function we change the equioscillation property of the

bilevel preconditioned polynomial. It still equioscillates over $1 and $2, but with
different magnitudes. Specifically, if the polynomial equioscillates about 1 with mag-
nitude era, it equioscillates about , with magnitude were. The Roloff polynomial [35]
is characterized by a similar quasi-equioscillation property. (The Roloff residual poly-
nomial is obtained from (2.9) under the additional constraint that its roots lie in S.)
Note that the analysis of 5.2 no longer applies because I1 and I2 now have different
lengths.

We remark that (5.7) and (5.8) define a family of bilevel polynomials. A particular
member is obtained by specifying , and w. If we minimize (5.7) over all " and
w, we obtain an optimum preconditioner. Alternatively, one might choose " and
w to minimize the asymptotic convergence factor associated with S. An in-depth
theoretical examination of this problem is given in [18].

5.4. An adaptive procedure. In this section we propose an adaptive proce-
dure for bilevel polynomials. Unlike the DR and Grcar adaptive procedures, this
procedure requires little work or storage. The reason: the bilevel polynomial avoids
the ambiguity inherent in the DR and Grcar polynomials. As we will see, this allows
us to fully exploit the orthogonality of the CG direction vectors. Although we will
concentrate on the polynomial obtained from (5.1), our procedure is easily modified
for any bilevel polynomial for which Theorem 5.2 holds.

As with the DR adaptive procedure, the main difficulty is to extract an eigenvalue
estimate A for A from an eigenvalue estimate it for Pm (A). To simplify this task, we
will again assume a Aa and d Ad. As before, we will discard any it I U I2
because it has an inverse image in S. See Fig. 5.1. If it > 1 + era, there is a relative
maximum in (0, c), and we will decrease c to the nearest inverse image of it. (If there
were a relative minimum in (b, 0), we might have it < -1- e,, in which case we
would increase b to the nearest inverse image of it.) This situation is similar to the
case it < 0 in the DR adaptive procedure.

Let us now suppose it [-1 + era, 1- e,]. At first glance the adaptive procedure
appears trivial: simply determine the unique inverse image of it and update the set S.
Unfortunately, since we know only that it E 7-l(pm(A)), this idea is flawed: a positive
(negative) it might be a poor estimate for a negative (positive) eigenvalue of pro(A).
Instead, we shall compute an interval J that contains a true eigenvalue of pro(A).
The inverse image of this interval must contain a true eigenvalue of A.

To elaborate, let (it, y) be an eigenpair for the Hermitian tridiagonal matrix

k ( 3.2), and let x PkD/2y be an approximate eigenvector for pro(A). Then
there is a true eigenvalue itt of C(A)A satisfying

(5.9) lit- ittl <
IIC(A)Ax- itxll =_

where B is the hpd inner product matrix defining the polynomial preconditioned CG
method [7]. By exploiting the B-orthogonality of the CG direction vectors, we may
compute the right-hand side of (5.9) without explicitly computing x. This obviates
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the need to store the CG direction vectors, which was a drawback of the DR adaptive
procedure. In particular, we may show that

where y() is the last component of the eigenvector y. We may assume IlYlI2 1, and
so (5.9) becomes

(5.11) lit- ittl

_
lY(k)l

Thus, to determine the interval Jr, lit Y, it + r], we need only compute the last
component of the eigenvector y, which is fairly inexpensive. This is a generalization
of a similar result that holds for the Euclidean (B I) norm; see, e.g., [34, p. 260].

If J C (0, 1-era), c is decreased to the inverse image of it+; if Jr, c (-1-+-m, 0),
b is increased to the inverse image of it- . Otherwise no new spectral information is
available, and we resume the CG iteration using the current polynomial. Since it is
an estimate for an interior eigenvalue of the indefinite matrix pro(A), this is likely to
happen in the early stages of the algorithm.

Although this strategy is similar to the one described in 4, there are important
differences. In the DR adaptive procedure, we cannot exploit the B-orthogonality of
the CG direction vectors via (5.10) because of the ambiguity problem. Instead, we
compute an interval on the horizontal A-axis that is known to contain a true eigenvalue
of A; recall (4.5). This requires the storage of several past CG direction vectors and
nontrivial expense. In the bilevel adaptive procedure, on the other hand, we compute
the interval Jr, on the vertical it-axis, which allows us to exploit the CG orthogonality
properties. Finally, we remark that as a consequence of Theorem 5.2, the bilevel
polynomial is well suited to robust adaptive CG algorithms.

6. Summary. In this paper we have examined the use of polynomial precondi-
tioning for Hermitian matrices. Polynomial preconditioning is simple, versatile, and
effective. If the matrix has a regular sparsity pattern, it is also well suited to vector
and vector/parallel architectures. We have shown that any residual polynomial, and
hence any polynomial iterative method, may be used to define a preconditioning poly-
nomial. If r(A) is the residual polynomial, C(A) (1-r(A))/ is the preconditioning
polynomial. This suggests an inner/outer formulation for polynomial preconditioned
CG methods: one uses an inner iteration to implement the preconditioning required
in the outer CG iteration. We then surveyed the Chebyshev, de Boor and Rice, and
Grcar preconditioning polynomials. In each case the polynomial is obtained from a
minimax approximation problem, the goal of which is to cluster the eigenvalues of the
preconditioned matrix around 1. In general, these polynomials are optimum in that
they minimize a bound on the condition number of the hpd preconditioned matrix.
We also described an adaptive procedure for each of these polynomials. Such a pro-
cedure enables one to dynamically compute the optimum preconditioning polynomial
from the CG iteration parameters.

In the last section we introduced bilevel preconditioning polynomials for Hermi-
tian indefinite matrices. These polynomials result from a radically different approach
to the design of preconditioning polynomials: Instead of forcing the preconditioned
matrix to be hpd, we allow it to be indefinite, but cluster its eigenvalues. The sim-
plest bilevel polynomial is obtained from a minimax problem in which we cluster the
negative eigenvMues of A around -1 and the positive eigenvalues around +1. We
next considered clustering the negative eigenvalues around a constant and using a
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weight function to preserve relative interval lengths. This two-parameter family of
polynomials has been extensively studied by Freund [18]. Finally, we proposed an
adaptive procedure for these bilevel polynomials and discussed its advantages over
those for the DR and Grcar polynomials.
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SOME INEQUALITIES ON THE DECOMPOSABLE NUMERICAL
RADII OF MATRICES *

CHI-KWONG LI

Abstract. Let m and n be positive integers such that 1 _< m <_ n. Denote by nm the set
of all n m complex matrices. For a matrix A E (nn, its ruth decomposable numerical radius is
defined and denoted by

^ x*x=i}rm(A max{I det(X*AX)[ X (C)nxm,

If m 1, it reduces to the classical numerical radius of A, which is denoted by r(A); and rn(A)
[det(A)l. In this note we prove the inequalities

r(A) r(A) >_ r(A)1/2 >_

__
rn_^ (A)/(n-) >_ rn(A)1/n =_ det(A)l/,

and

rm(A >_ Em(al(A),’",an(A)),

where Era(’) denotes the ruth elementary symmetric function, and al(A) >_ >_ an(A) are the
singular values of A. Complete characterizations of the matrices for which any one of the equalities
holds are given.

Key words, decomposable numerical radius, unitary similarity, compound matrix

AMS(MOS) subject classification. 15A60

1. Introduction. Let m and n be positive integers such that 1 <_ m _< n.
Denote by (nm the set of all n m complex matrices. For a matrix A E Can, its
mth decomposable numerical radius (1 <_ m <_ n) is defined and denoted by

r(A) max(I det(X*AX)[ X e enm, X*X Im}.

Let//n be the set of all n n unitary matrices, and let (m,n be the set of all strictly
increasing sequences of m integers chosen from the set {1,.-., n}.

Then one easily verifies that

r(A) max{I det U*AU[w]I U e bl, w e Qm,},

where for any w Q,,, X[w] denotes the principal submatrix of X (n lying in
rows and columns w(1),... ,w(m). If m 1, rm(A) reduces to the classical numerical
radius of A, which is denoted by r(A), and rn(A) -I det(A)l. It is known (e.g., see
[2], [3], [4], [9] and their references) that the classical numerical radius is a norm on

which is not submultiplicative, and is useful in study of various subjects. There
has been a great deal of interest in studying inequalities involving r(-). For example,
it is known (e.g., see [3], [4], [13]) that

(1) p(A) <_ r(A) <_ a (A) <_ 2r(A)

*Received by the editors March 20, 1990; accepted for publication (in revised form) November
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and

nr(A) >_ al (A) +... + an(A),

where p(A) is the spectral radius and O’1 (A) >_ >_ an(A) are the singular values
of A. Moreover, characterizations of the matrices for which any one of the equalities
holds are known. It is worth noting that these inequalities are useful in the study
of other subjects, such as unitarily invariant norms (e.g., see [5]). The decomposable
numerical radius is one of the many interesting generalizations of the classical concept.
For example, another generalization of r(.) is the mth higher numerical radius of A
defined and denoted by

rm(A) max{Itr(X*AX)l X e nm, X*X Im},

and it is known (see [2], [3], [4], [7]) that

1 1
r(A) =_ rl (A) >_ r2(A) _>... _> -rn(A)n -[trn

and for n > m + 1,

(4) (1 + min{m,n m 1} rm+ (A) >_ 1 + rm(A).

As pointed out in [12] (see also [1], [11]), the ruth decomposable numerical radius
can be considered in the context of the mth exterior space/kmn over n, and defined
as

rm(A) max{l(Cm(A)v vll’v is a decomposable unit vector in Am (C)n}
max{I det(Z*AZ)l" X e Cam, det(X*X) 1},

where Cm(A) denote the ruth compound matrix of A (e.g., see [10] for the definition
and properties). This makes the subject more interesting, and in fact, it attracted
the attention of many authors in recent years (e.g., see [1], [6], [8], [11], [14]). Other
interesting inequalities related to the subject include (e.g., see [1], [6], [11])

m

p(C,(A)) <_ rm(A) <_ r(Cm(A)) <_ a(C,(A)) =- H aj(A).
j=l

The conditions on A for which the equalities hold have been obtained. These results
can be viewed as an extension of those concerning the inequalities in (1). In this paper
we generalize inequality (2) to

(6) ()r(A) >_ Em(a(A),...,an(A)),

where Em (’) denotes the mth elementary symmetric function, and obtain the following
analog of (3) for decomposable numerical radii

(7) r(A) r(A) >_ r(A)/ >_ >_ 1/(n-l)rn_(A > rAn(A)lln det(A)ll/n.
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Examples are given to show that there is no hope to obtain inequalities like those in
(4). Moreover, complete characterizations of the matrices for which any one of the
equalities in (6) or (7) holds are obtained.

Note that if A E @nxn has rank smaller than m, then rm(A) rn(A) O.
So we always assume that rank(A) >_ m in our results to avoid trivial consideration.
For A E Cnx, denote by Aj the (i, j) entry and denote by adj(A) the adjoint of A.
In our discussion, we shall frequently use the following proposition whose proof can
be verified readily.

PROPOSITION 1.1. Let Q @nxn be such that

ifi+j =n+ 1,
otherwise.

Then Cn-I(A) (-1)+lQ(adj(A)t)Q. As a result, C,-I(A) is unitarily similar to
adj(A)t, and

A (Cn-1r_l(A r (A)) r(adj(A)).

2. Inequalities relating decomposable numerical radii.
THEOREM 2.1. Let 1 <_ m < n. Suppose A (nn has rank at least m. Then

rm(A)l/" >_ ^ /(.+rm+l(A

The equality holds if and only if there exists X (n(m+l) with X*X Im+l such
that #- (X*AX) is unitary where It r(A) l/m.

Proof. We may assume rank(A) >_ m+ 1. Let X ,(m+l) satisfy X*X Im+l
and r,+(A). Let U E//m+l be such that the matrix U*X*AXU is
in lower triangular form with diagonal entries 1,’", Am+l. Suppose Xk C,m is
obtained from XU by deleting its kth column for k 1,..., m + 1. Then

/2k

m+l

det(X;AXk)] _< r(A).

Thus
m+l

A (A)m U u < rm(A)’+rm+
k--1

If the equality holds, then k rm(A) for k 1,..., m + 1. It follows that [Ak]
It =_ r(A)l/m for k 1,...,m + 1. Let A’= It-I(X*AX). Then 1 det A’] _<
r(A’). Since rnm(A’) <_ r(It-lA) 1, it follows that r(A’) det A’] 1.
By the Corollary in [8], A’ is unitary. Conversely, if there exists X E Cn(m+l)
with X*X Im+ such that It-I(X*AX) is unitary where It rm(A)l/m,
then rm+l(A) >_ {det(X*AX)[ rnm(A)(m+l)/m and hence rm+ (A)1/(,+1)
rnm(A)l/m.

By Theorem 2.1, we have the following corollary (cf. [13, Cor. 1]).
COROLLARY 2.2. Let A (.
(a) IfA is unitary for some , then

r(A) r(A) r(A)l/2 ^ (A)I/(n-l) rn (A)l/n =_ det(A)]l/"rn_

(b) If there exists m with 1 <_ m < n such that rank(A) >_ m and r(A)l/m
rn(A)l/n, then A is unitary for some nonzero .
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It is always the case (e.g., see [1], [6], [11]) that if equality holds for certain
inequalities involving rm(A), then A is unitarily similar to the direct sum of matrices of
smaller sizes. In Theorem 2.1, the matrix X*AX can be regarded as U*AU[1,..., rn+
1] for some U E/gn. One may ask whether we can further prove that if the equality
in Theorem 2.1 holds, then A is unitarily similar to the direct sum of X*AX and a
matrix B ((n--m--1)(n--m--1). The following example shows that there is no hope
to obtain such a result.

Example 2.3. Let 1 <_ m < n- 1 and let A Im ( [_11 _11]( On--m--2. Then (see
[6, Example 2]) 1 rm(A)i/m r+(A)/(m+l), but A is not unitarily similar to
A @ A2 such that A1 (m+)(m+l) with det(A1)l- ^rm+(A).

Note that if A nn has rank m, then r(A) > 0 ^rm+ (A). Even for
nonsingular A, we show that there is no hope to find positive real numbers and
such that Prm+1^(A)v _> rm(A) in the following proposition.

PROPOSITION 2.4. Let 1 <_ m < n. Then for any positive real numbers and ,
^ (A)vthere exists a matrix A Im @ In--, with > 0 such that rm(A) > r,+

Proof. For any positive real numbers r] and , we can find e > 0 small enough
such that 1 > v. It is well known that for a positive-definite hermitian matrix A,
rk^(A) p(Ck(A)), which is the product of the k largest eigenvalues of A. Hence, if

AA Im @ Sin--m, then rm(A) 1 > rm+ (A)u. D

3. Relation with singular values. In this section we study the inequality

(:)rm(A) >_ Em(al(A), an(A)),

and the conditions on those matrices A for which the equality holds. When m n,
the equality holds for any matrix. When m 1, Marcus and Sandy [13] have obtained
the following result.

THEOREM 3.1. Let A nn be a nonzero matrix. Then

nr(A) >_ a (A) +... + an(A).

The equality holds if and only if r(A)-IA is unitarily similar to a direct sum of unit
multiples of 2 2 matrices of the form

with 0 < Idl
_

1, together with a diagonal unitary matrix.
When m---n- 1, we have the following result.
THEOREM 3.2. Let n > 2 and A nn have rank at least n- 1. Then

nr_I(A) >_ En-(a (A),..., an(A)).

The equality holds if and only if any one of the following conditions holds.
(a) r(Cn_I(A))-Cn_I(A) is unitarily similar to a direct sum of unit multiples

of 2 2 matrices of the form

with 0 < Idl < 1, together with a diagonal unitary matrix.
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(b) The matrix A is nonsingular and r(A-1)-IA-1 is unitarily similar to a direct
sum of unit multiples of 2 2 matrices of the form

with 0 < Idl < 1, together with a diagonal unitary matrix.
(c) A is unitarily similar to A’ such that ldet A’[co]l /r,_l(A for all co E

Qn-l,n, and for some positive number , the matrix uA’ is a direct sum of
unit multiples of 2 x 2 matrices of the form

1- Idl e -a 1

with 0 < dl < 1, together with a diagonal unitary matrix.

Proof. Note that A (Cn-1%-1 (A) r (A)) and

En-l(erl(A),"", O-n(A)) O-l(Cn-l(A)) +... + O’n(Cn--1 (A)).

Applying Theorem 3.1 to Cn-1 (A), we get the inequality.
Suppose the equality holds. Then A must be nonsingular, otherwise

nr(Cn-l(A)) > 2r(C_I(A)) > al(Cn-I(A))= E-l(al(A),...,an(A)).

Now the condition (a) follows from Theorem 3.1.
Suppose condition (a) holds. Then, clearly, A is nonsingular. Since C_I(A)

is unitarily similar to adj(A) det(A)A-1, the matrix r(Cn_I(A))-ICn_I(A) is
unitarily similar to r(adj(A))-l(det(A)A-1), which is a unit multiple of r(A-1)-IA-1
as r(adj(A)) r(det(A)A-1) det(A)lr(A-1). Therefore A satisfies (b).

Suppose condition (b) holds and let U e g/n be such that U*(r(A-1)-IA-1)U is
of the form described in (b). Then A’ U*AU will be of the form described in (c).

Suppose condition (c) holds. Then (e.g., see [15])

nr-l(A) E [Cn-I(A’)jJl <- E aj(Cn-l(A’)) En-l(al(A),’" ,an(A)).
j--1 j--1

Thus the equality holds. ]

For 1 < m < n- 1, we have the following.
THEOREM 3.3. Let 1 < m < n-1, and let A nxn have rank at least m. Then

(:)rm(A) > Em(al(A),’" ,crn(A)).

The equality holds if and only ifA is unitary for some nonzero @.
The long technical proof of Theorem 3.3 is postponed until the next section. We

consider two consequences of the theorem in the following.
In [11], Marcus and Andresen attempted to prove the inequality

r&(d) > H aj(d)
j--1
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for 1 < m < n and obtained the result when (m, n) (2, 4). We have the following
corollary, which settles their unsolved case.

COROLLARY 3.4. Let 1 < m < n, and let A E (nn have rank at least m. Then

ra(A) > H aj (d).
j--1

Proof. By Theorems 3.2 and 3.3, we have

rm(A) >_ Em (al (A),..., grn(A)) _> 1-I aj (A).
j--1

Moreover, the first equality holds only if A is nonsingular. Clearly, the second equal-
ity holds if and only if A has rank m. Thus the two equalities cannot hold simul-
taneously. ]

COROLLARY 3.5. Let 1 < m < n- 1, and let A (nn have rank at least m.
Then

(:)r(Cm(A)) >_ Em(al(A)," ,an(A)).

The equality holds if and only ifA is unitary for some nonzero (.

Proof. Since r(Cm(A)) >_ rm(A), the inequality follows from Theorem 3.3. If the
equality holds, then

r(Cm(A)) rm(A) Em(al (A), an(A)).

By Theorem 3.3, A is unitary for some nonzero .
Conversely, if A is unitary for some nonzero , then Cm(A) is a multiple of

a unitary matrix and hence

4. Proof of Theorem 3.3. This section is devoted to proving Theorem 3.3.
We shall always assume that 1 < m < n- 1 and that A nn has rank at least m.

LEMMA 4.1. There exists U bin such that U*AU DH, where D is a diagonal
unitary matrix and H is a positive-semidefinite hermitian matrix with eigenvalues
a(A) >_... >_ an(A).

Proof. Let A VK, where V L/n and K is a positive-semidefinite hermitian
matrix with eigenvalues al(A) >_ >_ an(A). Suppose V UDU* where U b/n
and D is a diagonal unitary matrix. Then U*AU DU*KU satisfies the conditions
of the lemma. F]

LEMMA 4.2. Suppose U Ltn satisfies the conditions of Lemma 4.1. Then

()r(A)>_ ’ det U*AU[w]I=Em(a(A),...,an(A)).

The equality holds if and only if rm(A) det U*AU[w]I for all w e Qm,n.
Proof. Note that

rm(A) >_ ICm(U*AU)I Cm(H)jy
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for j 1,..., (n), and hence

rm (A) >_ ]C,(U*AU)jjl tr Cm(H) Em(al (A),..., an (A)).

Clearly, the equality holds if and only if r(A) det U*AU[oll for all co e

LEMMA 4.3. IfA is unitary for some nonzero E (, then

/r) rm(A) Em(al(A),...,an(A)).

Proof. Suppose A is unitary for some nonzero E ([J. Then mCm(A) is unitary
and hence

E,(al (A),..., an(A))

We divide the proof of the converse of Lemma 4.3 into several lemmas. In the
rest of the section we shall assume that A satisfies (n)rm(A) Em(al(A),’", an(A)).
Furthermore, after applying a suitable unitary similarity transform and multiplying
A by a suitable constant, we assume that A DH such that D is a diagonal unitary
matrix and H is a positive-semidefinite hermitian matrix with eigenvalues al(A) _>

>_ an(A); and det A[w]l r(A) 1 for all w e Qm,n.
LEMMA 4.4. If B is a principal k x k submatrix of A with k > m, then

1= det B[5]l=rm(B)= Em(al(B)," ,ak(B))

for all Qm,k.
Proof. Suppose B A[q,] D[,]H[] where e Qk,n. Then

1 r(A) >_ r(B)_>ldet B[a][ 1

for all 5 Qm,k, and the result follows from Lemma 4.2.
LEMMA 4.5. Suppose P is a permutation matrix with PtDP DoODle..

such that Do and -Do have no common eigenvalues, Di OiIp ( (-Oi)Iq for i
1,..., k, and Di and Dj have no common eigenvalues for 0 <_ i < j <_ k. Then

PtAP Ao @ A1 (R)... (R) Ak

such that Ai and Di have the same size for i 0, 1,.-., k, and Ao is a digonal matrix.

Proof. To prove the lemma, we show that Aij 0 if (i) Dii 7 Djj and Dii --Djy; or (ii) Dii Djj 7 -Dtt for all t, as follows. Let (i, j) satisfy (i) or (ii)
and let B A[] with 7 e Qm+l,, such that i,j e {-/(1),... ,/(m + 1)}. For sim-
plicity, we assume q,(t) t for t 1,..., m + 1, and < j. Then (m + 1)rm(B)
Em(al(B),’",am+l(B)) by Lemma 4.4. Note that Em(al(B),’",a,+l(B))
m+l (Cm(B)) and rm(B) r(C,(B)). It follows that (m + 1)r(Cr(B))t=l t

m+l at(Cm(B)) Also, note that Cm(B)- Cm(D[’l)Cm(H[/]) and Cm(D[/])ttt=l

rt with rm-t+2 det(D[’y])/Dtt for t 1,...,m + 1. By our assumption on

Dii and Djj, we see that (i) ?m-i+2 Tim-j-F2 and ?m-i+2 -m-j+2, or (ii)
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Vm-+2 Win-j+2 -W for all t. As a result, either (i) the (m- j + 2)nd and the
(m- i -t- 2)nd diagonal entries of Cm(B) are neither the same nor the negative to each
other, or (ii) the (m- j + 2)nd and the (m- + 2)nd diagonal entries of Cm(B) are
the same but different from the negative of any other diagonal entry. By Lemma 6
(see also the proof of Lemma 7) in [13], we see that Cm(B) is nonsingular and is the
direct sum of matrices of smaller sizes. In particular, we can find a positive integer p
satisfying m- j + 2 _< p < m- i + 2 such that Cm(B) B1 B2 with BI E (pp.
(Note that B1 and B2 may be the direct sum of matrices of smaller sizes.) Since
B- (det B)-(adj(B))-- (-1)m+2(det B)-(QCm(B)Q) where

{(-1)8 ifs+t=m+2,Qst
0 otherwise.

It follows that B (-1)m+2(det B)(Qt)-l(Vm(B)t)-l(Qt) -1. Since (Cm(B)t)-1
(Bt)- (Bt) -1, one easily checks that B B @ B with B e (pp. Thus
Aj 0.

Note that A A0 A1 @... @ Ak implies H H0 @ H1 (R).-. (R) Hk, accordingly.
We shall prove that H I in order to establish the converse, Lemma 4.3. The proof
will be by induction on m. We first obtain the following two lemmas, which are useful
for the induction step.

LEMMA 4.6. Suppose n m+2. There exists an n n unitary matrix V satisfying
VD- DV such that V*AV is a direct sum of matrices of smaller sizes.

Proof. Suppose A is not the direct sum of matrices of smaller sizes. By Lemma
4.5, we may assume that D OIp ( (-O)In-p for some e with I] 1 and
0 < p < n. For simplicity, we assume that 1. Let A be obtained from A by
deleting its kth row and kth column, where k 1 or n, so that the number of positive
diagonal entries and the number of negative diagonal entries are both nonzero and are
different. For simplicity, we assume k n and the number of positive diagonal entries
of A equals p > n- 1 -p, which is the number of negative diagonal entries of A.
Let D’- D[1,..., n- 1] and H’- HI1,..., n- 1]. Then C,(A’) C,(D’)Cm(g’)
satisfies

(m + 1)r(C,(A’)) a(Cm(A’)) +... + a,+(Cm(A’)).
By Theorem 3.2, A’ is nonsingular. Since Cm(D’) 5I,-l-p (-5)Ip with 5 1 or
-1, and det H’[9/] 1 for all , Qm,m+l, by Lemma 6 (see also the proof of Lemma
7) in [13],

Y ]C,(A’) y, -hip

Let W L/n-p-1 and W2 b/p be such that (W{YW2)ii hi(Y) for i 1,..., n-
p- 1. Then for W W W2 the matrix W*Cm(A)W is unitarily similar to a direct
sum of unit multiples of 2 2 matrices of the form

-d -1

with 0 _< Idl < 1, together with a diagonal unitary matrix. Note that

A’= (-1)’+2(det A’)Q(Cm(A’)t)-Q,

where

{(-1)8

0
ifs+t=m+2,
otherwise.
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If U QWQ E L/n-l, then U U1 U2 with U E b/p and U2 e b/n--p. Moreover,
U*AU is a nonzero multiple of a matrix which is the direct sum of 2 2 matrices of
the form

(1_ ,d,2)_l [-1 d]-3 1

together with a diagonal unitary matrix. By the assumption that p > n- 1 -p > 0,
we see that there is at least one 2 2 block and that the diagonal part is nontrivial.
Let P be a permutation matrix such that

[ B22 B23 ] B’,B PtU*AUP [B] @ -B23 -B22

where BI, B22 > 0. Suppose V UP @ [1]. Then

V*AV= y. Ann’

where X, Y e @n-1. Note that V*AV (V*DV)(V*HV), where V*DV is still in
diagonal form with (V*DV)ll (V*DV)22 1 and (Y*DY)33 -1. We shall prove
that (V*HV)n (Y*gV)nl 0 and hence V*AV [(V*AV)11] ( V*AV[2,..., hi.

Let A"= V*AV, H"= V*HV, and A det H"[4,...,n]. Suppose H[ 0.
Since

1 rm(A) Idet A"[1,4,...,n]l get H"[1,4,..-,n],
the matrix H[1, 4,..., n] is nonsingular and hence is positive definite. Thus the
matrix G H[4, n] is also nonsingular. Let it be the last diagonal entry of G-1.
Then

1 det A"[1, 4,-.., nil det H"[1, 4,..., n] ,(H[I itlH[nl 2)

and
1 det A"[2, 4,..-, nil det H"[2, 4,..-, n] ,(H

Since I /,..11/..221-- 1- Idl 2 for some d e C, we have IHI > IH[ > 0. For e [0, 2r),
let A ZA"Z with

[ a cosZ / sin
sin ] @Im-cos 1

where a and/ satisfy- ’ " ’ "CHln IHlnl and ZH2n [H2nl, respectively. Then Ag is still
the product of a diagonal unitary matrix and a positive-semidefinite matrix. Thus

1 det Ag[1, 4,..., nil A(H[ cos2 + g2 sin2 it(lH[nl cos + IHI sin )2).

Putting r/4 and 3r/4, we see that at least one of H[n or Hn is zero, which
is a contradiction. Thus the assumption of H[n 0 cannot hold and the result
follows.

LEMMA 4.7. Suppose n m + 2 and A A1 (R) A2 such that A2 lpxp with
p > 2. Then A2 satisfies

( P ) / (A2) Ep-2(al (A2), ap(A2))
p-2 rp-2 "’
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Proof. Suppose det All v]. Then ?-1 det A2[]I rp_2A (A2); otherwise
there exists V E L/p such that det U*A2U[1,...,p- 211 > -1 and hence

rm(A) >_ det Alldet U*A2U[1,...,p-211 > 1.

Applying Lemma 4.2 to A2, we get the conclusion.
The next two lemmas take care of the initial cases of the induction steps.
LEMMA 4.8. If n m + 2 with m 2 or 3, then H I.
Proof. By Lemma 4.6, we may assume that A is a direct sum of matrices. First

we assume m 2 and consider two cases.
Case 1. Suppose H is the direct sum of a 1 1 matrix F and another matrix

G. For simplicity, we assume H F @ G. By Lemma 4.7, if A A[2, 3, 4], then
3r(A’) al(A’) a2(A’) a3(A’). By Theorem 3.1, we may assume that A’, and
hence G, is a direct sum of matrices of smaller sizes, and Gll G22 G33 r(A).
Since GiiGjj-IGijl2 r(A) 1 for all 1 _< i < j _< 3, we have
As G is the direct sum of matrices of smaller sizes, we have IG12] IG131 ]G23] 0.
It follows that H Ia.

Case 2. Suppose H is the direct sum of two 2 2 matrices, say H F @ G.
It follows that FGjj r(A) 1 for i,j 1,2. Thus Fll F22 and Gll G22.
Since det F det G 1, we have Fii _> 1 and Gii >_ 1 for i 1, 2. It follows that
Fii=Gii=lfori=l,2, andF12=G12=0.

Now suppose m 3. Again, we consider two cases.
Case 1. Suppose A is the direct sum of a 1 1 matrix A1 and another matrix

A2, say A A1 A2. Let H F @ G accordingly. By Lemma 4.7,

/) r(A2) E2(al(A2),...,a4(A2)).

By the result, when m 2 (proved above), G I for some positive number . Since
det H[] 1 for all , E Q3,5, we conclude that H I.

Case 2. Case 1 does not hold. Then A must be the direct sum of a 2 2 matrix A
and a 3 3 matrix A2, say A A1 (A2. Let D D1 (D2 and H F(R)G accordingly.
By Lemma 4.7, if A’ A[3,4,5], then 3r(A’) al(A’) a2(A’) a3(A’). By
Theorem 3.1, A is unitarily similar to D2G such that G is a direct sum of matrices of
smaller sizes, and G G22 G33 r(A’). Since Fll(GGj -IGjl2) r(A) 1
for all 1 _< i < j _< 3, we have IG21 IG31 IG31. As G’ is the direct sum of
matrices of smaller sizes, we have IG21---IG31- IG31 0. It follows that G’, and
hence G, equals I3, which is a contradiction.

LEMMA 4.9. /f (m, n) (4, 6) and A is a direct sum of two 3 3 matrices, say
A A1 ( A2, then H I.

Proof. Assume A satisfies the hypotheses of the lemma. Let H F @ G and
D O1 02 accordingly. By Lemma 4.7, 3r(A2) al(A2) a2(A2) a3(A2). By
Theorem 3.1, A2 is unitarily similar to D2G such that G is a direct sum of matrices
of smaller sizes, and GI G2 G3 r(A2). Since (det F[1, 2])(GiiGyy -IGiyl2)
r(A) 1 for all 1 <_ < j <_ 3, we have IG21 IG31 IG3 I. As G’ is the direct
sum of matrices of smaller sizes, we have IG21 131- IG31 0. It follows that
G, and hence G, equals I3. By similar arguments, we can show that F I3 and the
result follows.

LEMMA 4.10. If m >_ 2, then H I.
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Proof of Theorem 3.3. To show that H I, it suffices to show that all (m /
2) (m -+- 2) principal submatrices of H equal I,+2. Note that by Lemma 4.4, all
(m + 2) (m / 2) principal submatrices B of A satisfy

1-]det B[i]l rm(B) Em(al(B),"" ,ak(B))

for all ti E Qm,m/2. So we may confine our attention to the case when n m + 2 in
the following. We prove that

ifn=m+2>4 then H:I

by induction on m. If m 2, 3, the statement is true by Lemma 4.8. Now suppose
m > 3 and assume that the statement is true for all lower cases. By Lemma 4.6, we
may assume that A is the direct sum of matrices of smaller sizes, say A1 @ A2 such
that A2 is p p with p _> n p. Let D D @ D2 and H F (R) G accordingly. If
m 4 and both A1 and A2 are 3 3, the result is true by Lemma 4.9. Therefore,
whenm- 4, we may assumep > 3. Ifm > 4, thenp_> (m+2)/2 impliesp > 3.
Thus we may apply Lemma 4.7 and conclude that

p 2 rp-2(A2) Ep-2(a(A2),..., ap(A2)).

Since p- 2 >_ 2, we can apply the induction assumption to A2 and conclude that G is
a scalar matrix. Now let H H’O [Hnn] and A A’@ [Ann] accordingly. By Lemma
4.7 again, we conclude that

r,_ (A’) E,_ (al (A’),..., (Tm+l (A’)).

Applying the induction assumption on Ar, we see that H is a scalar matrix. Conse-
quently, H I.

By Lemmas 4.1, 4.2, 4.3, 4.4, and 4.10, we get the conclusions of Theorem 3.3.
Remark. Our proof of Theorem 3.3 is computational; it would be nice to have a

conceptual proof.
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