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LARGEST SINGULAR VALUE SUBMULTIPLICATIVITY *

CHARLES R. JOHNSONt AND PETER NYLENi

Abstract. A combinatorial technique by which several different products on matrices may each be represented
as a conventional product of transformed matrices is described. When the matrix transformation does not
increase the largest singular value, a submultiplicativity inequality for the product may be deduced. An example
is given of a product that is submultiplicative, but for which there is no such representation in terms of the
ordinary product. The Hadamard product on infinite matrices and a mapping defined on triples of matrices X,
Y, B— (XY) . B are also considered.
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1. Introduction. The primary purpose of this note is to exhibit a simple technique
for deducing some submultiplicativity inequalities for nonstandard products (such as the
Hadamard product) from the corresponding inequality for the usual product. We illustrate
the technique with some examples, including a new inequality (spectral norm submul-
tiplicativity for the “box” product). Although we do not attempt to determine all im-
plications of the technique, it is likely that the idea will be useful in analogous settings.

Let M, ,» denote the set of all n-by-m complex matrices. By a product (on matrices)
we mean a function

(L1.1) oMy XM, > M,

whose value at 4, B € M, X M, 4 is denoted by 4- B. Note that we are making no
assumption of linearity, associativity, or any other properties usually associated with the
term product. We consider several products that can be defined on matrices.

Given 4 € M, and B € M i, the usual product of A = [a;;] and B = [ b;] is denoted
by AB.

Let A € M,,, and B € M, 4. The Kronecker product of A = [a;] and B = [b;],
denoted by 4 ® B, is the member of My, mq defined blockwise by [a;;B].

Let A = [a;] and B = [b;] € M. The Hadamard product of A and B is the matrix
[a;b;], which we denote by 4 - B.

Let n, m, p, g and r be positive integers. Let 4 € My mq and B € Mg .. Partition
A into an n-by-m matrix of blocks whose i, jth block is a p-by-g matrix, 4 = [4;] in
block notation. Partition B as an n-by-m block matrix whose i, jth block is g-by-r, so that
B = [B;]. The box product of A and B is defined by 4 ¢ B = [4;;B;]. When n = m =
1, the box product reduces to the usual product; when p = g = r = 1, the box product
becomes the Hadamard product. The box product has also been considered in [ HMN].

2. The largest singular value. The largest singular value of a matrix A is defined to
be the nonnegative square root of the largest eigenvalue of the matrix 4*4, which we
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denote by a,(A4). Of course, a,(-) restricted to the set of matrices of a particular size is
the spectral norm.

We list here several well-known properties of ¢, that we will need.

Permutation Invariance. Let 4 € M,,;,. Let P and Q be n-by-n and m-by-m per-
mutation matrices, respectively. Then o,(PAQ) = a,(A).

Direct Sum. Let 4 € M, ,, and B€ M, 4. Then

A 0
O'I(AG')B):O']((O B))=max{0'1(A),0'1(B)}.

Submatrix. Let 4 € M,,,, and let B be a matrix obtained from A by deleting some
rows and/or columns. Then o,(B) = ¢,(4).

Submultiplicativity. Let 4 € M,,, and B € M, . Then ¢,(A4B) = 0,(A4)0,(B).

3. Submultiplicativity. Let - be a product as defined in (1.1). We say that - is
submultiplicative with respect to o,( ) if for all 4 € M, and all Be M, ,,

(A B)=0,(A)o(B).

All four products we have described have this property. For the usual product, see
[HJ1, p. 296]. For a treatment of inequalities involving the singular values of the Had-
amard product, including this one, see [ AHJ]. For the Kronecker product the inequality
is an equality (see [ HJ2, Chap. 4]). Submultiplicativity of the box product has also been
independently discovered by others [HMN]. Our purpose here is simply to illustrate a
combinatorial embedding technique that facilitates a unified proof of submultiplicativity
for the latter three products (and others) based on the submultiplicativity of the usual
product. We suspect this approach will be useful elsewhere.

OBSERVATION 3.1. Let - be a product on matrices. Suppose there exist mappings
F and G such that for all 4 and B for which A4- B is defined,

(a) A-B = F(A)G(B),

(b) 01(F(4)) = 0,(4) and ¢,(G(B)) = 01(B).

Then - is submultiplicative with respect to ¢;, since

01(4- B)=0,(F(A)G(B)) = 01(F(A4))01(G(B))=0,(4)0,(B).

Of course, this observation is equally valid for any nonnegative-valued function (in place
of a,(+)) provided it satisfies the submultiplicativity inequality with respect to the usual
product and is defined on the different sizes of matrices appearing in (a) and (b). There
are many candidates for product/function pairs that we might try.

Now we construct mappings F and G that satisfy the hypotheses of Observation 3.1
for the latter three products.

For the Kronecker product, let the sizes n-by-m and p-by-q be given. We consider
the Kronecker product mapping My, X M4 into My, mq. We start with the formula
[HJ2, Chap. 4]

A®B=(A®I1,)(1,®B),

where I, denotes the p-by-p identity matrix and I,, the m-by-m identity matrix. Define
the mappings F and G, respectively, by

F(4)=(4A®I,) and G(B)=(I,®B).
By the direct sum property of o,

01(G(B))= o1(B).
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There exist permutation matrices P and Q such that
P(A®L,)0=1,®4
(see [HJ2, Chap. 4]). Then
o1(F(A4))=0,(1,®4)=0,(4).

For the Hadamard product, let the size n-by-m be given. F will be a mapping from
M, into M, and G a mapping from M, ;, into My, m. For x € C", define D(x) to be
the n-by-n diagonal matrix with the entries of x placed in order on the main diagonal.
Let 4 and B € M,, ,, be given. Denote the columns of 4 and Bby a,, - - - ,anand by, - - -,
b,,, respectively. Define F by

F(4)=[D(a1),D(a2), - - ,D(am)]
and define G by
G(B)=b®b,® ---Db,,.
The usual product of F(A) and G(B) is the Hadamard product 4 - B since
F(A)G(B)=[D(a\)bi,D(az)b,, - -, D(am)bm]
=[a;-by,a,:b,5, -+ ,a,,-b,,]=A-B.
By applying the direct sum and submatrix properties of ¢, we have
01(G(B))=0((B).
There exists an nm-by-nm permutation matrix P such that
FAP=a,®a,® --- Da,,.
Thus, similarly,
o1(F(A))=0,(A4).

Submultiplicativity of ¢;(-) with respect to the Hadamard product was first noted in
[S]. In this case our technique actually exhibits the stronger inequality

a1(4-B)=r(4)c(B),

in which 7;(A4) denotes the largest row length of 4 and ¢, (B) the largest column length
of B. This inequality was noted in [AHJ].

For the box product, let the integers n, m, p, q, and r in the definition of the box
product be given. Let A € Myp mr and B € My, nq. Utilize the same block partitioning for
A =[A;] and B = [By].

We define the mappings F : Mupmr = Mupomr a0d G : Myrmg = Maumr,mq by the
same procedure as that used with the Hadamard product, except instead of placing entries
of 4 and B in specified locations, place the p-by-r blocks of 4 in those locations occupied
by entries of 4 and the r-by-g blocks of B in those locations occupied by entries of B.

An extension of the argument used in the Hadamard product case based on block
multiplication of matrices gives

A®B=F(A4)G(B).

Now, we obtain the bounds on ¢,. Forj€ {1, --+, m}, let B; denote the nr-by-q
submatrix of B in the columns of B indexed by (j — 1)m + 1 through (j — 1)m +
q. Then

G(B)=B,®B,®---®B,,
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from which the inequality
01(G(B))=0(B)

follows. For i € {1, - -, n} let 4; denote the p-by-mr submatrix of 4 consisting of the
rows indexed by (i — 1)n + 1 through (i — 1)n + p. Let P denote the permutation
matrix used at this stage in the Hadamard product argument. The permutation matrix
P ® I, accomplishes the equality

FAY(P®L)=4,®4,® - ®A4,,
from which
0 (F(4))=0,(4)

follows.

We may note that these proofs of submultiplicativity hold for any function defined
on all sizes of matrices that has the permutation invariance, direct sum, submatrix, and
submultiplicativity properties. Besides o,, the norms induced by the /, norm, 1 = p =
o0, have these properties. Of the unitarily invariant norms, only multiples of o,(-),
coy(+), with ¢ = 1, have both the submultiplicativity and direct sum property.

4. A nonexample. In this section, we show that a product having the submultipli-
cativity property need not satisfy the hypotheses of Observation 3.1. Define the product

oM, XM,—>M,

A-W=a c\ (w y\_(aw ay.
b d] \x =z bw 0
We will use the following upper and lower bounds on ¢,. Let B € M, . A lower
bound on ¢,(B) is the maximum of the Euclidean length of the rows and columns of

B. This is a special case of the submatrix property. An upper bound on ¢,(B) is trace
(B*B)!/2. We then may obtain the submultiplicativity inequality

by the following:

ol (A-W)=(law|>+ |ay|*+ |bw|?)'/?
=(law|*+ |ay|*+ [bw|*+ |by|*)'/?
=(lal>+ [b1»)'2(Iw]*+ |y}
=qg(A)o (V).

To show that - does not satisfy the hypotheses of Observation 3.1, we first need
a lemma.

LEMMA 4.1. Let x, y € C* with Euclidean length at most one and suppose that
x'y = 1. Then x = y°, where the superscript c denotes the complex conjugate.

Proof. The proof follows from the well-known characterization of cases of equality
for the Cauchy-Schwarz inequality. )

Now we suppose - has a representation as in the hypotheses of Observation 3.1 and
we derive a contradiction. Denote the rows of F(A4) and the columns of G(B), respec-
tively, by

F(A)=(f,(A)‘)

f(4)
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and

G(B)=[8(B),&(B)].

Denoting the member of M, with a one in the i, j position and zero in all other positions
by Ej;, we have

E\ - E,=E,, E, -E,=E,, Ey - Ey = E.
This implies
H(EW)'g(En)=1, Si(En) g(Ep)=1, S(Eyn) g (Ey)=1.

By applying the lower bound for ¢,(F(E};)) and ¢,(G(Ej)), all these vectors have at
most unit length. By applying Lemma 4.1, we have

N(En) =g (En), S(EN)=g)(E), SH(En) =g(Ey).
Thus,

f(Ex) =g(E).

However, this is a contradiction since it implies that the 2,2 element of E,; - E, is one,
whereas this product is the zero matrix. We conclude that - does not satisfy the hypotheses
of Observation 3.1.

5. Extensions. In this section we show that this approach can be applied to dem-
onstrate the submultiplicativity of the Hadamard product of infinite matrices that rep-
resent operators on the Hilbert sequence space /, and that other inequalities appearing
in the literature can be simply deduced with this method.

Let A = [a;] and B = [b;;] be semi-infinite matrices representing operators in the
Hilbert sequence space /, with respect to the standard orthogonal basis. We may deduce
Hadamard submultiplicativity in this setting by noting that the previous construction of
G and F yield mappings from /, into a countable direct sum of /,, and back again,
respectively. Here we give an explicit construction of infinite matrices F(A4) and G(B)
representing these mappings, such that F(4)G(B) = A - B.

Define the function p: N - N (N = {1, 2, 3, - - - }) by setting p(i) to be the ith
largest prime number. Define functions F and G mapping the set of semi-infinite matrices
into itself by the following: F(A4) = [ fil,

a, ifk=p(r)’ for some reN,
Jie=

0 otherwise,
and G(B) = [gk],

b,; ifk=p(q)’ for some geN,

8kj= .

0  otherwise.
With these definitions of F and G, we continue to have 4 - B = F(A)G(B), o,(A4) =
6,(F(A)), and ¢,(B) Z ¢;(G(B)). Thus, we again have ¢,(4 - B) 2 o,(A4)0,(B).

Let A and B € M, . Let r;(A) denote the ith largest Euclidean length among the

rows of A and c;(A) the ith largest Euclidean column length of 4. Now, let X and Y be
matrices such that 4 = XY In the recent work [AHJ], the family of inequalities

k k
(5.1) 2 0i(4-B)= 2 r(X)c(Y)o(B), k=1,---,n

i=1 i=1
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was proven. We note that the k = 1 case of (5.1) may be demonstrated using the present
methodology.

It is easily verified that for x € C*, y e C™, and B € M, s, (xy*) - B = D(x)BD(y).
Let the matrices X € M,,,,, Y € M, 1, and B € M,, ,, be given. Denote the columns of X
by x;, - - -, X, and the rows of Y by y{, ---, 5. Then

(XY)-B=(x;91)-B+ - +(x,y5)-B
=D(x)BD(y,)+ - -+ +D(x,) BD(y,)

D(y,)
=[D(x1), -+ ,D(x,)1(1,® B)

D(y,)

This is of the form F(X)G(B)H(Y). It is readily seen, using the permutation invari-
ance and direct sum properties of ¢, that ¢,(F(X)) = r(X), ¢;(H(Y)) = ¢;(Y), and
61(G(B)) = o,(B), and thus the inequality is proved by two applications of the sub-
multiplicativity property of o,.

This representation may be further exploited to carry out the first step in the proof
of (5.1), namely, to show that

k k
2. 0i(A-B)=a(B) 2, r(X)c(Y), k=1, ,n.

i=1 i=1
At present we do not know if our method can be used to prove (5.1) directly, or
even the weaker family of inequalities from [HJ3],

k k
E Ui(A°B)§ 2 Gi(A)Ui(B), k= la MY (N

i=1 i=1

However, in sequel to this paper we will show how Observation 3.1 may be modified to
obtain the inequalities

(5.2) P(A4-B)=P(A)P(B)
and
(5.3) D(A®B)=I(A)P(B)

for unitarily invariant norms ®( -) that dominate the spectral norm. Inequalities (5.2)
and (5.3) appear in [HJ3] and [HMN], respectively.
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DETERMINANTS OF HESSENBERG L-MATRICES*

JEFFREY L. STUARTY

Abstract. A determinantal formula for Hessenberg matrices is presented. The formula uses paths in an
associated directed graph. The qualitative properties of Hessenberg matrices are investigated. Necessary and
sufficient conditions are given for when the matrix is an L-matrix, and for when the determinant is sign positive
or sign negative.

Key words. Hessenberg matrix, L-matrix, determinant, qualitative determinant
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1. Introduction. The recent literature contains many papers which relate the sign
patterns of matrices or their inverses to other properties of the matrix including invertibility
[21, [71, [8], stability [4], [5], solvability [2], [6], [8], and determinantal formulae
[1], [9]. We investigate the relationship between the sign pattern of a Hessenberg matrix
and the positivity or negativity of its determinant. For this purpose, we employ a com-
binatorial formula for the determinant of a Hessenberg matrix in terms of products along
certain paths in an associated, directed graph. This formula is used to characterize which
sign patterns for Hessenberg matrices yield sign-positive or sign-negative determinants,
and hence which Hessenberg matrices are L-matrices.

2. Hessenberg matrices. Throughout this paper, .#,(F) will denote the set of all
n X n matrices over the set F, where FisR, Cor {—1,0, 1}.If Aisin .#,({—1,0, 1}),
A will be called a pattern, and the entries of 4 will be represented by the characters “+,”
“—and “0.”

Let A be in 4 ,(C). The matrix 4 = [a;] is called an upper Hessenberg matrix if
a; = 0 whenever i > j + 1. An upper Hessenberg matrix is called unreduced if a; #0
whenever i = j + 1.

Lower Hessenberg matrices and unreduced lower Hessenberg matrices are defined
analogously. Since such matrices are the transposes of upper Hessenberg matrices, since
the determinant is transpose-invariant, and since inversion and transposition are com-
muting operations, we will consider only upper Hessenberg matrices in this paper.

Suppose that A4 is an # X n upper Hessenberg matrix which is not unreduced. That
is, a;+1,; = O for some i. Then A4 partitions into a block upper triangular matrix of the

form
_[ A 4w
0] A,
where A4, is an i X i upper Hessenberg matrix, and where A, is an (n — i) X (n — i) upper
Hessenberg matrix. Consequently, an arbitrary upper Hessenberg matrix can be repre-
sented as a block upper triangular matrix each of whose diagonal blocks is an unreduced
upper Hessenberg matrix. It follows that many formulae which require unreduced Hes-

senberg matrices can be extended to arbitrary upper Hessenberg matrices by applying
the formulae to each of the unreduced, diagonal blocks.

* Received by the editors December 27, 1988; accepted for publication (in revised form) January 4, 1990.
+ Department of Mathematics, University of Southern Mississippi, Hattiesburg, Mississippi 39406
(stuart@usmcp6.bitnet).
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For every real number r, the weak sign function wsgn (r) is defined by
1 ifrz0,

wsen (1= {—1 ifr<0

Observe that for every real number r, wsgn (r) -7 = |r|.

PROPOSITION 1. Let A be in M ,(R). Suppose that A is an upper Hessenberg matrix.
Then there exists a diagonal matrix D with diagonal entries +1 such that DAD ™! is an
upper triangular Hessenberg matrix with the same zero pattern as A, and such that
[DAD ');;—y = |ai—| for 2 =i = n — 1. Furthermore, D can be chosen to be D =
diag (d,, d,, -+, d,) whered, = 1,and d; = d;_,-wsgn (a;;—) for 2 = i = n. In particular,
if A is unreduced, then DAD ™" is unreduced with a positive subdiagonal.

An unreduced, upper Hessenberg matrix with a positive subdiagonal will be called
a Hessenberg matrix in standard form.

3. Sign patterns, sign-positive determinants, and L-matrices. For every real number
r, the sign function sgn (7) is defined by

1 if r>0,
sgn(r)=4 0 ifr=0,
-1 ifr<0.

Let 4 be in 4 ,(R). Define sgn (A4) to be the matrix in .#,({—1, 0, 1}) such that
for each i and j, [sgn (4)]; = sgn (4;;). Let Q(A4) be the subset of .#,(R) given by

Q(A)={B:sgn(4)=sgn (B)}.

Thus for each 4, Q(A) has a canonical representative: sgn (4). The matrix A4 is called
an L-matrix if every matrix in Q(A) is invertible.

If Aisin .4 ,(R), then A is said to have sign-positive determinant if det (B) > 0 for
every matrix B in Q(A). Sign-negative, sign-nonnegative, and sign-nonpositive deter-
minants are similarly defined. Clearly, A4 is an L-matrix if and only if det (B) # O for
every Bin Q(A4).

PROPOSITION 2. Let A be in M ,(R). A is an L-matrix if and only if A has either
sign-positive determinant or sign-negative determinant.

Proof. Assume A is an L-matrix. Suppose that there exist matrices B and B’ in
Q(A) such that det (B) > 0 and det (B') < 0. Since B and B’ have the same sign pattern,
there is a continuous path in R”* from B to B’ that remains in Q(A). Since the map
det (-): R™ — R is continuous, the intermediate value theorem for continuous, real-
valued functions implies there must be a point C on the path at which det (C) = 0, a
contradiction. The converse is clear. O

4. Triangular embeddings and 29(A4). If Bisin #,(C)and 1 = i, j = n, then
B(i| j) will denote the submatrix of 4 obtained from B by deleting row i and column j.
Let A = [a;] be an upper Hessenberg matrix in .#,(C). Then A embeds in an

(n+ 1) X (n+ 1) upper triangular matrix 74, called the triangular embedding of A, as
follows:

1 ay ayp-a,

(l) 0 ay anp .

I,=|. A =]. an-. -
R : - a,
0 00 1 -
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Observe that T(n + 1|1) = A. Let A denote 4 with the indexing inherited from T ,.
Thus the rows of 4 are indexed by {1, 2, ---, n} and the columns by {2, 3, -,
(n+1)}. Thatis,for1 Si=nand 1l <j=n+1,[T4]; = d;.

If A is an upper Hessenberg matrix in .#,(R), let 2% (A) denote the edge-weighted,
loop-free, directed graph on (# + 1) vertices for which sgn (7,) is the adjacency matrix.
That is, 2% (A) has vertex set {1,2,3, -+, n+ 1}, and there is an edge from i to j if
and only if d; # 0 and i < j. If there is an edge from i to j, then it is assigned weight
sgn (d;). (In diagrams, this weight will be denoted with either a “+” or a “—.”)

Example 1. Let A be any matrix for which

+ + +
sgn (A)=|+ + O0].

0o + 0

Then

+ o+ + 4+

0O + + 0

sgn ( TA) = 0 0 + 0 >

0O 0 0 +

and 2% (A) is the graph:
+
+

1 2 3 4

Since the graph 2% (A) will play a crucial role in our results, it is appropriate to
characterize the irreducibility of 4 in terms of this graph rather than in terms of the
standard associated directed graph 4 (A4).

LEMMA 3. Let A be an unreduced, upper Hessenberg matrix. A is irreducible if and
only if for each i with 1 = [ = n — 1, there is an edge in 2%(A) from {1,2, -+, i} to
{i+2,i+3,-,n+1}.

Proof. Since A is unreduced, 4 is irreducible if and only if there is a directed path
in % (A) from 1 to n. Let i be the largest vertex such that there is a directed path in % (A4)
from 1 to i. Since 4 is unreduced, the vertex set & = {1, 2, - - - , i } is strongly connected,
and for all j > i, there can be no edge from a vertex in & to vertex j. Thus, %(A4) is
strongly connected if and only if for each i with = i = n — 1, there is an edge from
{1,2,---,i}to{i+1,i+2,---,n}. Since an edge from « to B in ¥(A) becomes an
edge from ato B + 1 in Y% (A), the result holds. O

5. Paths and path products. Suppose i and j are positive integers with { < j. Let
2 denote the set of all increasing sequences of integers starting with / and ending with
Jj.-If Pe P, Piscalled a path from i to j. If P € &, let | P| denote the number of

elements in P considered as a set, and let P°= {i, i+ 1,i+2,---,j}\P.
Let B = [b,;] be in .4 ,(C) such that b,, # 0 for each r. Let i and j be positive integers
with 1 =i <j = n. Let P in 2, be the sequence {i = iy, i, -**, ijpj = j}. Let

[1» b5} denote the product of all of the terms (b,,) ! such that v is in P. If P® is nonempty,
let [1pc b, denote the product of all of the terms b, ., such that vy is in P¢. If P¢is empty,
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let I1pe b, = 1. Finally, the path product for P, denoted by []p b,g, is the product
biviy iy * * * bipy_ iy -

This notation facilitates the following formula for the entries of the inverse of an
upper triangular matrix (see [3, p. 264]).

THEOREM 4. Let B be in M ,(C). Suppose that B is an invertible, upper triangular
matrix. Then

(bi)™" ifi=],

B,-{ > (—1>'P'+1[Hbaﬂ][nb;;] iri<i.
Peg’ij P P
0 ifi>].

6. Parity, consistency, and full patterns. Let B = [b,,] be in .#,(R). Let i and j be
positive integers with 1 = i <j = n. Let P be in ;. The sign of the path P is defined to
be sgn (I1p b.s). The path Pis called a nonzero path if its sign is nonzero. Then the path
Phas parity if sgn (I1p bag) = (—1)'7', and it has antiparity if sgn (I1p bag) = (—1)!71+ 1,
If all nonzero paths in #22;; have parity, or if all nonzero paths in £2;; have antiparity, we
say all paths from i to j have consistent parity. Let % be the edge-weighted, loop-free
directed graph for which sgn (B) is both the adjacency matrix and the weighting matrix.
The graph % has consistent parity if all paths in % have parity or if all paths in % have
antiparity.

If 4isin . ,({—1, 0, 1}) such that a; = 0 implies i — j > 1, then 4 is called a full
pattern.

LEMMA 5. Let A in M ,({—1, 0, 1}) be a Hessenberg matrix in standard form. If
A is a full pattern, and if all paths from vertex 1 to vertex (n + 1) in 2% (A) have
consistent parity, then 9% (A) has consistent parity.

Proof. Choose i < j. Since A is a full pattern, then every path

P={ij=i, - ,iy=j}
in 2%(A4) extends to a path P* = {1, iy, -+, ip, n + 1} in 2%(A). Now apply the
consistent parity for all paths of the type P*. O
Note that the requirement that 4 be a full pattern cannot be removed. For the

matrix of Example 1, all paths from 1 to 4 in 9% (A4) have consistent parity, but the
paths from 1 to 3 do not.

7. A determinantal formula for Hessenberg matrices. We present a combinatorial
formula for the determinant of a Hessenberg form. While this formula does not provide
an efficient means of computing the determinant since it involves 2"~ ! summands, it is
useful for studying the relationship between the sign pattern of a matrix and the sign of
its determinant.

THEOREM 6. Let A in M ,(C) be an upper Hessenberg matrix. Let A = [a;] be
the matrix obtained from A by indexing the columns of A by the integers 2, 3, - -,
(n+1). Then

det (4)=det (A)=(-1)"*"' ¥ (-1 )'P'[H fia,ﬂ][n d“m]'
PePinyii P P
Proof. Since det (A) is continuous in each of the entries of 4, the case when at least
one subdiagonal entry g, , 1 ;is zero follows by a continuity argument from the case when
all entries a; +,; are nonzero. That is, it suffices to prove the result in the case where 4
is unreduced.
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Let A be unreduced. Embed A in the upper triangular matrix B = T,4. Since 4 is
unreduced, T, is nonsingular. As is well known,

[B™')ins 1 =[det (B)] /(=) * D" det [B(n+1]1)]
rn+1

—1
= H b,','] (_l)n det (A)
Li=l

Now use Theorem 4 to obtain [B™'], 1, and note that for each Pin 2, .,

e

i=1

Finally, 1 and n + 1 are both in P for all Pin £, ., SO

[1b6,,=11d,,. O

It should be noted that if 4 is not unreduced, then det (4) can also be expressed as
the product of the determinants for each of the unreduced Hessenberg diagonal blocks
as discussed in § 2.

8. Sign positivity and sign negativity for det (4). Theorem 6 has, as direct conse-
quences, the following two theorems relating necessary and sufficient conditions for a
qualitatively signed determinant to parity or antiparity in 2% (A). The first result is
immediate.

THEOREM 7. Let A be in M ,(R) be an upper Hessenberg matrix. If there is no path
from1ton+1in 2%9(A), then det (B) = 0 for all B in Q(A).

THEOREM 8. Let A be in M ,(R) and be a Hessenberg matrix in standard form.
Suppose that there is at least one path from 1 ton+ 1 in D%4(A). The conclusion depends
on whether n is even or odd.

Suppose that n is odd. Then det (A) is sign positive if and only if every path from
1ton+ 1in P9 (A) has parity; det (A4) is sign negative if and only if every path from
1ton+ 1in 2%(A) has antiparity.

Suppose that 7 is even. Then det (A) is sign positive if and only if every path from
1ton+ 1in 2% (A) has antiparity; det (A4) is sign negative if and only if every path
from 1 ton + 1 in 2% (A) has parity.

COROLLARY 9. Let A be in M ,(R) and be a Hessenberg matrix in standard form.
The matrix A is an L-matrix if and only if there is at least one path from 1 ton + 1 in
D9 (A), and either every path from 1 to n + 1 in D2%(A) has parity or every path from
lton+1in D%G(A) has antiparity.

Proof of Theorem 8. First we prove that the parity /antiparity conditions are sufficient
to determine the sign of the determinant. In the formula for the determinant given by
Theorem 6, each summand has sign (—1)"*'*1*!-sgn [[]» d,]. If every path P from 1
to 7+ 1 in D% (A) has parity, then the signs of the nonzero summands are (—1)"+ ! 217l =
(—1)"*1!. Ifevery path Pfrom 1 to n + 1 has antiparity, the signs of the nonzero summands
are (—1)"+t2+2IPl = (—1)". Finally, since there is a path from 1 ton + 1 in 29%(A),
there is at least one nonzero summand.

Next we prove that the parity /antiparity conditions are necessary for the sign of the
determinant to be implied by the sign pattern of the matrix. The case for #n odd and all
paths from 1 to n + 1 is proven. The proofs for the remaining cases are analogous.

Suppose that 7 is odd and that det (A4) is sign positive, but that some path P’ from
1ton+ 1in 2%(A) has antiparity. Then sgn [1- d,s = (—1)'*¥'!. Let r be a real
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number with r = 1. Let B, be the matrix in .#,(R) whose entries are defined as follows:
B,j =0if d; = 0; b; = 1 for all i; if d; # 0 and dj; is not on P, let B,’j = dy(r™"); and if
d; is on P’, then let Bij = rdy. Then B, = A, and B, has the same sign pattern as 4 for
allr =z 1.If Pisin P, and P # P/, then [, Ea’,g either is zero or contains at least one
factor of 7. Thus as r becomes arbitrarily large, det (B) is dominated by the term

H da,ﬂ

P’

(_1)n+1+ IP'I[H Baﬂ]=(_1)n+2|1”| +2.r|P'|
Pl

b

which is clearly negative, contradicting the sign positivity of det (A). O
Remark. It can occur that 4 is a Hessenberg matrix in standard form with
det (4) > 0, but det (A4) is not sign positive. For example, let

[1 1 0]
A=11 -1 1,
LO 1 —1]
and let
[ 1 1 0]
B=|1 -1 6
K 1 —1]

Then det (4) = 1> 0, and Bisin Q(A4), butdet(B) = —4 <0.

9. Sign patterns for Hessenberg L-matrices. The following result is immediate.

COROLLARY 10. Let A be a Hessenberg matrix in standard form. Let B be obtained
from A by arbitrarily choosing nonzero entries of A occurring on or above the diagonal,
and replacing those entries with zeros. If det (A) is sign nonnegative (sign nonpositive),
then so is det (B).

By direct observation, it is impossible to choose a nonzero value for the 3,3-entry
of the matrix A4 given in Example 1 in order that the filled in Hessenberg matrix is still
an L-matrix. A partial converse to the preceding corollary is, however, still possible. That
is, there are conditions under which complete fillin preserves sign nonnegativity or sign
nonpositivity of the determinant.

THEOREM 11. Let A be a Hessenberg L-matrix. Suppose that 2% (A) has consistent
parity. Then there is a Hessenberg L-matrix B that is a full pattern such that when a;; #
0, sgn (a;;) = sgn (by).

Proof. Filling in entries of 4 corresponds to adding weighted edges to 2%(A4).
Starting with 2% (A), create a sequence of graphs by adding one edge at a time. When
an edge is added, there are two possible cases: If there is no path in the graph between
the vertices for the edge to be added, assign the weight of the edge arbitrarily; if there is
already a path between the two vertices, weight the edge so as to preserve the consistency
of parity. This can be done since 2% (A4) has consistent parity, and the weighting rule
for added edges guarantees that each subsequent graph has consistent parity. Label the
final graph as 4 *. Then 9* = 9% (B) where B is a full pattern such that the nonzero
entries of 4 have the same sign as the corresponding entries of B. Since % * has consistent
parity, B is an L-matrix. O

THEOREM 12. There are exactly 2" matrices in M ,({—1, 0, 1}) that are Hessenberg
L-matrices in standard form and also full patterns. Exactly half of these have sign-positive
determinant, and the other half have sign-negative determinant.

For n even (n odd), these full patterns are determined from the pattern given below
by first arbitrarily and independently assigning =1 to each of the n — 1 border entries
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denoted by “[1,” and then uniquely determining the entries denoted by “*” by imposing
the requirement that all paths from 1 to n + 1 in 2% (A4) have consistent parity. When
all paths from 1 to # + 1 have parity (antiparity), the determinant is sign negative. When
all paths from 1 to » + 1 have antiparity (parity), the determinant is sign positive:

23 k k+1 n n+1l
* ok * O O O * 1 1
+ * * * * * O 2
0 + .
n even (n=2k) 0o * :
nodd (n=2k-1)}. . ¥ 0 k
R R I TS
0 0 - T 0+ * |

Proof. By Theorem 8, it is necessary and sufficient that all paths from 1 to n + 1
in 2% (A) have consistent parity in order for the matrix to be an L-matrix. By Lemma
5, 2% (A) must have consistent parity if 4 is an L-matrix and a full pattern. By choosing
n even or odd, and by choosing consistent parity to parity or antiparity, all possible cases
are covered. We prove the theorem for n even. The case for n odd is similar.

Choose k so that 2k = n. The proof is by induction on k. The case for k = 1 is
easily checked.

Assume that the result holds for n = 2k. Then n + 2 = 2(k + 1). Choose an n X
n full pattern A4, that is a Hessenberg L-matrix in standard form. The graph 2% (A4,)
can be transformed into the graph for an (n + 2) X (n + 2) full pattern 4, , by adding
two additional vertices and all of the edges arising at or terminating at those two vertices.
Consider the added vertices as being positioned between vertices kand k + 1 of 2% (A4,),
and relabel the vertices as indicated:

1 kK k+1 n+1
2% (A4,)
.. «//TQNT\\» ..
1 k k+1 n+1l
1 k k+1k+2k+3 n+3

By the induction hypothesis, 2% (A,) has consistent parity. (Parity or antiparity is de-
termined by the sign of the edge from 1 to n + 1 in 2% (A4,).) We now add the edges
S0 as to preserve consistent parity. Add the edge 1 — (k + 2). Since it does not lie on a
path from 1 to ((n + 2) + 1), arbitrarily assign it a weight of £1. Similarly, add the edge
(k+ 1) = ((n + 2) + 1), and arbitrarily assign it a weight of =1. (Thus there are 22
assignments for these two edges.) Now for j = k, every edge of the form j — (k + 1) lies
on a path from 1 to ((n + 2) + 1), and thus must be assigned the weight required for
consistent parity. Add these edges to the graph and weight them as required. Similarly,
consistent parity implies that every edge of the form (k + 2) — j with j = k + 3 has its
weight uniquely determined. Add these edges and assign their weights as required. The
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one remaining edge to be added is the edge (k + 1) = (k + 2), which together with the
edges1 = (k+ 1)and (k+ 2) = ((n + 2) + 1), forms a path from 1 to ((n + 2) + 1).
Hence the weight of (k + 1) = (k + 2) is determined by the parity consistency condition.
Since there were 2" choices for the full pattern 4, and since two further arbitrary weight
choices were made, there are 2" 2(n + 2) X (n + 2) full patterns A, . » that satisfy parity
consistency, and hence are Hessenberg L-matrices in standard form. Since exactly half
of these have parity and exactly half have antiparity, exactly half of these have sign
positive determinant. The result holds by induction. O

10. Selected patterns for sign positivity of det (4). In light of Theorem 12, it is
impossible to list all of the full patterns that correspond to Hessenberg L-matrices. Here
we list a few interesting patterns that guarantee sign-positive determinants:

Banded for all n = 2:

+ - + - +
+ + - + -
+ + - +
+ + - +
0 + + -
+  +]
Half-bordered for odd n = 3:
+ + + + + - - - -+
+ - - - - + - - - +
+ - - - + - -+
and ;
+ - - - + - - +
0 + - - 0 + - +
| + -] L +  +]
Fully bordered for even n = 2:
+ + + + + =]
+ - - - -+
+ - - - +
+ - - - +
0 + - - +
+ - +
L + +..

11. Inverse patterns. In [7], Lady and Maybee prove the following theorem on
sign patterns for the inverses of L-matrices.

THEOREM 13. Let A be an irreducible L-matrix with a; + 0 for 1 =i = n. Let
aj' denote the i, j-entry of A™". Then:

(1) Ifa;# 0, sgn (a;) = sgn (a;'); and

(2) Ifa;# 0, then a;;' has a determined sign if and only if every directed path from
jtoiin 4(A) has the same sign.

Two difficulties arise in applying this theorem to Hessenberg L-matrices in standard
form. First, standard form does not require diagonal entries to be nonzero. Second, there
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appears to be no simple relationship between %(A4) and 2% (A), and consequently no
simple relationship between existence of signed cycles in % (A4) and parity consistency
in 2%(A).

The first difficulty can be partially addressed as follows. Suppose that A4 is an irre-
ducible, Hessenberg L-matrix in standard form and that g; = 0. For small positive e,
adding an ¢ multiple of row i + 1 (column i — 1) to row i (column i) yields an invertible
matrix that is an irreducible, Hessenberg matrix in standard form whose sign pattern
differs from A4 only where A4 has zero entries in row i (column {). This new matrix need
not be an L-matrix, however. Alternatively, an L-matrix with a nonzero i,i entry can be
obtained from A via a row or column permutation. In this case, however, the resultant
matrix will be neither irreducible nor a Hessenberg matrix in standard form since it has
a zero on its subdiagonal.

The second issue, that of relating signs of cycles to consistent parity, appears to be
rather difficult. From numerical experiments with randomly generated Hessenberg -
matrices 4 in standard form (n = 8), it appears that the presence of even a few paths
from 1ton+ 1 in 2% (A) is sufficient to control the signs of the lower Hessenberg part
of A7! and to permit all possible signs for the entries of A~ for which j — i > 1. In
closing, we offer the following conjecture.

CONJECTURE. Let 4 be a Hessenberg L-matrix in standard form. If 4 is a full
pattern, and if B is in Q(A4), then the lower Hessenberg portion of sgn (B~!) is the upper
Hessenberg portion of 4, and the remaining entries of B!, which correspond to the
zero entries in 4, can occur with any sign.
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POLE ASSIGNMENT AND ADDITIVE PERTURBATIONS
OF FIXED RANK*
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Abstract. This paper is devoted to solving the general problem of pole assignment, as stated by Rosenbrock
and Hayton [Internat. J. Control, 27 (1978), pp. 837-852], under certain restrictions for uncontrollable
systems. The solution is used to give some results about the changes of the Jordan structure of a matrix subjected
to additive perturbations of fixed rank.
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1. Introduction. The general problem of pole assignment as given by Rosenbrock
and Hayton [8] can be stated in the following general way. Let R be the field of real
numbers, and let R[s] denote the ring of polynomials with coefficients in R. Let A(s) €
R[s]"*" and B(s) € R[s]"*™ be n X n and n X m polynomial matrices, respectively,
such that | A(s)| # O0(]:| means determinant). Assume that the rational matrix
A(s) ' B(s) is strictly proper (i.e., A(s)"'B(s) = 0 when s = o0). When do there exist
matrices C(s) € R[s]™>" and D(s) € R[s]™*" such that | D(s)| # 0, D(s)"'C(s) is
proper (i.e., D(s)"'C(s) = H<e R™ " when s = o), and

A(S) B(s)]

G(s)z[as) D(s)

has prescribed invariant factors?
The symbol : > will be used to mean “divides” and < is the symbol of majorization
in the Hardy, Littlewood, and Polya sense [6]. That is to say, if a = (a;, a2, - - - , a,)

and b = (b, by, -+, b,) are two n-tuples of real numbers, we will write ¢ < b if and
only if

k k

Zamézbm, 1=k=n—-1

i=1 i=1
with equality holding fork =n. a2 - -+ Z gj,yand b1 Z - - -+ 2 by, are the components
of a and b in nonincreasing order.

If A(s) and B(s) are assumed to be relatively left prime (i.e., the invariant factors
of [A(s), B(s)] are all equal to one), then Rosenbrock and Hayton gave a sufficient
condition for the problem to have a solution as follows.

THE ROSENBROCK-HAYTON THEOREM. A sufficient condition for the existence of

a proper m X n rational matrix D(s)™'C(s) such that v, :> + ++ 1> 7,4 m are the invariant
factors of G(s) is
(1) =1, 1=<i=n,
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(2) (kitb—1, -kt b=1)<(d(Tnsm), ="+ ,d(Tn+1))

where ky = -+ Z k,, Z 0 are the controllability indices of A(s) ' B(s), b is its biggest
observability index, and d(-) denotes degree.

There are several ways of defining the controllability indices of a rational matrix
(see [3]), but quickly speaking we can say that the controllability indices of 4(s) ™ B(s)
(A(s), B(s) are not required to be relatively left prime) are those of any pair (X, Y)
such that

A(s)'B(s)=H(sI-X)'Y

for some H, (X, H) being a completely observable pair. The observability indices of
A(s) ' B(s) can be defined in a similar way.

If A(s) and B(s) are not relatively left prime and we are allowed to construct C(s)
and D(s) without specific requirements, then Sa [5] and Thompson [11] have given a
necessary and sufficient condition for a more general problem to have a solution as
follows. (From now on F will be an arbitrary field.)

THE SA-THOMPSON THEOREM. If A(s) € F[s]"*? and o) : > -+ : > a, are its
invariant factors (a; = 0 for i > rank A(s)), then there exist matrices B(s) € F[s]"*9,
C(s) € F[s1"*?, and D(s) € F[s1™*9 such that

A(s) B(s)
[C(s) D(S)]

hasty:> - :>Toym(fp+qg<n+m,thent,: =0 fori>p+ q) as invariant
factors if and only if

(3) Tii> 0> Tt mtgs 1=i=n.

The Sa-Thompson result for the case when the prescribed submatrix is [4(s), B(s)]
and the Rosenbrock—Hayton theorem are particular cases of the general problem of pole
assignment, and this paper is devoted to giving a new result under the following as-
sumptions:

(i) A(s) is a p-characteristic matrix and A(s) ! B(s) is strictly proper, i.c.,
p—1 p—1
A(s)=s"1,+ 2 A;s/, B(s)= > B;s’.

Jj=0 Jj=0

(i1) D(s) is prescribed to be g-characteristic, D(s) 'C(s) is proper, and ¢ = p — 1.

Since F is an arbitrary field we should define what is meant by proper and strictly
proper rational matrices. A(s) ™! B(s) will be said to be proper (strictly proper) if the
degrees of the polynomials in the ith row of [A4(s), B(s)] are not bigger (are less, re-
spectively) than the degree of the polynomial in the position (i, i).

Before continuing, let us say something about the above restrictions. If we do not
constrain ourselves to the case in which A(s) is p-characteristic we can still solve the
problem [15] using a similar methodology and under the assumption that g is greater
than the largest degree appearing among the polynomials of 4(s). This degree turns out
to be the largest observability index of A(s) ' B(s) when A(s) and B(s) are relatively
left prime. That is to say, we can generalize the result by Rosenbrock and Hayton to the
case when A(s) and B(s) are not relatively left prime. We make the assumption that
A(s) is p-characteristic because we gain clarity in the proofs and just this case is enough
to obtain the results we wish concerning the change of the Jordan structure of a matrix
under perturbations of fixed rank. We will deal with this problem in § 3. The result we
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have obtained generalizes an earlier result by Thompson [12] to perturbations of arbi-
trary rank.

Finally, we say a few words about the assumption g = p — 1. As far as we know,
nothing has been said about the case ¢ < p — 1, and this seems to be a hard case (see
[1]). For example, if a(s) and b(s) are monic polynomials of degrees 3 and 2, respectively,
the a(s)~'b(s) is a one-by-one strictly proper rational matrix. If we are looking for poly-
nomials d(s) and c(s), d(s) monic and ¢(s) with no greater degree than d(s), such that

a(s) b(s)
[C(S) d(S)]

has a prescribed determinant, it is easily seen that we can always find such polynomials
if d(s) is allowed to have degree greater than one, but this is not always possible if d(s)
is prescribed to be linear (see [1]).

2. Invariant factor assignment. We begin with our most general result.

THEOREM 1. Let A(s) = s”I, + 2?=¢ A;s’ and B(s) = Z?-¢ B;s’, where B; may
be a zero matrix for some j = 0,1, -+, p— 1, A(s) € F[s]"*" and B(s) € F[s]"*™.
Then there exist matrices C(s) € F[s]™*" and D(s) € F[s]™>*"™ such that D(s) is g-
characteristic, q Z p — 1, D(s)~'C(s) is proper and

[A(s) B(s)]

C(s) D(s)
has Ty :> -+ 1> T, m as invariant factors if and only if
4) Ti>0>Tigm, 1=i=n,
(5) (kitaq, - kntq)<(d(om), -+ ,d(a1))
where a; : > - -+ 1 > ay, are the invariant factors of [A(s), B(s)],
B}

aj B =X - XBhyj, PBi=lem. (ai_j, 7)),

_ﬁj'l’

1=isn+j,05j=mandk,Z - Z k,, are the controllability indices of A(s) ' B(s).
Proof. First, if D(s) is g-characteristic and D(s)~'C(s) is proper, then

(6) C(s)= i Cjs’
i=0

where some of the matrices C; may be zero.
Let X be the first companion matrix of A(s) [4], i.e.,

0 I, 0 0 0
0 0 L, - 0 0
(7) X=| - e oo oL
0 0 o - 0 I,
—Ao —A —A> - A2 Ay,

Let C(s) be a matrix as in (6) and define the following matrices:

Lj(S)=SLj_1(S)+Ap_j, léjép—l, Lo(S):In,

8 a :
® C()=2Z Cs*™,  1=j=p—1,  Cy(s)=Co.
k=j
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A simple computation shows that there exist matrices Yy, Y7, - -, Y,—1 such that

p—1
> Li(s)Y;=B(s).

Jj=0

Assume that D(s) is a g-characteristic matrix and write

Yp'_l
9) v=| i | Z@=1GC GGl
Yo
p—1
(10) T(5)=D(s)= 2 ()Y, ).

Jj=1

We claim that

[Inw—n o 0 ] shy—X Y
0 A(s) B(s) and [ ]
0 C(s) D(s) Z(s)  T(s)

are equivalent polynomial matrices. In fact, let

I, 0 0 0 0
0 I, 0 0 0
Pis)=| A 0 0
L, (s) L,-2(s) -+ Li(s) Lo(s) O
Ci(s)  Cas) -+ Coi(s) O I, |
and
(s, I, 0 -+ 0 0 Y, ]
0 s, —I, -+ 0 0 Y,
0 O 0 SIn —In Yl
I, 0 0 0 0 0
Lo 0 o0 o o0 I,

Then P(s) and Q(s) are unimodular and

shy-X ¥ 1 |Te-n 0 0
(11) P(s)[ Z(s) T(s)]— 0 A(s) B(s) |O(s).

0 C(s) D(s)d
On the other hand, from (8) and (10) it is easily seen that 7(s) is g-characteristic.

Next, assume that 7, : > - -+ : > 7, ,, are the invariant factors of
A(s)  B(s)
[cm D(s)];
then, by defining 6; = 7;_ (,—1)n, | =i = np + m, where we agree that 7, = 1 for i < 1,
we have that &, : > - -+ : > 8,,+,, are the invariant factors of

[In(p—l) 0 O ]
0 A(s) B(s)
0 C(s) D(s)
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and then of
[SI,,,,—X Y ]
Z(s) T(9]
As sI,, — X is regular, there exist (unique) matrices Z € F”*" and S(s) € F[s]"*"
such that
Z(s)=S(s)(sl,—X)+Z.

As sI,, — X is regular and d(Z(s)) = g, it turns out that d(.S(s)) = g — 1. (The degree
of a polynomial matrix is that of its entry with highest degree.) Now

L, 0shp,—X Y 1 [shp—X Y
-S(s) IL.|| Z(s) T(s) Z R(s)
has 6y, **, 0np+m as invariant factors and R(s) = T(s) — S(s)Y is a g-characteristic
matrix.

From the preceding discussion we can conclude that if there exist matrices C(s) €
F[s]™*"and D(s) € F[s]™>" such that D(s) is g-characteristic (g an arbitrary nonnegative

integer), D(s)~!C(s) is proper, and 7, : > - - : > 7, are the invariant factors of
A(s) B
(12) (s) B(s) ’
C(s) D(s)
then there exist matrices Z € F™*™ and R(s) € F[s]™>" such that R(s) is g-characteristic
and 8y, -+, 84+ m are the invariant factors of
sl,— X Y
(13) " ,
Z R(s)

X and Y being the matrices defined by (7) and (9) and determined uniquely by A(s)
and B(s).
Conversely, if g = p — 1 and Z, R(s) are matrices such that R(s) is g-characteristic

and 6y, -, Onp+m (0; = Ti—n(p— 1)) are the invariant factors of the matrix in (13), then
there exist matrices C(s), D(s) satisfying the requirements of the theorem such that the
matrix in (12) has 7y, - -+, 7,4, as invariant factors. (It should be noted that if g <

p — 1, then some additional restrictions on Z are needed in order to obtain from the
above process matrices C(s) and D(s) with degree q.)

According to Theorem 2.5 of [14], a necessary and sufficient condition for the
existence of matrices Z € F™*" and R(s) € F[s]™*™ such that R(s) is g-characteris-
tic and

[s[,,,,—X Y ]

4 R(s)
has 8;, - - -, 8,p+m as invariant factors is
(14) 0;:>€;1>0;4m, 1=i=np,
(15) (kit+a, - kntq)<(d(0n), - -+ ,d(6:1))
where e; :> -+ :>e¢pand ky 2 - -+ 2 k,, are the invariant factors and the controllability

indices of (X, Y),

aj_ i—1° ﬂj=ﬂjlx'..><”{;p+j, I'l']l:—__l'C'm' (ei—jsai)a
J

1=isnp+j, 0=j=m.
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From (11) we get that [s],, — X Y]and

[I,,(,,_l) 0 0]
0 A(s) B(s)

are equivalent polynomial matrices. So, if «; : > - -+ : > «, are the invariant factors of
[A(s)B(s)], we have ¢; = a;_ (,— 1), Where o; = 1 for i < 1.
On the other hand, if

H=[I, 0---0]eF"*™,

then it turns out that H(sl,, — X) ™'Y is a completely observable state-space realization
of A(s)"'B(s) (see [16]). Thus, bearing in mind that the controllability indices of
A(s) ' B(s) are those of (X, Y') and the characterization of §; and ¢;, it is easily seen that
(4)and (5) are equivalent to (14 ) and ( 15), respectively, and the theorem follows. |

Remarks. (1) From the proof of the theorem we can conclude that conditions (4)
and (5) are necessary even if 0 = g <p — 1.

(2) If gis prescribed to be greater than p — 1, then C(s) can be constructed to have
degree at most p — 1 and then D(s)'C(s) would be strictly proper.

As a consequence of Theorem 1, we have the following corollary.

COROLLARY 1. Under the same conditions as in Theorem 1, if A(s) and B(s) are
relatively left prime, then there exist matrices C(s) € F[s]™*" and D(s) € F[s]™*™ such

that D(s)~'C(s) is proper, D(s) is g-characteristic, and 7y, - - - , Tn+m are the invariant
factors of

{A(s) B(s)]

C(s) D(s)

if and only if
(16) =1, 1=i=n
and
(17) (kitda, skt @) <(d(Tnim), " d(Tns1)).

Proof. If A(s) and B(s) are relatively left prime, then the invariant factors of
[A(s), B(s)] are all equal to one, and in this case (16) and (17) are equivalent to (4)
and (5), respectively. O

As noted in the Introduction, if 4(s) and B(s) are relatively left prime, A(s) is p-
characteristic and 4 (s) ™! B(s) is strictly proper, then by [7, p. 103], the observability
indices of A(s) ' B(s) are all equal to p, and from Corollary 1, we get the Rosenbrock—
Hayton theorem by prescribing g = p — 1.

Our next result is a slight generalization of a result of Sa [5].

THEOREM 2. Let A(s) € F[s]"*" be a p-characteristic matrix, and let o; : >
-+ 1> ay be its invariant factors. Let Ty : > + + + > T, 4 m be monic polynomials such that
212" d(7;) = np + mq for some nonnegative integer q = p — 1. Then there exist matrices
B(s) € F[s]"*™, C(s) € F[s]"*", and D(s) € F[s1™*™ such that A(s)™' B(s) is strictly
proper, D(s)~'C(s) is proper, D(s) is g-characteristic, and

[A(s) B(s)]

C(s) D(s)
has Ty 1> + -+ 1> T, as invariant factors if and only if
(18) Tit> 0 >Tivom, 1=i=n.

Sa’s result is the case g = p.
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Proof. The necessity of (18) for any ¢ = 0 is a consequence of the Sa-Thompson
theorem. We will show its sufficiency. Let X be the first companion matrix of 4(s) and
let &; = a;—(p—1yn, 1 =1 = pn, be its invariant factors. Define 6, = 7,_ p—1yn, | =i =
pn + m. Now use (18) and the proof of Theorem 3.2 of [13] (using Theorem 2.5 of
[14] instead of Lemma 2.11 of [13]) to show that there exist matrices Y € F?*" Z ¢
F7*" and D;(s) € F[s]™*™ such that D,(s) is g-characteristic and

sh,—X Y
[ Z Dl(s)]

has 6y, - - -, 8,p+m as invariant factors. Now, as in the proof of Theorem 1, this matrix

is equivalent to
In(p— 1) 0 O
0 A(s) B(s)

0 C(s) D(s)

for some matrices B(s) € F[s]"*™, C(s) € F[s]"*", and D(s) € F[s]"*™, obtained
from Y, Z, and D,(s).

So, 7y :> *++ : > T,4m are the invariant factors of
A B
(s) B(s) . 0
C(s) D(s)

3. Changes of the Jordan structure. As a consequence of the previous section, we
can give some results related to the possible invariant factors that can be attained when
a given matrix is subjected to an additive perturbation of fixed rank. Since the eigenvalues
and the Jordan structure of a complex matrix are determined by its elementary divisors,
and hence by its invariant factors, our next results apply in an obvious way to the study
of the changes of the Jordan structure of a matrix under additive perturbations.

If we take p = 1 and ¢ = 0 in Theorem 2, we obtain the following result.

THEOREM 3. Let A € F**" and let oy : > -+ : > ay, be its invariant factors. If
711> -+ 1> 7, are monic polynomials such that 27—, d(7;) = n, then there exists a
matrix P € F"*" withrank P =< m such that A + P has 7, - - - , T, as invariant factors if
and only if

(19) Tiem > Q> Tig my 1=i=n

where 7, = 1 fori < 1 and v; = 0 for i > n.
Proof. Define u; = 7;—m, 1 =i = n + m. From Theorem 2, there exist matrices
BeF*™and C € F"*" such that

(20) sl,—A B
C I,
has py, - - , un+ m as invariant factors if and only if
(21) Kii> 04> Wit oms 1=i=n,

Now, the matrix in (20) is equivalent to
sl,—(A+BC) 0
0 I.|

So, the invariant factors of the matrix in (20) are those of 4 + BC and m-invariant
factors equal to one. Put P = BC; then rank P < m and 7,, - - -, 7, are the invariant
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factors of 4 + P if and only if 7; = u;+,, and (21) holds; that is, if and only if (19) is
satisfied. O

Remarks. (1) It is easily seen that
r=min {t:7;_ > 0;>Ti 44}, 1=i=n

is the minimum rank of the matrices P€ F"*"such that 4 + Phasr,, - - - , 7,asinvariant
factors.
(i1) If we take m = 1, we get an earlier result due to Thompson [12]. The general

case has also been solved by Silva [9], [10], but his approach is completely different.

(iii) Theorem 3 is not a complete characterization of the possible Jordan structures
of a matrix subjected to perturbations of fixed rank. For instance, there could be matrices
P of rank r = 1 such that 4 + P and 4 are similar. A complete answer to this problem
for the case when F is an algebraically closed field is given by Silva in [9]. His proof is
large and complicated and does not apply to the case of general fields.

Acknowledgment. The results of this paper were presented at Robert Thompson’s
lectures held at The Johns Hopkins University, Baltimore, MD, June 20-24, 1988. Thanks
are due to the organizers for inviting the author to such an interesting conference.
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ON THE RECONSTRUCTION OF LAYERED MEDIA FROM
REFLECTION DATA*

ALFRED BRUCKSTEINY, THOMAS KAILATH}, ISRAEL KOLTRACHTS,
AND PETER LANCASTERY

Abstract. The problem of reconstructing an elastic layered medium from a discrete reflection response is
considered. Using matrix methods, a family of models is defined that is parametrized by the surface reflection
coefficient. The relationship between a general response and that with a perfect reflector at the surface is established
and is used to provide a new proof of a recently established representation for the reflection coefficients. A
(known) thresholding strategy for the prediction of reflection coefficients is presented and is shown to be a
“maximum a posteriori” estimation process. Numerical examples are given.

Key words. Levinson algorithm, Toeplitz matrices, reflection coefficients, layered media
AMS(MOS) subject classifications. 86-08, 65F05, 15A90

Introduction. In this paper we consider the problem of reconstructing a layered
medium from noisy reflection response data. It is assumed that the medium is made up
of a sequence of horizontal homogeneous layers (the Goupillaud model), and that the
measurement noise is bounded in magnitude by . We also admit some a priori knowledge
of the reflection coefficient sequence; namely, that most of the reflection coefficients are
zero and if different from zero, that they are uniformly distributed between [—1, 1].

Both the standard reconstruction procedures, known as dynamic deconvolution
(Claerbout [3], Aki and Richards [1], Robinson and Treitel [13]) and the layer peeling
procedure (Bruckstein, Koltracht, and Kailath [2]), are unstable in the presence of noise.
A thresholding strategy for stabilizing this procedure has recently been introduced in
Bruckstein, Koltracht, and Kailath [2] and Koltracht and Lancaster [8] (see also Ferber
[51). This strategy consists of careful estimation of error magnification in the recursive
reconstruction procedure and of the use of recursive estimates for setting to zero small
computed reflection coefficients. The estimation of errors is based on a new representation
of reflection coefficients for a general surface condition first obtained in Koltracht and
Lancaster [8].

Section 1 contains a new derivation of this formula that is both simpler than the
original one and also has more physical intuition behind it. It contains some relevant
results of error analysis from Koltracht and Lancaster [9] as well.

In § 2 the thresholding strategy is described and we show that it can be viewed as
an approximate maximum a posteriori estimation process for the reflection coefficients.
The strategy is also compared with the minimum entropy deconvolution method proposed
by Wiggins [17] for geophysical reflection seismology.

The stabilizing effects of the thresholding strategy in the presence of noise are illus-
trated in the numerical experiments of § 3, with synthetic as well as field data.
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A similar idea of setting to zero small reflection coefficients appeared simultaneously
in Ferber [5] (both this paper and the paper of Bruckstein, Koltracht, and Kailath [2]
were submitted in 1984). The error estimates in Ferber [5], however, are less accurate
and apply to the perfect surface reflector only.

1. Representations of reflection coefficients. The one-dimensional inverse scattering
problem amounts to the reconstruction of an acoustic medium from its response to a
known input pressure wave. Discretizing the medium into a large number of thin layers,
we can assume that each layer has a constant impedance, and that changes of impedance
occur only at layer interfaces. Such interfaces are characterized by their reflection coef-
ficients. To define a reflection coefficient, consider a vertically incident unit impulse on
the interface from above (and measured in terms of units that represent the square root
of energy). The part of the impulse that is reflected upward gives the value of the cor-
responding reflection coefficient ¢; hence | ¢| = 1. The transmitted part ¢ can be calculated
from the energy conservation law as ¢t = V1 —c2. If a unit impulse is incident on the
same interface from below, the reflected amplitude is equal to —c (see Robinson [14, p.
48], for example).

Let the controlled input signal, which is sent downward, be measured just above
the surface at uniform intervals of time 7, giving the input sequence {dy, di, - - , dn}.
Starting with time 7, after each 7 units of time, some reflected upcoming signal ( possibly
zero) will reach the surface from below. Denote this upcoming sequence of signals just
below the surface by {0, v, v,, - - - , vy }. Each v; represents a superposition of a primary
reflection from the jth interface with multiple reflections from previous layers. (Note
that the width of each layer is determined by the half travel time 7/2 of the pressure
wave; thus, the physical width depends on the velocity of propagation in the medium of
this particular layer.)

Assuming that the surface reflection coeflicient ¢, is known, the sequence of down-
going signals just below the surface can then be seen to be {#dp, tod; — covy, - -
l()dN - C()UN} .

b

Let w; = tod; — covj, j = 1, ---, N, and define the following nested sequence
of matrices:
(1) Rie=L(w) LT (we) = L(vi)) LT (i)
for k=0,1,---,N where T denotes transpose, w,=[l,u, -, uw]’, vi=
[0, vy, - -+, v¢]%, and for any vector a = [ag, - - - , ax] T of any length k + 1, L(a) denotes
a lower triangular Toeplitz matrix whose first column is a. Thus,

ao 0 . '0
Lay=|% %0

Ay Qg1 Qo

Conservation of energy arguments (Kailath, Bruckstein, and Morgan [6]; see also Lev-
Ari and Kailath [12]) show that Ry is a positive-definite matrix.
THEOREM 1. Let {dy, dy, -+, dy} be the controlled input sequence and let
{0, vy, - -+, vy} be the upcoming sequence measured just below the surface of a layered
medium defined by the sequence of reflection coefficients { co, ¢1, * -+ , cn}. Then for k =
0,---,N—1
k

(2) Ck+1= 2 V4 17k (J)
j=0
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where vi = [vx(0), - - -, vi(k)17 is the solution of the equation
Rk’Yk= [Oa e ’Oa l]T

and Ry are defined via (1) with u = t,d — cov.

The representation formula (2) was established in Koltracht and Lancaster [8].
The new derivation of Theorem 1 is based on reduction of the general case when d =
{do, di, -+, dn} and ¢y € [—1, 1] to the special case when d; =0, j=1,---, N, and
¢o = —1 (or perfect reflection of upcoming waves at the surface). In reflection seismology
this case is called “marine” and the representation of the reflection coefficients given by
(2) of Theorem 1 is well known in this particular situation (see Kunetz [10], Robin-
son [14]).

Let us first show how the transformations from d to v and from u to v in the Gou-
pillaud model can be interpreted as discrete, causal, linear systems (see Robinson [14],
for example). We also show how, using a limiting process, the “marine case” can be
included in a family of systems parametrized by ¢, the reflection coefficient at the surface.

Assuming that | ¢o| < 1, it is not difficult to see that v (in the first layer) is related
to the input vector d by v = 1, Bd, where B is a strictly lower triangular Toeplitz matrix:

0o 0 - .- 0
B= b2 bl 0 . -1,
: "0 0
by = c1, by = ot} — cicy, and forj =2, .-+, N, b; is a polynomial in ¢, ¢, - -, ¢j.

This relation implies that the transformation d — v is a discrete causal linear system.
For | ¢y| < 1 we have

(3) u=tod —cov,
and it follows that

Bu=(I—c¢yB)yv,
or Au = v where
(4) A=(I—coB)"'B.

As A is also lower triangular and Toeplitz it is seen that, as claimed above, the transfor-
mation u — v is also a discrete causal linear system. Furthermore, the system (i.e., 4
and B) both depend continuously on ¢.

Next we show how to include the cases when | ¢y| = 1 in our discussion. Observe
that either case ¢y = =1 means that no finite signal above ground can produce a signal
below ground. However, it we consider the limiting process ¢o = —1, and simultaneously
let dy = oo in such a way that fody — 1 (while {d; } /2, remains bounded), then it
follows from the equation v = foBd that

i’d=ef lim V=B_1eo
co—> —1
where B_; denotes B evaluated at ¢, = —1 and e, is the first unit vector, i.e., el =
[1,0, - -+, 0]. Furthermore, it follows from (3) that, in this case,

ﬁ=e0+€',
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as physical reasoning also requires. Equation (3) also applies in the sense that A_ii =
v where

A_l = (I+B_1 )_IB_l .

Thus, the equation v = ¢, Bd still makes sense in the limit as ¢, & —1 and represents
the physical situation when ¢y = —1 and the disturbing signal e, is applied just below the
surface. A similar argument applies when ¢y = 1. Thus, the matrix A: u — v defines a
causal linear system for any co € [—1, 1] and A depends continuously on ¢,. The limiting
case when ¢y = —1, it = ey + ¥ is known as the marine case and the vector V is called the
marine response.

As the transformation B from input d to output v is a time-invariant causal linear
system (i.e., a filter) and depends only on ¢, ¢, * -+ , ¢y, We may write, absorbing ¢,
into B,

v=B(co,c1, "+ ,en)d.
In this notation the marine response of the model is
0=B(—1,c1, e ,CN)eo.

As u = fpd — cov, the marine response is also characterized by the property that when
v = v we have u = ¢y + v. We use this to prove the following reduction theorem.
THEOREM 2. For any cy€[—1, 1], let

1 0

u v
u= L v= !

Un Un

represent the downgoing and upcoming signals in the first layer, (respectively), and write
U= L(u), V= L(v). Then the marine response of the model is given by

(5) Y=(U-V)W.
Proof. The model associated with surface reflection coefficient ¢ is a filter. Let a

be its impulse response and 4 = L(a) (so that a = 4ey). The marine response of the
model is the vector ¥ for which A(Vv + ¢;) = ¥, i.e.,

V=(1—A)""A4e,.

We have Au = v, or AUey, = UAdey = Ve, so thata = U Ve, and it follows that A =
U~'V. Substitute in the equation for ¥ and use the fact that lower triangular Toeplitz
matrices commute to obtain

V=I-UV) U Ve
=(U=V) " Veo=(U—-V)7lv. O

Now let us complete the proof of Theorem 1. This depends on the reduction to the
“marine case” as described in Theorem 2. We use a subscript k (as in ug, v;) to denote
vectors of length £ + 1.

For the “marine case” it is well known (see Kunetz [10], Robinson[14]) that, if
def
(6) T = L(¥x+e0) L(¥x+e0) " — L(V)L(%)”

(a positive-definite Toeplitz matrix) and w is defined by T, w; = e, then the subsurface
reflection coefficients are given by the (Levinson—Durbin) formula

(7) Ck+1=€,l{wka kzoala”',N-
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From (5) we have for the general case
L(vi) = L(we— i) L(V).
But also
L(ui) = L(we—vie)+ L(vi)
= L(ug—vi) + L(we— Vi) L(V)
= L(we—vi)(L(V) +1)
= L(ux— i) L(Vk +eo).
Consequently, using (1) and (3) we obtain
L(we—vi) TiL(ue— vi) "= Ry.
As L(u; — vi) is nonsingular and T} is positive definite, it follows that R, is positive
definite. Furthermore, as L(u; — vi)e, = e, Tiwi = e, implies
L(we—vie) T L(we = vi) "(L(we— Vi) ) "'wie = e,
or Ri(L(ug—vi)T) 'wi =e,. Thus, if v, is defined by Rivyi=er, then wi=
L(u — vi) Ty, and (7) and (5) give
v 1= (L(we=vie) 7)) TL(ue— vie) "y

—vT
=ViYk

as required. O

2. The effects of noisy data. In practice the measured response of a layered medium
is contaminated with noise arising from measurement errors, spatial effects, and the
discretization of the continuous medium. Thus we can write v = v + ¢ where ¥ is the
vector of measured noisy response. In what follows we assume that the errors ¢; are
uniformly distributed

|ej|<£a j=13...aNa

¢ being a known estimate. Under this assumption it is possible to show (Koltracht and
Lancaster [9]) that the matrix Ry defined in (1) will be perturbed by a certain matrix
F={fj}ij-o

RN = .RN + F,
where, with a high probability (of 99.8 percent), elements of F satisfy the inequality
(3) fisl <V3e(| ol +2(1—c3)'/?), i,j=0,---,N.

(Note that when ¢y = *1, the right-hand side of (8) is simply equal to\/gs.) Similar
estimates can be obtained for measurement noise with other statistical properties. Given
the representation (2) of the reflection coefficients and the estimate (8) of the size of the
perturbation matrix, we can estimate the error in the reflection coefficients as follows
(Koltracht and Lancaster [9]).

THEOREM 3. Let V be the recorded response of a layered medium with a known
surface reflection coefficient cy. Let ¢ denote the noise level, so that

|vj_f)j|<83 j=13”'9Na
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and let ¢, k=1, -+ -, N denote the reflection coefficients corresponding to the recorded

response and the known input vector d. Then for sufficiently small e, with a probability
0f 0998, and fork=10, -+ ,N—1

k 1/2 k
©9) lcers—ert] <V§e( » %(j)) X[H‘(lcol 21— Y lfk(j)l]

Jj=0 j=0

where ¢, k=1, -+, N, are the true reflection coefficients, and fork =0, -+, N — 1,
4« and %y are defined by Ry = e, and Rik = [Dy, + -+, Des11”.

Efficient algorithms for computing the bounds of Theorem 3 can be found in Kol-
tracht and Lancaster [8] (see also Lev-Ari and Kailath [11]). Note that in the case of a
Toeplitz matrix Ry the right-hand side of (9) simplifies to

k 1/2k+1
(10 Hoi—an <V Z30)) 2 e )tk 1)

Jj=0 j=0

where 4, can be computed via the usual Levinson algorithm (see Koltracht and Lancaster
[8] for more details). We remark that the estimate (10) is more accurate than the one
suggested in Ferber [5] for the marine case only.

3. Inverse scattering with thresholding: An approximate “maximum a posteriori”
estimation process. The discretization of the pressure wave and the elastic medium, and
the presence of noise, imply that most of the observed reflecting interfaces are an artificial
byproduct of the chosen discretization interval, and do not correspond to real reflectors.
Moreover, because of these facts the reflection coefficients are computed approximately
with the precision of the bound of (9) at best. This means in particular, that the zero
reflection coefficients, which correspond to artificial layers, can become nonzero values
within this bound. It is, of course, our objective to reconstruct the real layered structure
of the medium, and the first priority is therefore to distinguish the real reflecting interfaces
from the artificial ones.

In order to use our prior information, which says that most of the reflection coef-
ficients are zero, the following thresholding strategy is useful (see Ferber [ 5], Bruckstein,
Koltracht, and Kailath [2], Koltracht and Lancaster [8]).

(i) Start with the known data ¢y, {d,, -, dn}, {D1, **+, On} and k = 0.

(ii) Compute ¥y, X, and ¢ 1 as defined in Theorem 3, and also compute

k 1/2 k
Bk=\r3(2%(j)) (1+(I60|+2(1—63)”2Z I)?k(j)l))~
j=0

Jj=0

(iii) If |éxy 1] < eBy, thenset &, = 0.

(iv) Increase k by one (until k = N — 1).
Indeed, if |éx 1| < eBy, then the true reflection coefficient ¢, ; can be any number in
the interval (&, — By, ¢+ + €By) and zero also belongs to this interval. Having
assumed the prior information about the medium, we must now conclude that the true
reflection coeflicient is most likely equal to zero.

In probabilistic terms, it may be assumed that the reflection coefficient sequence is
composed of independent identically distributed values having a probability distribution
function given by

() =pod(c)+(1=po)/2,  ce(—1,1),
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i.e., that we have a high probability (po) of having a zero reflection coefficient and a small
probability of it being chosen uniformly in the interval (—1, 1). If this is our a priori
information on the reflection coeflicients, and the measurement of depth k yields an
estimate ¢ 4 | that obeys the inequality

| Ck+1— Cevr | <€By,

then it is not difficult to see that the thresholding procedure yields a maximum a
posteriori (MAP) estimate of ¢, . This follows if we assume that the conditional
probability of obtaining ¢ ., as an estimate (that is, p(éc 1] cr+1)) is uniform over
(Ck+1 — €By, Ckvq + eBi). Indeed the MAP estimate is defined as the c,.; value that
maximizes the function

a _ PGyl )P(Chsy)
P(Cks |Cev ) =175
1 PCCrsr | s 1)P(Cher 1)

and if p(éxs 1] ck+1) is not zero at ¢x; = 0 (meaning that 0 € (&4 — By, Gy +
eBy)), then obviously p(ci + 1| ¢+ 1) will have its maximum at ¢+ ; = 0. (For a discussion
of MAP estimator design see, e.g., Srinath and Rajasekaran [15].)

It is also interesting to compare the thresholding strategy with the minimum entropy
deconvolution (MED) method introduced by Wiggins [17] in reflection seismology (see
also Walden [16]). In this approach the discrete convolutional model of the recorded
seismogram is assumed:

m
D= 20 wick— 1+ ng,
1=0

or, in vector form
v=wxc+n,

where the sequence { 7 } represents the noise in the system. (We remark that, in contrast
to the scattering model developed in this paper, the deconvolution model does not admit
multiple reflections.) Thus the sequence { w } represents the impulse response of a discrete
filter transforming the sequence of reflection coefficients into the output sequence { 0y } .

Now consider the formation of an approximate inverse filter with impulse response
{ fi} - Namely, the convolution f x w is to be close to the first unit coordinate vector ey
in an appropriate sense. Once f is determined we naturally take ¢ = f * ¥ as the corre-
sponding estimate of the reflection coeflicient sequence.

In the MED process, the sequence { f; } is determined by maximization of the varimax

norm of é:
N N 2
=z /(23).
j=1

Jj=1

The varimax norm is proportional to the kurtosis of a zero mean process, which is a
statistic that characterizes the peakedness of the corresponding probability density function
(Donoho [4]). Thus maximizing the varimax norm results in suppressing most of the
reflection coeflicients in favor of a few large ones. This, of course, is exactly the idea
behind our thresholding strategy.
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It is now widely accepted that the MED processes do not perform to expectations
(see Wiggins [18], for example). One of the main reasons is that the optimization criteria
reduce to a highly nonlinear system of equations whose solution is approximated iteratively
by local linearizations. The convergence of those iterations is problematic, in particular,
because of the nonuniqueness of the local maxima.

The method of inverse scattering with thresholding does not seem to have this
disadvantage. The reflectivity information recovered by this algorithm is reliable and, as
the numerical experiments of Bruckstein, Koltracht, and Kailath [2], Koltracht and
Lancaster [ 8], and the following section demonstrate, the thresholding strategy efficiently
suppresses noise magnification in inverse scattering algorithms.

4. Numerical examples. The effects of the thresholding strategy are illustrated first
on a synthetic reflectivity profile shown in Fig. 1. In all of the figures the vertical scale

ovL

0TTT

08¥%T

0G8T

FIG. 1. Synthetic reflectivity profile.
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denotes depth measured in the number of horizontal layers. A recursive algorithm de-
scribed in Koltracht and Lancaster [7] is used to generate the “marine” response r;,
r, *++ , ry of a medium corresponding to this profile. As soon as a new entry r; in the
response sequence is obtained, some noise value ¢, chosen randomly from the interval
[—e, €], is added to r,. Since 7, = r; + ¢ is used for the computation of ry, ¢, -+, Fu,
in the formula

k-1
T+ 1 =_(Ck+1+ Z '3'+1'Yk(j))/7k(k),

Jj=0

it follows that the perturbation ¢, affects all following entries of the response sequence
(a phenomenon to be expected in real-life situations). Reconstruction of the reflectivity
profile with and without thresholding, as well as the corresponding “marine” responses,
are shown in the following diagrams. In Fig. 2(a), the marine response corresponding
to a noise level ¢ = 0.02 is presented. Figures 2(b) and 2(c) show the reconstruction
without and with thresholding, respectively. We see that the thresholding algorithm gives
a perfect reconstruction, whereas the algorithm without thresholding hardly reconstructs
the second reflector at the depth of 700 and breaks down soon after that.

0P1T 09L 08¢

0est

006T

(a)

FIG. 2(a). “Marine” response perturbed by noise of level 0.02.
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In Fig. 3(a) the marine response corresponding to the noise level ¢ = 0.03 is presented;
Figures 3(b) and 3(c) show the reconstruction without and with thresholding, respectively.
Again, the algorithm without thresholding breaks down before producing any reliable
information, whereas the threshold algorithm recovers four out of six reflection coeffi-
cients.

In Fig. 4 we observe the effect of changing the noise barrier ¢ in the threshold
reconstruction. This observation is important because in real-life situations, we cannot
expect to have exact knowledge of ¢, but rather some estimate of it. The marine response
corresponding to e = 0.03 (the same as in Fig. 3) is used. In Figs. 4(a) and 4(b) threshold
reconstructions with ¢ = 0.025 and ¢ = 0.005, respectively, are presented. In Fig. 4(a)
the fifth true reflector is recovered. The reconstruction does not change for gradually
decreasing values of ¢, until for ¢ = 0.005 a small ghost reflector appears just above the
depth of 700. This is apparently a result of some noise going through at shallow depths.
It appears to be encouraging that the reconstruction with imprecise noise levels reveals
more information than the reconstruction with exactly known e. Indeed, in practical
situations (see Koltracht and Lancaster [8]) we must experiment with the noise barrier
&, which can only be roughly estimated in advance.

o d 4 —

0vIT O?L

02sT

006T

(a)

FIG. 3(a). “Marine” response perturbed by noise of level 0.03.
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The effect of thresholding strategy is illustrated also on a set of field data. This data
comes from a geophysical survey in northern Canada. (We thank K. Coffin, Department
of Geology and Geophysics, University of Calgary, Calgary, British Columbia, Canada,
for making this data available to us.) The data consists of about 100 traces (of 2,000
samples each) of unfiltered CDP-stack data along a horizontal survey line, as shown in
Fig. 6(a). The reconstruction without thresholding breaks down at depth of about 130,
as shown in Fig. 5. The reconstruction using threshold algorithms with appropriately
chosen ¢ is shown in Fig. 6(b). It appears that the section indeed has some multiple
reflections, which are eliminated with the threshold reconstruction.

08¢

0%TIT

02ST

006T

(a)

FIG. 4(a). Reconstruction for response of Fig. 3 with threshold barrier e = 0.025.
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FIG. 4(b). Reconstruction for response of Fig. 3 with threshold barrier ¢ = 0.005.

5. Concluding remarks. An inverse scattering method that is stable in the presence
of noise has been described. The method is based on a thresholding strategy that predicts
in a statistically reliable way when small reflection coefficients are to be set to zero.
Statistical interpretation of the strategy in terms of maximum a posteriori estimation has
been presented. The procedure has been developed for an extended Goupillaud model
of a layered medium in which the reflection coefficient characterizing the surface is a
parameter. The theoretical basis for the method has been described and developed and
favorable performance has been demonstrated using both synthetic and field data.
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(b)

FIG. 6(b). Inversion of the seismic section with the threshold algorithm.
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COMPUTATION OF THE EULER ANGLES
OF A SYMMETRIC 3 X 3 MATRIX*

ADAM W. BOJANCZYK?t AND ADAM LUTOBORSKI}

Abstract. Closed form formulas for computing the eigenvectors of a symmetric 3 X 3 matrix are presented.
The matrix of the eigenvectors is computed as a product of three rotations through Euler angles. The formulas
require approximately 90 arithmetic operations, six trigonometric evaluations, and two root evaluations. These
formulas may be applied as a subroutine in a parallel one-sided Jacobi-type method in which three rather than
two columns, as is the case in the standard Jacobi method, are operated on in each step.

Key words. Euler angles, eigenvectors
AMS(MOS) subject classifications. 15A18, 65H15

Introduction. In this paper we derive closed form formulas for computing a diago-
nalizing rotation matrix for a given symmetric 3 X 3 matrix. A standard result in the
representation of the group of rotations shows that the diagonalizing matrix may be
represented as a product of three plane rotations—the angles of rotations are known as
Euler angles. This representation leads to a system of trigonometric equations involving
rotation angles, which due to their special form can be reduced to a scalar cubic equation
in cotangent of one of the angles. Thus we may use the trigonometric form of the Cardano
formulas to compute all real solutions of the cubic.

The overall cost of computing eigenvectors of a 3 X 3 symmetric matrix from closed
form formulas is approximately 90 arithmetic operations, six trigonometric evaluations,
and two root evaluations. When only an approximate eigendecomposition is sought this
cost may be higher than the one required by methods such as the QR or Jacobi algorithm.
However, in contrast to iterative methods that, although numerically very efficient, can
only produce approximate eigendecomposition, the formulas presented in this paper are
of closed form.

The formulas could be utilized as a subroutine in a parallel one-sided Jacobi-type
method in which three rather than two columns, as is the case in the traditional Jacobi
method, are operated on in each basic step. This approach leads to open problems con-
cerning the rate of convergence of these types of Jacobi methods and will be investigated
in a forthcoming paper. It should be noted that a closed formula for the eigenvalues (but
not eigenvectors) of a symmetric 3 X 3 matrix was given previously by Smith [Sm].

The paper is organized as follows. In § 1 preliminaries on orthogonal diagonalization
are given. In § 2 the closed formulas for computing the diagonalizing rotation matrix are
derived. Section 3 contains results of numerical tests.

1. Preliminaries on orthogonal diagonalization. Let A = [a;;]; <; j<3 be a real, sym-
metric 3 X 3 matrix. Due to the spectral theorem [St, pp. 309-311], 4 is diagonalizable:
there exists an orthogonal matrix Q = [g,, ¢», ¢3] such that

(L.1) QTAQ= A =diag (A, M2, \s),

* Received by the editors February 27, 1989; accepted for publication (in revised form) October 17, 1989.
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where A\; = \, = A3 are the eigenvalues of the matrix 4 and the columns ¢q;, g2, g3 of Q
are the orthonormal eigenvectors associated with these eigenvalues.

DEFINITION 1. An orthogonal matrix Q such that det Q = 1 will be called a rotation
matrix.

DEFINITION 2. Let 1 = p < r = 3 and ¢ be a real number. An orthogonal 3 X 3
matrix O, (¢) = [g;]1=i,=3 given by

App = Grr = COS &,

g:i=1 ifi#p,r,
dpr=—qp=—SIn ¢,

dip=4pi= 4ir=4=0 ifi#p,r
q;=0 ifi#p,rand j#p,r,

will be called a plane rotation through ¢ in the plane span (e,, e,).
Our objective is: given a symmetric 3 X 3 matrix 4, construct a diagonalizing rotation
matrix Q, = [gs(1), 4o(2)> 9-3)] Such that

(1.2) 0,40, = A, =diag (A1), As2)s Ao(3))

where ¢ belongs to the set 23 of permutations of (1, 2, 3).

As we recall in the following lemma, a rotation in R> may be represented as a
product of three plane rotations through the Euler angles ¢, 6, y.

LEMMA 1. Let Q = [g;)1 =i, =3 be a rotation matrix. Then there exist angles ¢ in
[0, 7) and 0, Y in (—=, 7] called the Euler angles of Q such that

(1.3) 0=012(0)023(0)012(¥).

Proof. The geometric definition of Euler angles (see [GMS, p. 5]) is given in
Fig. 1. The algebraic proof of (1.3) is simply the QR factorization of our rotation ma-
trix. Set @y = Q, 0> = Qp(—¢) 0y, O3 = Or3(—0) 02, Os = Q12(—¥) Q3 where Qi =
[qu]l <ij=3. We then choose ¢, 8, ¢ to be the numbers that subsequently annihilate
413, 433, g1, that is, such that cot ¢ = —¢33/qis, cot 0 = —¢33/43, cot ¥ = —q%/q3>.
Q. i1s a rotation lower triangular matrix and hence it is the identity matrix. Since
Qu(—y¥) = O, (¥)~" we obtain (1.3). O

In Fig. 1, we assume that g; # e;, or in other words that § # 0. If § = 0, then one
of the remaining angles may be arbitrary. The rotation matrices Q,(¢), Q»3(8), and
012(¢¥) are called proper rotation, nutation, and precession matrices, respectively.

DEFINITION 3. Let 4 be a symmetric 3 X 3 matrix. Any angles ¢, 0, Y for which
there exists a rotation matrix Q, Q = O, (¢)Op,r,(0)Qprs(¥), 1 = p;, =3, 1 =i =3
that diagonalizes A are called Euler angles of the matrix 4.

Remark 1. Let Q be a rﬁotation matrix. Then there exist angles ¢, 6, ¢ in (—7 /4,
w/4] and a rotation matrix Q = Q,,,(¢) Op,r,(0) Qp,,(¥) Where (py, 11, P2, 12, D3, 13) €
{(1,2,2,3,1,2),(1,2,2,3,1,3),(1,2,1,3, 1, 2),(1, 2, 1, 3, 2, 3) } such that Q may
be obtained from QO by a permutation of columns and multiplication of some columns
by —1.

Factorization of rotation matrices Q into Euler rotation form (1.3) has long been
known and widely used in mechanics, especially in the theory of angular momentum
(see [Ro]), and in algebra in the theory of representation of the rotation group SO(3)
(see [GMS]).
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fes

FiG. 1. The Euler angles ¢, 0, .

2. Computation of the Euler angles of a matrix. Our objective is to compute Euler
angles ¢, 6, Y of a given symmetric 3 X 3 matrix 4.

We denote
(2.1) 012(¢)"4012(¢) = B.
(2.2) b= a,; cos? ¢+ 2a;; sin ¢ cos ¢ + az, sin? ¢ = ay, + axp — byo,
(2.3) b1 =(ax»—a) sin ¢ cos ¢ + a;»(cos? ¢ —sin? ¢),
(2.4) bi3=a,3 cos ¢ + a3 sin ¢,
(2.5) by = ay, sin? ¢ — 2a,, sin ¢ cos ¢ + a, cos’e,
(2.6) by3 = —a,3 sin ¢ + ay3 cos ¢,
(2.7) bz = as;.
Next, we define matrix C as
(2.8) 023(0)7012(¢) "4012(6) Q23(0) = 023 (8) 'BO»(8) = C.
(2.9) c1=ay +ay—bx,
(2.10) cio=by;cos @+ b3sin 0,

(2.11) ¢i13=—b>sin 0+ b3 cos 6,
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(2.12) €22 = by c0s? 0+ 2b,3 sin 0 cos 0§+ as; sin? 6,
(2.13) ¢33 =(as3— byy) sin 0 cos 0+ by3(cos? § —sin? §),
(2.14) ¢33 = by sin? 6 — 2b,3 sin 0 cos 0 + a3 cos? 6.

Last, due to the spectral theorem

(2.15) 01:(¥)TCQuL(Y) = A,.

Computation of the proper rotation and nutation angles ¢ and 6. The last column
of CQ,,(¢) is equal to the last column of C. From (2.15) we know that

c 0
W[C;:H 0 ]
C3 Ao3)

The rotation Q1,(¢) does not change the last component of a vector and therefore
€33 = Ay3). Since Q(¥) is an isometry

(2.16) ¢13=0,

(2.17) {c23=0.

Using (2.11)-(2.13), we may write (2.16), (2.17) as

(2.18) —by> sin 0+ b3 cos =0,

(2.19) [%(a33—b22)sin 20+ by3 cos 260 =0.

Due to its very special form, the above system of trigonometric equations with respect
to ¢ and 0 can be reduced to a single trigonometric equation in ¢. We exclude momen-
tarily the degenerate matrices A that yield one or more of the following cases: sin 6 = 0,
sin 260 = 0, b;3 = 0, b,3 = 0, since then the system uncouples and may be solved by substi-
tution. Under this assumption we obtain that

(2.20) [cot0=b.2/b13,
(2.21) cot 20 = (by, — as3)/(2b23),

forde(—=/2,0)U (0, w/2).
Substituting cot § from (2.20) into (2.21) we obtain a scalar trigonometric equation
for ¢,

(2.22) (by2— a33) bioby3+ b3 (b3 — b1y) =0,

where b; = b;(¢) are given in (2.2)-(2.7). The explicit form of (2.22) in terms of the
entries of A4 is

F(¢)=(a12a23033 — a13033) s> + (a11023033
— Ay0x3a33 + A12013033 + a33 — 2aT3a23) 8% ¢
+(a11a13a33 — Q13022033 — Q12023033 — A1z + 2a13a33) s¢?
+(—anaias+aizan) e+ (—ayapan+ ahags)s’
(2.23) +(a11a02623 — At Gx3 + a11a12013 — 201201305, + a2 a23) % C
+(@11012823 — Q11813022 — 12022023 + A1303,) 87 ¢

2 2.3
+(a11a220y3 — a1, Gr3 — Q1201302 + A11012013) S7 C
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2 2 4

+(a13a%; — 411013022 — Q12022073 — AT2a13 + 2011012023) SC
2 5_

+(a12a13a22 — at2a3)c> =0,

where s = sin ¢ and ¢ = cos ¢. To simplify (2.23) we set

(2.24) d=ay—ay,

(2.25) €=aa3; — a3da;,

(2.26) f=ay a3+ a3 — aynaz;—ats,
(2.27) h=ay a3 — aixa:3,

(2.28) k= a3ax — 20,3,

(2.29) y=aye—aph,

(2.30) z=a;k—ae.

We note that F splits into two parts:
F(¢)=s[ares®+ (asf— ane)c?—aphs* + dks?c* + (dk+ anh)c*]
+ c[(apf+ ajze)s® — ajzec® + (dh — ak)s* + dhs?c? + ayke*].
Eliminating ¢ from the first part and s from the second, we obtain
F(¢)=slaisf+dk—y+(2y—aif-dk)s®]
+clapftdh—z+ (22— ayf—dh)c?]=0.
Upon dividing (2.31) by s # 0 our resulting trigonometric equation is

(2.32) zcot> ¢+ (apf+dk—y)cot?> ¢+ (ayf+dh—z)cotp+y=0.

(2.31)

We may now use the trigonometric form of the Cardano formulas [KK, § 1.8-4] to
compute all real solutions of (2.32), which is cubic with respect to cot¢. If z # 0
we set

a13f+dk—y
a=—"r—,

(2.33) -
+ -
(2.34) p=dnfrdh—z
z
(2.35) =2,
z
The standard change of variable
a
(2.36) cot¢=;8—§,
transforms (2.32) to the “reduced” form
(2.37) B3+pB+q=0,
where
2
(2.38) p=b-%L
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2, 1
~ =—a’—-ab+c.
(2.39) 4=574 3ab c
We set
e
(2.40) D~27+4,
and consider two possible cases of closed form formulas for all the solutions of (2.37).
If D <0, then
(2.41) B.=2V—p/3cos(§),
3+
(2.42) ﬁz,3=2V—p/3cos(ﬁ;”),
where
5 q
(2.43) cos B=——F———.
2V—(p/3)*
If D= 0and p > 0, then
(2.44) B8=-2Vp/3 cot 28,
where
(2.45) tan f= Vtan (§/2) and |5|§Z—,
x 2 x
(2.46) tan,8=:]V(p/3)3 and |ﬁ|§-’25.
If D= 0and p <0, then
(2.47) B=-2V—p/3csc 28,
where
(2.48) tan =Vtan (§/2) and |m§§,
x 2 -
(2.49) sin/3=;1\/(—p/3)3 and wgg.

From (2.21) we compute # by substituting ¢ given by (2.32) in (2.5), (2.6).

Computation of the precession angle ¥. From (2.15) (A);2 = $(¢2 — ¢11) sin 2y +
¢ip cos 2y = 0. If ¢;, # 0, then we obtain that

(2.50) cot 2¢ = (¢~ ¢22)/(2¢12),

where —7/4 <y = w/4.

In the following theorem we summarize our algorithm.

THEOREM 1. Let A = [a;]1 <, =3 be a real symmetric matrix. Then there exist
Euler angles ¢ in (—=, «], 0, Y in (—= /4, w/4] and a rotation matrix Q

0=012(¢)2:(0)012(¥),
such that Q"AQ = diag (A1), Au2)s Ae(3)) Where \; = N\, = \; are the eigenvalues of A
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and o € Z5. For nontrivial A with at most two off-diagonal entries equal to zero, the angles
¢, 0, ¥ can be computed as follows:

Degenerate cases. Ifa;; =0, a1 = apora; #0,1 £i<j=3and ajza;(a; — an) =
alz(afg - a§3), then cot ¢ = —ax/a;, cot 20 = (bzz - a33)/(2b23) and \0 is given
by (2.50). If ay3 = 0, ap, = a3 0r a; ¥ 0, 1 =i <j =3 and aya;3(ap — as3) =
ar(a?, — als), then ¢ = 0, cot 0 = a,y/ay; and Y is given by (2.50). If ay; # 0 and as; =
by(cot™ (ay3/aq3)), then cot ¢ = a3/ ays, cot 0 = b,/ b5 and  is given by (2.50).

General case. ¢, —m /2 < ¢ = /2 is the solution of (2.32) given by (2.41), (2.36)
or(2.44), (2.36) or (2.47), (2.36). 0, —w/4 < 0 = w /4 is given by (2.21). ¢y, —w/4 <
Y = w/4 is given by (2.50). O

The computation of the proper rotation angle ¢ requires approximately 60 flops
and depending on the matrix, two trigonometric evaluation and two square roots or
three trigonometric evaluations, one square, and one cube root. Additional 12 flops and
three trigonometric evaluations are necessary to compute the nutation angle 6 and ad-
ditional 24 flops and one trigonometric evaluation to compute the precession angle .
The total cost of computing Euler angles is approximately 90 flops, six trigonometric
evaluations, and two root evaluations.

From Remark 1 we infer that for a given symmetric matrix 4 there exists a diagonal-
izing rotation matrix Q = Q,,,,($)Op,,(0)Q,,,(¥) with the Euler angles ¢, 0, ¢ in
(—w/4, w/4]. If(p1, 11, D2, 12) = (1, 2, 2, 3), then we can compute ¢, 0 € (—= /4, 7/4]
from (2.41), (2.42), (2.36), and (2.21). If (py, r1, P2, 12) = (1, 2, 1, 3), then we com-
pute ¢ € (—7/4, w/4] as a solution of

(2.51)  —ycot}p+(anftdh—z)cot? p+(—af—dk+y)cotp+z=0.

3. Numerical experiments. We have numerically compared the Euler angles method
for diagonalizing a symmetric 3 X 3 matrix with the QR method and the two-sided Jacobi
method. The test matrices were generated in the following way. In each test a diagonal
matrix A with eigenvalues \;, i = 1, 2, 3 was chosen. Next, the diagonal matrix was
transformed into a full symmetric matrix 4 via a random orthogonal similarity trans-
formation Q. The three eigensolvers were then run on symmetric 3 X 3 matrices generated
in this way.

It was observed by Kahan [Ka] that a straightforward implementation of the Cardano
formulas may lead to a loss of accuracy in finite precision arithmetic when the roots of
the cubic equation differ significantly in magnitude. A stable version of the Cardano
formulas may require evaluating the formulas twice. By varying A\;’s we wanted to check
the sensitivity of the Cardano formulas to the magnitudes of the eigenvalues. In the tests,
we never observed any significant loss of accuracy in the computed eigenvalues.

Another way of solving the cubic equation arising in the Euler angles method is to
use the Newton iteration. In our tests the Newton method took on average six iterations
to converge and never produced a better approximation than the direct application of
the (stable) Cardano formulas.

Before running the QR method a matrix was first transformed to the tridiagonal
form. The QR method (with standard shifts) required on average three iterations.

In the Jacobi method we used cyclic-by-row ordering. On average, three sweeps ( for
3 X 3 matrices, one sweep is equivalent to computing and applying three plane rotations)
were sufficient to diagonalize a matrix. We measured the accuracy of each of the methods
by the magnitude of the quantity e,

L 4-0RGIr
[l

where O and A denote the computed matrix of eigenvectors and eigenvalues, respectively.
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For all three methods e was always of the same order of magnitude. The experiments
were performed on a machine with 16 decimal digits of relative precision. A typical test
would give the following results:

A A A3 Euler Jacobi QR
3.0, 0.0, 0.0 6.52¢e — 16 4.12¢ - 16 6.53¢ — 16
1.0e + 12, 1.0e + 6, 1.0 1.83e — 16 1.0le — 15 4.33¢e — 16
1.0le + 6, 1.0e + 6, 0.99 2.02¢e — 15 6.81e — 16 4.03e — 16

Acknowledgments. We thank Gene Golub, for directing our attention to the related
work of Smith [Sm], and the anonymous reviewer, whose comments improved the
clarity of this note.
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HADAMARD SQUARE ROOTS*

MARVIN MARCUSt AND MARKUS SANDY}

Abstract. If A4 is an n-square positive semidefinite Hermitian matrix of rank 1, then the Hadamard square
root of A is the n-square matrix obtained by replacing each entry of A by the principal value of its square root.
It is proved that if 4 has no zero or negative entries, then the Hadamard square root has odd rank and all odd
ranks are possible.

Key words. matrix, rank, inertia, Hadamard product, Schur product
AMS(MOS) subject classifications. 15A03, 15A21

1. Introduction. The Hadamard product of two m X n matrices A and B is the
m X n matrix C whose (i, j) entry is

(1) c;=a;by, i=1, - ,m, j=1, - ,n.
The matrix Cin (1) is usually denoted by
(2) C=A4-B.

The matrix (2) is also called the Schur product of 4 and B and, indeed, in [5, p. 458]
the fact that C = 0 (i.e., C is positive semidefinite Hermitian ) whenever A and B are, is
called the “Schur Product Theorem.” Many years before [ 3, p. 173], Halmos described
this result as ““a remarkable theorem on positive matrices.” The proofs in both [5] and
[3] are the same and depend on writing 4 and B as sums of rank 1 positive semidefinite
Hermitian matrices. Actually, the Schur Product Theorem was noted by Schur [11], and
several inequalities involving det (A - B) appear in [9, p. 421]. A history of the Hadamard
product with an excellent accompanying bibliography can be found in [4]. This article
is a valuable contribution to the matrix literature.

Thirty years ago Marcus and Khan observed that the Hadamard product of any
two n-square matrices is a principal submatrix of the Kronecker product 4 ® B [7].
The precise location of 4-B in A ® B is simple to determine. Define

r,=(t—1)n+t, t=1, --- ,n.
For any p and gamong 1, -+ - , n> the (p, gq) entry of K = A ® Bis

kpqzailjlbizjz’
where
(3) p=i+n(i—1)
and
(4) q=jrt+n(ji—1).

If we set p = ryand g = r,in (3) and (4), it is immediate that i; = i, = sand j; = j, =
t. Hence

kr:r,=aslbst, s9t=1> Y (N
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The Cauchy interlacing inequalities [8, p. 203] can then be effectively used to obtain
information that relates the eigenvalues of 4 - B to those of 4 and B. Typically, if 4 = 0
then 47 = 0 so that H = 4-47 = [|a;|*] Z 0 and

(5) VA (H) =\i(A4),

where A, is the largest eigenvalue of the indicated matrix.

In [5, p. 462 ] there is an interesting exercise in which a 4-square 4 = 0 is constructed
for which

(6) abs (4) =[layl]
fails to be positive semidefinite. Since
[la;|*1=4-47=20

the matrix in (6) shows that the entrywise square root of a positive semidefinite Hermitian
matrix is not necessarily positive semidefinite. In order to avoid confusing the entrywise
square root with the usual matrix square root we shall designate the former as

(7) VA=[Vay].

In [5, p. 462] the matrix (7) is called the “Hadamard square root.” The precise definition
of the square root of a complex number must be stipulated in order that (7) be well
defined for any complex matrix 4. The principal value of the square root function satisfies

(8) Re Vz20,

and the ambiguity in (8) for z < 0 is resolved with the usual
Vz=|z|"2.

Note that if d > 0 then (8) implies that

(9) Vdz=VdVz.

For angles w € [ 27, 27] the definition of the principal value of the square root function
implies that

(10) Ve = e(w)e™?,
in which
1 ifo=7or |w|<m,
(11) e(w)= .
—1 fw=—7or|w|>mw.

This definition of the square root function is implemented in the MATLAB™ [10, pp.
3-41] function sqrt, i.e.,

(12) sqrt (4)=VA.

If 4 = 0 has a negative entry, the Hermitian property will be lost in computing VA. For
example, for the rank 1 matrix 4 = 0,

1 -1
A= ,
-1 1

the Hadamard square root is

a non-Hermitian matrix of rank 2.
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The starting point for the results contained herein was a sequence of numerical
experiments using MATLAB™ to evaluate ranks of Hadamard square roots of randomly
generated A = 0 of rank 1, i.e., p(4) = 1. In these experiments it was invariably the case
that for real 4 = 0 of rank 1

p(VA)

was computed as either 1 or 2. As we shall see shortly, it is easy to prove that for 4 = 0
and p(4) = 1,

1 ifa;=0foralli,j,
(13) p(Va)=¢ 7
2 if some a;<0.
Much more surprising were the results of an experiment in which

(14) p(V4)

was computed for a large sample of randomly generated complex n-square matrices
A = 0 of rank 1: the rank (14) was computed as an odd integer in all cases. Despite this
numerical evidence, consider the Hermitian matrix

1 -1 -1
(15) A=1-1 1 1].
-1 1 1

It is simple to confirm that 4 = 0 and p(A4) = 1. Yet

1 i i
(16) Va= [ i1 ]

i1 1
is a matrix of rank 2. Of course, since the principal value of the square root function is
used, the matrix (16) is no longer Hermitian. The question of making a consistent choice
of arguments for the square roots (and more general powers) so that the resulting matrix
is Hermitian is considered in the paper [2, pp. 640-641].

In order to state and prove the theorems that explain these phenomena we begin
by writing 4 = 0, p(4) = 1 as a dyad,

(17) A=uu*,

in which # is a column vector:

(18) u:[rleiWI,rzeiﬁ’Z’ e ,rnei¢n]T,
re=lwl, ¢, €[0,27),¢=1, -+, n. Thus
(19) A:[rprqei(v’p_v’q)]

and since any two vectors u that serve to represent A4 as in ( 17) differ by a scalar multiple
of modulus 1, it follows that the differences ¢, — ¢4, p, ¢ = 1, -+ -, n, are the same for
all such u. It will be convenient to reorder the components of #, and to do this we need
only observe that if P is a permutation matrix corresponding to some o € S, then

(20) VPAPT=PVAPT,

so that

(21) p(VPAPT) = p(V4).
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Now
(22) Puu* PT=(Pu)(Pu)*
and thus we can assume that 7y, - - - , r; are positive and r; 4, - - -, 7, are 0. But then

A consists of a k-square upper left principal submatrix bordered with 0 entries. Hence
there is no loss of generality in assuming that kK = » in any investigation of the rank
of VA. We also remark that if D is a diagonal matrix with positive entries, then in
view of (9)

VDAD = [Vd,a,,d,]
= [Vd,Vay,Vd,]
=VDV4VD

so that

(23) p(VDAD) = p(V4).

Formulas (21)-(23) enable us to normalize 4 in (19) as follows. We can as-
sume that r,=--- =r,=1 by using (23) to replace 4 by DAD in which D =
diag (r7!, - -+, r;'); formula (22) can be used to reorder the components of u so that
© = ¢y Z -+ Z ¢,. Moreover, since replacing u by Au, |\| = 1, does not affect (17)
we may assume

(24) 2r>@ 22 - Z¢,=0.

Henceforth we shall assume A is in normalized form as just described, so that (from

(19))
(25) A=[e'ler=99]

and (24) holds for the arguments ¢,, - - -, ¢,. It is convenient to have a notation for
the angular spread of an arbitrary matrix 4 = [a,,] = [|ap,| €], wpq € [ 27, 27], p,
g =1, -+, n, having at least one nonzero off-diagonal entry:

(26) s(A)=max |wyl.
p#*q

According to (26) and (24) we can assume that
(27) s(A)=o;.

Referring to the definition of ¢(w) in (11) we can define an n-square matrix E 4 associated
with 4 as

(28) E =[e(er—¢q)].
Note that from (25) and (11)

VA = [Ve'er—ed]

(29) = [8(¢p_(pq)ei(¢p/2—¢,,/z)]
= AE,A*

where A = diag (e*/2, - - -, *"/?). Hence

(30) p(V4)=p(Ey).

The principal results of this paper follow. In the statement of each result 4 is an n-square
rank 1 positive semidefinite Hermitian matrix.
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THEOREM 1. Assume that

(31) s(A)= .

Then

(32) p(Va)=1

if the inequality (31) is strict. Otherwise, s(A) = m and
(33) p(Va)=2.

V__COROLLARY 1. If s(A) = = and no off-diagonal entry of A is negative, then
o(VA4)=1.

COROLLARY 2. Assume that A is real. Then p( VZ) = 2 if any off-diagonal entry of
A is negative. Otherwise p(VZ) = 1.

Theorem 1 is related to a result of Farjot [1] on infinitely divisible matrices. An n-
square matrix 4 = 0 is said to be infinitely divisible if 4“ = [ag] = O for all & > 0.
Farjot’s theorem states that if A4 is infinitely divisible then p(A{®) = p(A4) for all « > 0.

THEOREM 2. Assume that

(34) s(A)>m.

If no off-diagonal entry of A is negative, then p(\/_/_l_) is an odd integer.

THEOREM 3. Assume that no off-diagonal entry of A is negative. Then p( V_/I) is an
odd integer.

It is Theorem 3 that explains why MATLAB™ invariably computes p(VZ) as an
odd integer for random rank 1 matrices 4 = 0. For, in generating random complex
column vectors u as in (18), the probability is O that

(35) lep—@ql =7
for some p # q. But
A=uu*
= [rproer™e0]

and hence A4 has a negative off-diagonal entry if and only if (35) holds. (Recall that the
case of some u, being 0 was eliminated in reducing 4 to normalized form.)

The next two results show that any rank is possible for the Hadamard square root
of an appropriate 4 = 0 of rank 1. Specifically we have Theorem 4.

THEOREM 4. Let v be an odd integer, 1 = v = n. Then there exists an n-square
A =0, p(A) = 1, with no zero or negative entries such that

(36) p(VZ)=v.

If we permit negative off-diagonal entries, then p(\/Z) can take on any integral value
between 1 and n.

THEOREM 5. Let v be any integer, | = v = n. Then there exists an n-square A =
0, p(A4) = 1, with no zero entries such that

(37) p(VA)=».

Of course, in view of Theorem 3, if v is even in Theorem 5 the corresponding A for
which (37) holds must have a negative off-diagonal entry.

2. Proofs. To prove Theorem 1 we assume A is in normalized form. If s(4) < 7w
then every difference ¢, — ¢, satisfies |¢, — ¢,| < 7 and hence from (11),

8((Pp_¢q)=l9 P,CI:L"',"-
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It follows that E, = J,, the n-square matrix consisting entirely of 1’s, and (32) follows
from (30). If s(A4) = = then there exists an integer k, 1 = k < n, and an integer m, 0 =
m=n— (k+ 1), such that

T=@ =" =‘Pk>‘Pk+l; oae g‘Pk+m>‘Pk+m+l= PPN =§Dn=0~
From (11) again, it follows that E 4 has the following block matrix form:
Ji Jim Jin—(k+m)
EA= Jm,k Jm Jm,n—(k+m) s
_Jn—(k+m),k Jn—(k+m),m Jn—(k+m)

where Jj ,, is a k X m matrix of 1’s, etc. Clearly, since0 <k <nandn—(k+m) =1
it follows that p( E,) = 2, and (33) results from (30).

Corollary 1 is an immediate consequence of Theorem 1. For, if no off-diagonal
entry is negative, then ¢, — ¢, can never be = for any p and ¢. Hence s(4) <
and Theorem 1 implies that p( VZ) = 1.

To prove Corollary 2 note that for a real matrix, s(4) = 0 or s(4) = «. If 4 has
a negative entry (it must be off-diagonal) then s(4) = 7 and p(VZ) = 2 from Theo-
rem 1. If all entries of 4 are positive, then s(A) = 0 and again Theorem 1 implies that
p(V4) = 1.

We proceed to the proof of Theorem 2. Since s(A) > = we know that ¢, > w. Define
k to be the largest integer such that ¢; — ¢, < 7. Note that 1 = k < n; otherwise, if k
were n, the value of s(A4) would be at most «, contradicting s(A4) > . Also, define m to
be the largest integer such that ¢,, > w. Possibly, m = 1, and by definition, m = k. It is
helpful to graphically depict the points e, ¢ = 1, - - - , n, on the unit circle:

(pk+1 °

¢n-2
¢m+2
@,.
(pm +1 n-1
(38) %
(pm
‘93 (p2
The points e are labeled by ¢,, t = 1, - -+, n. The matrix E, defined in (28)

specializes to

(39) -] M
A MT T,
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in which M is a k X (n — k) matrix of the following “staircase” form:

-1 -1

(40) 1

<4

We observe that:

(a) The first row of M consists entirely of —1°s;

(b) If m > 1 there exist columns ¢; <

each of the steps that start at columns ¢y, ¢;, *-

- -+ < ¢, such that the entries to the right of
-, cpare all —1’s;

(¢) If k> mthenrows m + 1, - - -, k consist entirely of 1’s.
A typical example of such an M together with a diagram of the form (38) will help fix

the ideas. Consider

(41)

otk ek ke

For the matrix (41) the parameters are n =
corresponding diagram (38) specializes to

10,k=5 m=4,p=2,¢,=3,c, = 4. The

@7
%
g G
99
(42) P40
P4
®
9y !
92
The matrix M is the submatrix of E4 = [e(¢, — ¢,)] lyinginrows 1, - -+ , 5 and columns

6, -+ -, 10. Since s(A) > =, ¢, is in the lower halfplane. Since ¢; — ¢, > 7,1 =6, - - -

b
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10, the first row of M consists of —1°s (see (11)). The largest k such that ¢; — ¢ < 7 is
k = 5 and the largest m such that ¢,, > 7 is m = 4. Since ¢, — ¢; < m, j = 6, 7, and
¢, — ;> j=8,9, 10, it follows from (11) again that the second row of M is

M(2)=[1 1 ~1 -1 —1]

This is similar for M ;). The values ¢5 — ¢;, j = 6, 7, 8 are less than 7 while ¢4 — ¢; >
m,j =9, 10. Hence

M(4)=[1 1 1 -1 '“1]
Finally, ¢5s — ¢; < w,j =6, - -+, 10, so that
M(5)=[1 1 1 1 1]

We remark that since 4 has no negative entries, no two ¢; are at opposite ends of a
diameter.

Next, let V' be an (n — k) X k matrix whose first column consists of 1’s and whose
remaining entries are 0. The following equations are simple to verify:

(43) VJie=Jn-kks
(44) JVT=Tien—ic
(45) VIVT= Tk,
(46) VM=~Jy—,
(47) MTVT=—J, .

Define the n-square matrix

L 0
) el

conformally partitioned with £, in (39). Then we compute that

J, JVT+M
LEALT=[ , k ]

VI+MT VIVI+MVT+VM+J,_,

and from (43)-(47),

(49) LEALT=[ I J"’”‘k+M].

o+ MT 0

If we refer back to the staircase matrix M in (40) we see that the matrix J;,_, + M has
the same form as M except that the —1 entries above the stairs are now 0 and the 1
entries below the stairs are now 2. If k = 1, Ji ,—x + M = O, ,— and p(E,) = 1. Otherwise,
assume k > 1 and let W denote the (k — 1) X (n — k) submatrix of Jy ,—, + M obtained
by deleting its zero first row:

(50) Jk,n—k+M=[ w ]
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Define the k-square matrix K by

1
-11 0
(51) K=]|- T
0
-1 1
and then let
(52) S= k-0
0 1, n—k
conformally partitioned with (49). It is not difficult to check that
(53) KN, K"= 0 0
0
and that

K(J, +M)=K0"'O
(54) (Jin—« [ W }

=Jk,n—k+M-

Thus, from (49), (53), and (54) we have

(55) S(LELLT)ST =

57

where E, is the k-square matrix with the single nonzero entry 1 in the (1, 1) position.

It is obvious that the rank of the matrix (55) is

(56) 20(W)+ 1.
But then
(57) p(E4)=2p(W)+1

and the proof of Theorem 2 is complete.

The proof of Theorem 3 goes as follows. Since 4 has no (off-diagonal) nega-
tive entries it follows that |¢, — ¢,| is never « for p # g. Thus s(4) # «. If s(4) <
« then Theorem 1 implies that p(VZ) = 1. If s(4) > 7 then Theorem 2 implies that

o( VZ) is odd. In any event, p( VZ) is always odd.

As remarked above, W is obtained from the staircase matrix (40) by removing the
first row, replacing the —1’s by 0’s and the 1’s by 2’s. For example, for the matrix (41)

2200 0
122000
=13 220 o0

2222 2
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Obviously, p(W) is just the number of horizontal steps in W, i.e.,
(58) p(W)=p+1

(see (40)).
To prove Theorem 4, write v as

(59) v=2d+1.

In view of (55) and (57) we need only construct an z#-square A4 such that the resulting
matrix W in (50) satisfies

(60) 2p0(W)+1=v,
or
(61) p(W)=d.

Assume first that # is even so that

(62) 2d+1=v<n
and hence
(63) n—2(d+1)=0.

If d = 0 so that » = 1, simply take 4 to be J,. Otherwise, define M to be the (d + 1) X
(n — (d + 1)) partitioned matrix:

n—(d+1)
-1 e 11
1 -1 —1:

(64) M=d+1 1 1 ot SR YIRS RPN
: : R

1 1 -1 -1

d+1 n-2(d+1)

If we set k = d + 1 so that M is k X (n — k), then it is obvious from the form of M in
(64) that

(65) p(M~+Ji,_i)=d.

From (30) and (39) we need only construct an A such that

Jr M
66 E =
( ) A [ MT Jn B k]
for the matrix M in (64). This amounts to describing a distribution of points e, t =
1, ---, n, as in the diagram (38), such that
(67) E =[e(ep—¢4)]

is the matrix (66).
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'Y
d+3° .
(pd+2 :

(68)
In the diagram (68)
(69) 2T>Q1> 0> 03> > Qe 1> T>Pai2>Pav 3> >0, =0
and

QL= T>Qg+2> P2,

P2 T>Pg+3> Q3 T,
(70) ¥

Pd—T>P2d+1>Pd+1 T,

(71) Cir1—T>Qra42> >0, =0.

Recalling that kK = d + 1, (69) and (11) imply that

59

(72) e(pp—0)=1, pg=1,---,d+1=k

so that the upper left k-square block in E is Ji. The first inequality in (70) implies that
(73) e(pi—@)=—1, q=d+2=k+1,--- ,n.

From the second inequality in (70),

(74) (02— Pas2)=1

and

(75) e(pr—@)=—1, q=d+3=k+2, - ,n.

We continue similarly through the last inequality in (70) which implies

(76) e(@ar1—@g)=1, g=d+2=k+1, .- 2d+1=k+d
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and

(77) e(@ar1—@g)=—1, q=2d+2=k+d+1, - ,n.

Finally, the fact (in (69)) that = > ¢, , implies that

(78) e(ep—pq) =1, p,q=d+2=k+1, - n.

The statements (72)—-(78) show that any distribution of ¢,, ¢ = 1, - - - , n, that satisfies

the inequalities (69)~(71) yields a matrix E, for which (66) holds when M is the matrix
(64). Thus, for any such set of ¢,, the matrix

A — [ei(¢p_¢q)]

has rank 1, satisfies 4 = 0, and has no negative or zero entries (i.e., (¢, — ¢,) # , for
any p and g). This completes the proof for the case n even. Assume next that # is odd
and that v = 24 + 1. Once again we need only construct an n-square A such that the
resulting W in (50) satisfies (61). The two cases v < n and » = n are slightly different.
We dispose of v = n first. Set k = d + 1 so that

n—k=n—(d+1)
(79) =2d+1—(d+1)
=d.
Define M to be the (d + 1) X d (i.e., k X (n — k)) matrix
-1 -1- - - -1
1 -1 - - -1
(50) mo| 11 L
1 1 141
D |

Then
M+Jk,,,_k=M+Jd+ 1.d

obviously has rank d. From (30) and (39) again, it is only necessary to construct A such
that the matrix E, in (67) is precisely the matrix (66). A diagram similar to (68) is
useful:

°d+3
Pg+2

(81)
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In the diagram (81)
(82) PI>P2> > Q> T> Qs 1> Pav2> " > 01>, =0.
Moreover,
(83)
Cit1>PI— T > Qg 2> Pr—T>Pai 3> P3—T>QPa4a> " > P 1 >Qq— T > =0.
Since k = d + 1 and
lep—¢ql <m,  pg=1,-"-k,

the upper left k-square block in E is Ji. It is routine to check that the inequalities (82)
and (83) produce a matrix E 4 such that the matrix M in (80) is its upper right block.
It remains to settle the case v < n. Set k = d + 1 and note that

v+1l<n, n>2(d+1),
and hence
d+1l<n—(d+1).
Define M tobe the (d + 1) X (n — (d + 1)) (i.e., k X (n — k)) matrix

-1 -1 - - - -
1 -1 - - - -1
(84) M 1 1 _.1..._1’
1 -+ .1 =1----1
in which the —1’s in row 2 begin in column 2, - - - , the —1’s in row d + 1 = k begin in

column d + 1. The appropriate set of ¢’s to produce an E, with the matrix M in (84)
in its upper right block is described by the following diagram:

Pg42

9443

(85)
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In the diagram (85)

(86) PI1>Pr>P3> > PIp 1 >T>QI—T> P 2> P2~ T

> Qi3> P3IT TSP s > P21 > Qa1 TSPy > >0, =0,

It can easily be confirmed that the inequalities (86) imply that E, has the matrix M in
(84) in its upper right block. We omit the familiar details to conclude the proof of
Theorem 4.

We proceed to the proof of Theorem 5. If v is odd then Theorem 5 is precisely
Theorem 4. Thus we may assume v is even. The remainder of the proof is in two parts:
v = nand » < n. We first prove that if n is an even integer, there exists an n-square 4 =
0, p(A) = 1, with no zero entries, such that

(87) p(VA)=n.

Define

(88) oxr=(n—k)2w/n, k=1, .,n
so that

p1>@2> >, =0.

As before, we compute the column vector u = [e¢*!, - - - | ¢"]T and then the matrix
A=uu*

)

The square root of 4 is defined by

Vi=[o(Zan) oo (2(2-2)))

which in turn is congruent to the matrix

(89) EA=[e(2n—”(q—p))].

If weset n = 2m, thenforp,gq=1, --- , n=2m, we have

27 1 if|p—gl<morg—p=m,
(90) e(—(q—p))= )
n -1 if|p—q|>morqg—p=—m.
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The diagram corresponding to the choice of ¢, in (88) is

® ) ‘

The matrix E, becomes

(91) E = I M
ATl-Mm T,
and
1 -1 - - -1
1 1 -1----1
M=
1 1 11 -1
1 1 - - 1
=I,+S,

where S is the skew-symmetric matrix with —1 in the upper triangle. Thus, from (91)
0 1
E,=L®J,+ 1 0 OM

(“®” denotes the Kronecker product), which in turn is unitarily similar to
0

R=12®Jm+[l
0 —i

]@M
[JmtiM 0
0  Jnu—iM]
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Now

det (R) = |det (J,, +iM)|?
and

Jn+iM=(1+i)l,,+H,

where H is the Hermitian matrix with 1 — i in the upper triangle and 0 on the main

diagonal. Since the eigenvalues of H are real, it follows that R is nonsingular and
hence V4 is nonsingular.

The second part of the proof begins by using the first part with » playing the role of
n and then constructing a column »-vector u with no zero entries such that

(92) o(Vuu*)=v.

As above, u, = 1. Let v be the column n-vector defined by

u
v= ,
en—v

where e, _, is the column (# — v)-vector, all of whose entries are 1. We show that the
required A for which (37) holds is A = vv*. Note that

A—r uu* uey_,
[ en— U™ e,—,e5-,
\% n-v
Uy -y
vl uu* :
Uy Uy,
ﬂl 'ﬂv
Jnov
| 7,7, .
(93) - .
ul ul e ul
Ak . . .

Uy 1 | Uy 1 Uy

Jn—V

| #ywy ] 1

where i is the column (v — 1)-vector obtained from u by deleting the last component
u, = 1. The matrix VA results from A by simply computing the square root of every
entry in 4. Since columns », - -+, n, in VA are identical it follows that p(\/Z) =

However, the upper left v-square block in VAis Vuu* and it is nonsingular. This completes
the proof of Theorem 5.

3. Inertia. In this section we continue to assume that 4 = 0, p(A4) = 1, and that 4
has no zero or negative entries. As we saw in the derivation of (30), V4 is unitarily
congruent to E,4 and hence the inertia of VAand E 4 = [e(@p — ¢g)] are the same [5, p.
223]. Recall that the inertia of any n-square Hermitian matrix H is the triple of integers
In(H) = (pos, neg, zer) where pos is the number of positive eigenvalues of H, neg is the
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number of negative eigenvalues of H, and zer is the number of zero eigenvalues of H.
As we saw in § 1, the arguments of the vector u for which 4 = uu* may be normalized

so that (24) holds. If s(A4) < =, then from Corollary 1, p( V;l_) = 1. Since VA4 is Hermitian
we conclude that

(94) In(VA)=(1,0,n—1).

Thus assume that s(A4) > =, so that ¢, > =, and, as in the proof of Theorem 2, define k
to be the largest integer such that ¢; — ¢, < 7. Define m, as before, to be the largest
integer such that ¢,, > w. Possibly m = 1, and in any event, m = k (see diagram (38)).
Next, define k, to be the least integer such that

(95) ¢k,<¢t_7ra lzl,...9m'

Thus the set { ¢y, -+ , ¢, } are precisely all the ¢; which are less thanp, — 7, =1, - - -,
m. Note that k;, = k + 1. Since ¢; > wrand ¢, Z ¢, = - -+ = ¢, = 0 it follows that
(96) ki=k=---=k,.

For example, in the diagram (42), k; = 6, k, = 8, k3 = 8, ks = 9. Moreover, the number
of elements in the set { ¢y, -, @10} is the number of —1’sin M), t =1, --- , m(ie.,

M is the matrix defined in (39)). If two (or more) successive k; are the same, the cor-
responding rows M, are identical. If two (or more) successive k; are distinct, then the
corresponding rows M, are linearly independent. Also, rows m + 1, - - -, k (if any) in
M are identical and consist entirely of 1’s. There are such rows of 1’s only in the case
where m < k. Thus the rank of M + Ji,_ is the number, 6§, of nonzero differences in
the (m — 1)-tuple

97) [ka—ki,ks—kay - k= k1]

in the case where m = k, and the rank of M + J;,,_, is 6 + 1 if m < k. It is important
to note that if m = 1 < k then p(M + Ji,—x) = 1 because the first row of M + Ji ,,— is
0 and the remaining k — 1 rows consist entirely of 2°s. We summarize these observations
in the following theorem that expresses p(W) (see (50)) in terms of the arguments of
the vector u (see (18)).

THEOREM 6. Let A = 0, p(A) = 1, and assume A has no zero or negative entries.
Suppose that A = uu* and that the arguments ¢, - - - , ¢, of u are normalized so that

1= 2¢,=0.

Let k be the largest integer such that ¢, — ¢ < m and let m be the largest integer such
that ¢, > w. Also, let W be the matrix in (50), and ifm> 1letk, t =1, -+, m, be as
defined in (95) and then define & to be the number of nonzero differences among the
components of (97). Then

0 ifk=1,

1 ifk>landm=1,
o+1 if l<m<k,

0 if l<m=k.

(98) p(W)=

It is straightforward to compute the inertia of VA4 in terms of p(W).
THEOREM 7. Let A Z 0, p(A) = 1, and assume that A has no zero or negative
entries. If s(A) < «, then

(99) In(VA)=(1,0,n—1).
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If s(A) > =, then

(100) In(VA)=(p(W)+1,p(W),n— 1= 2p(W))
in which p(W) is determined entirely by the arguments ¢,, -+, ¢, of u in the for-
mula (98).

Proof. If s(A) < =, then (99) was established above in (94). If s(A4) > =, then from
(57) and (30)

p(VA) = p(E4)
=2p(W)+1.

(101)

Also, from (55), E 4 is congruent to the matrix on the right side of (55), in which W is
(k— 1) X (n— k). If k were 1, then W does not appear in (55) and the right-hand side
of that equation is the n-square matrix whose single nonzero entry is a 1 in the (1, 1)
position. Then (100) holds for p(W) = 0. Thus assume k > 1 so that the right-hand side
of (55)is

in which E|, is k-square and Wis (k — 1) X (n — k). Then In(VZ) = In(R) [5, Thm.
4.5.8]. Since R is the direct sum of 1 and the (n — 1)-square matrix

0o w
(102) H-[WT 0]

we write W = UDV, the singular value decomposition of W. Let p(W) = h and let o) =
- Z ay, > 0 be the positive singular values of . Then H is unitarily similar to

0 1
(103) [1 0]®diag(a1,"',ah)®0n—1—2h-

The eigenvalues of (103) are +a,, ¢t =1, -+, h,and 0, n — 1 — 2h, times. Thus
In(R)=(h+1,h,n—1-2h).

Since A = p(W), the proof is complete. O

Theorems 6 and 7 provide us with a straightforward algorithm for computing p(¥),
and from this value, both p( VZ) and In ( VZ). We start with an arbitrary 4 = uu*, with
no zero or negative entries. Following the MATLAB™ convention we use “%” for doc-
umentation.

Step 1. Take u = AV, the first column of 4.

Step2. If u, = re,t=1,---, n,sort and translate the vector ¢ = [¢y, *** , ¢,]
sothatp, = --- 2 ¢, = 0.

Step 3. If ¢; < 7 then set p(W) = 0 and end % p(ﬁ) = 1.



HADAMARD SQUARE ROOTS 67

Step 4. Determine the largest k such that ¢, — ¢ < 7. If k = 1 then set p(W) =0
and end. % p(VZ) = 1.

Step 5. Determine the largest m such that ¢, > 7. If m = 1 then set p(W) = 1 and
end. % if k> 1 and m = 1 then p(W) = 1 and p(V4) = 3.

Step 6. For t = 1, ---, m, determine the least k, such that ¢, < ¢, — 7. %
k>1and m> 1.

Step 7. Determine the number, 6, of positive components of [k, — ki, -+, k,,, —
km— 1 ] .

Step 8. Setp(W)=6+ lif m<kandsetp(W)=6ifm=k. % p(W)=56+
lifl<m<k,p(W)=06if1l <m=k.

Step 9. end

The value of p(W) produced by this algorithm satisfies
(104) p(VA)=2p(W)+1,
(105) In(VA) = (o(W)+ 1,p(W),n—1=2p(W)).

For, if ¢; < m, then p(W) = 0 and both (104) and (105) are correct. If ¢; > 7 and k =
1, then p(W) = 0 and again (104) and (105) are correct. If m = 1, then the conclusion
is the same. Finally, if kK = m > 1, then (98) and (100) again confirm that (104) and
(105) are correct for the value of p(W) produced by the algorithm.

As an example, for the matrix described in the diagram (42), n =10, m =4, k =
S,kl =6,k2=8,k3=8,k4=9,

[ka— ki, ks—ka, ka—k31=[2,0, 1],
6 =2and p(W) =26+ 1= 3. This is confirmed by (58).

4. Some computations. It is quite simple to write a MATLAB ™ program to generate
random complex 4 = 0 of rank 1 and tabulate p(VZ). In Table 1 the row headings
indicate n, the dimension of A. The integral column headings indicate rank. For each
n=3,---,10, 250 random A were generated. The entry in the (p, g) position is
a count of the number of p-square 4 = 0, p(A) = 1, for which p( VZ) = q. For example,
the (7, 5) entry of Table 1 indicates that of the 250 random 7-square A4, 87 of the
matrices VA had rank 5. The column headed 7 is the number of elapsed seconds re-
quired to complete the computation for each #n. The computation was done on a Mac-
intosh II™ computer with 1 MB of main memory. The program does not test for zero
or negative entries in 4. The listing that follows will produce an output formatted as

TABLE 1
n/p 1 3 5 7 9 t
3 199 51 - - - 17
4 122 128 - - - 22
5 80 158 12 - - 28
6 51 151 48 - - 36
7 27 133 87 3 - 46
8 12 114 105 19 - 57
9 8 90 117 32 3 70
10 5 61 116 66 2 85
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indicated in the typical session following the listing (we have omitted the sum and time
elapsed):

W< W
[ |

—_——
—_—
~ o~

1;
i=sqrt(—1);
n=input('enter sizeof u: ')
j=input('enter number of iterations: ')
disp(' ')
starttime=fix(clock);
for k=1:j
x=2xrand(l,n)—ones(1l,n);
y=2*rand(1l,n)—ones(1l,n);
u=x+ixy;
A=u'xu;
B=sqrt(A);
v=[v rank(B)];
end
for r=1:n
len=1length(find(v==r));
R(r,l)=r;
R(r,2)=1len;
end
disp('Rank Number of times ');
disp(R)
disp('The sum of the number of times is: ')
disp(sum(R(:,2)))
elapsed_time=etime(fix(clock),starttime)

enter sizeofu: 5
enter the number of iterations: 250

Rank Number of times
1 80
2 0
3 158
4 0
5 12

5. Further work. The authors are currently investigating various extensions of the
work in the present paper. These include:

1) The rank of general Hadamard powers of 4 = 0, p(4) = 1;

2) The extent of the numerical range W(VZ) when 4 = 0, p(4) = 1, but 4 has
negative entries so that VA is no longer Hermitian;

3) po( VZ) when 4 2 0, p(4) > 1, and 4 has no negative entries,

4) p(VZ) when A4 is normal, p(4) 2 1;

5) The distribution of the eigenvalues of VA for 4 = 0, p(A) = 1, and A4 has no
negative entries.

6) The probability distribution of p( VZ) for randomly generated 4, 4 = 0,
p(A4) = 1.
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ON SIMULTANEOUS CONGRUENCE AND NORMS
OF HERMITIAN MATRICES*

STEPHEN PIERCEt{ AND LEIBA RODMANj

Abstract. LetA4,, -+, A,, By, -, B, be n X n complex Hermitian matrices. It is said that B, - - - , B,,
are simultaneously congruent to 4,, - - - , A,, if there exists an invertible .S such that S*4,S = B;,i=1, -+,
m. In this paper, inf || I — S||, as S ranges over all invertible matrices which afford this simultaneous congruence,
are studied. If one of the 4; is positive definite, it turns out that the growth of inf | I — S| is of the same
magnitude as that of | B, — A,|| + - -+ + || B, — A, |l. A counterexample with m = 2 is given to show that this
result can be false if none of the 4;’s is positive definite. An analogous result for simultaneous unitary congruence
of matrices is also proved.

Key words. simultaneous congruence, norms
AMS(MOS) subject classifications. primary 15A57; secondary 15A60

1. Main results. Let 4 = (A4, -+, A,,) be an (ordered) m-tuple of (complex)
Hermitian n X n matrices, and consider the set C(A4) of all m-tuples B = (B, - - , B,,)
of (necessarily Hermitian) # X n matrices that are simultaneously congruent to A, i.e.,
for some S € GL (n, C) the equalities B; = S*4;S,j = 1, - -+, m hold. (As usual, we
denote by GL (7, C) the group of all invertible # X n matrices with complex entries.) In
this paper we study the following property of the m-tuple 4 as above. There is a constant
K > 0 (depending on A only) such that for every (B, - -+, B,,) € C(4) there is an
S € GL (n, C) with

Bj=S*AjSa j=1>..',m,

m
I7-Sl=K 2 | Bi— 4l

i=1

(here the norm | - || is chosen in advance). It will be convenient to use in this paper
mainly the Frobenius norm

1/2
||[aij1;fj=,||=(2|ai,-|2) :
L]
occasionally, the operator norm || 4 || ;; (the largest singular value of 4) will be used; the
operator norm will be distinguished by the subscript “ H.” If such K > 0 exists we say
that 4 has the Lipschitz property with respect to simultaneous congruence.

Lipschitz properties of similarity of matrices have been studied in [GR ]. Problems
related to the Lipschitz properties of congruence and similarity have been studied in the
operator-theoretic context (existence of local and global continuous cross sections); see,
e.g., [DF], [P], [AFHV], and [AFHPS]. We also mention (as an inspiration to this
paper) that Lipschitz behavior of solutions to various other problems recently became a
subject of extensive study (see, e.g., [MS], [A]).
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It was shown in [PR] that in the case where m = 1 every Hermitian matrix has the
Lipschitz property with respect to congruence. This is no longer true if m = 2; for the
reader’s convenience we reproduce here the counterexample given in [PR].

Example 1.1. Let
4= 0 1 4= 0 1
Yl oof o)
It is easy to see that for every a # 0 the matrices

B_O 1 -4 B~a2 1
1—[1 0](— 1) 2—[1 0]

are simultaneously congruent to 4,, 4, (in fact,

0 « 0 o .
a_l 0 Aj o 0 =Bj, ]=1,2)

However, any invertible matrix 7 for which T7#4;T = B;, j = 1, 2 has the form
irei(0+1r/2) Ial—]eio
=[ lee|e™ 0 ]
for some r > 0 and some real 6. For any such 7 we have
17=T| =[]

As a = 0 we see that (A4, A>) do not have the Lipschitz property with respect to si-
multaneous congruence.

Our main results are the following.

THEOREM 1.1. Let A = (A,, - -+ , An) be an (ordered) m-tuple of n X n Hermitian
matrices, and assume that at least one of them is positive definite. Then A has the Lipschitz
property with respect to simultaneous congruence.

In fact, 4 has the Lipschitz property with respect to simultaneous congruence pro-
vided that some linear combination of 4;, - - - , 4,, is positive definite (we are indebted
to C. R. Johnson for this observation). To prove this, apply Theorem 1.1 for the
(m + 1)-tuple

m
(Ala e aAm’ 2 CiAi)’

i=1

where the real numbers ¢;, - -, ¢, are such that

m

2 Cid;

i=1

is positive definite.

Thus, Theorem 1.1 settles in the affirmative the conjecture stated in [PR].

An analogous result (without the positive-definiteness assumption ) holds for simul-
taneous unitary congruence of matrices. To describe this result, we introduce the following
notation. For an (ordered) m-tuple N = (N, - -+, N,,) of n X n complex matrices, let
UC(N) be the set of all m-tuples (M,, - - - , M,,) that are simultaneously unitarily similar
toN,ie,M;=U*N,;U,j=1, ---, mfor some unitary n X n matrix U.
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THEOREM 1.2. Let N = (N, - -+, N,,,) be an (ordered) m-tuple of n X n ma-
trices. Then there is a constant K = 0 (depending on N only) such that for every
(M, -+, M,,) € UC(N) there is a unitary U with

M;=U*N;U, j=1, . m
and

I1-Ul=K 2 |N;— M.

i=1

This theorem can be obtained as a corollary of Theorem 1.1. Indeed, apply Theorem
1.1 to the (2m + 1)-tuple of Hermitian matrices

(1.1) (I,Re N;,Im Ny, --- ,Re N,,,Im N,,),

where we denote Re X = (X + X*); Im X = 1/2i(X — X*). The (2m + 1)-tuple of
Hermitian matrices which is simultaneously congruent to (1.1) is taken in the form

(I,Re M, Im M,, --- ,Re M,,,Im M,,).
The proof of Theorem 1.1 will be given in the next two sections.

2. A local theorem. In this section we prove a local result on which the proof of
Theorem 1.1 is based.

Let 4 = {4, -+, A} be a finite family of n X n Hermitian matrices. Let U(n)
be the group of all # X n complex unitary matrices. We say that U € U(n) centralizes A
if Udy = A Uforallk =1, ---, n. For each U € U(n) but not centralizing 4, define
11— U|?
(2.1)

U)= .
O S N UA— 4,0

THEOREM 2.1. There exist positive constants K, e depending only on A, - -+ , Am,
such that if

m
> UA— A U|? <e,
k=1

then there exists a V € U(n) such that V¥4V = U*A4U, k = 1,---, m, and
(V) <K.

Remark 2.1. Note that |Ud, — A Ul = |U*4, U — Ac|l.

Remark 2.2. For Vto satisfy V*A4,V = U*4, U, k=1, --- , m, it is necessary and

sufficient that V' = W U where W is unitary and centralizes 4. In this case, the denom-
inators in f;(U) and f;(7") will be the same; only the numerator can change.

Remark 2.3. If the theorem is false, there must be a sequence { U;} in U(n) such
that lim;_. ,, U; = I,,, f4(U}) is increasing, and lim;_, ,, f4(U;) = oo. Moreover, we may
assume that the sequence { U;} is the best possible in the following sense. If V; is any
sequence of unitary matrices centralizing 4, then |7 — V;U;|| Z |1 — U;|. This means
that every subsequence of the f;(U;) diverges and cannot be “repaired.” We will show
that there is a subsequence of the f;(U;) that can, in fact, be “fixed” and thus prove the
theorem.

The proof involves consideration of several cases.

Case 1. The irreducible case. We assume in this section that 4 = {4} }- | forms
an irreducible set, i.e., they have no common proper invariant subspace in C”. Then the
centralizer of A consists of scalar matrices only and hence we may modify the U; only
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using multiplication by a scalar of modulus one. We will therefore assume that one
occurs as an eigenvalue in every U;. For each j, let \; be the eigenvalue of U; such that
|1 — XNl 2 |1 — | for any other eigenvalue X of U;.

For each j, choose V; € U(n) such that

ViUY=X0Y,
and if u, A are eigenvalues of X; and Y, respectively, then
lu=X|Z 1= )\/n.

The possibility of such choice of V; follows from elementary geometric considerations.
In addition, let By; = V;* A4V, k=1, - -+, m. Clearly,

l1-x@Y,)?
2 1 By(X,@ Y) — (X;®@ Y)) Byl >
Partition By; conformally with X; ® Y}, obtaining

B.— [ By Bg j2]
Ji = .
7 Bz Bus

Ja(U)) =

Note that
m
E ” /YjBkﬂ - Bkﬂ},j ” 2
k=1

is part of the denominator in the representation of f,( U;) above.
Now X; ® I — I ® Y; is a normal linear transformation whose smallest singular
value is at least |1 — \;|/n. Set

m
= 2 | Biall®
k=1

Since {4, - -+, Ay} are irreducible, we can never have ; = 0.

A simple reasoning will verify that f,(U;) < n*/t;. Indeed, the eigenvalues of X; ®
Y; are also those of U;. So

I-X®Y12=n|1-)]%
Also,
m m
> 1 XiBip— B Yil1>= 2 I(X;@I-I®Y)) Byl * 2 a}t),
k=1 k=1
where «; is the smallest singular value of X;® I — I ® Y;. Now

I1-X,®Y;|* §n|1—>\1|2§n_3’
=1 1 X;Bi2— B2 Y5112 ajt I

ﬁﬂ(Uj)ém,,

as claimed.

Next, we also must have {¢} bounded away from zero. If this were not the case,
some subsequence of the V; would converge to a unitary matrix ¥ such that the matrices
V *A4,V would have a commonly placed zero block indicating reducibility. ]

Remark 2.4. The sizes of the By, in general will not be the same. This causes no
problem with the above argument. If some subsequence of the ¢; approaches zero, we
may assume that the corresponding subsequence of the B,;; all have the same size.
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Case I1. The reducible case. Preliminary results. This case does not seem to yield
to a simple induction argument. Thus we will prove a series of propositions to be
used later.

PROPOSITION 2.2. Let {By, -+, By}, {Ci, -+, Cn} be two sets of Hermitian
matrices. Assume that the only matrix X satisfying B;.X = XC;,i=1, -+, m,is X =0.
Then there is a constant K > 0 independent of X such that for all matrices X of suitable
size the inequality

||X||2é1<( s ||ka—xck||2)

k=1
holds.

Proof. Define a linear transformation 7" on matrices the size of X by 7(X) =
(BiyX—-XCy, -+ ,B,X—XC,).Obviously the kernel of T'is zero and hence its smallest

singular value «; is positive. Thus we can take K = 1/«,, which depends only on the C;
and B,. O

PROPOSITION 2.3. Let X and Y be upper triangular matrices of sizes m and n,
respectively. Suppose a( X) = { A\, -+ , A} and o(Y) = {p1, -+, un}. Assume further
that 0 < p = min |\; — w;|. Then for any m X n matrix B = [b;]; si<m;1=j=n, we have

IXB—BY | zpq,

where q is defined as follows:

q = | b | unless b,,, = 0; otherwise,

q=max (|bm2l, |bm-1,11) unless bz = b,—1,, = 0; otherwise,

q = max (lbm,3|9 |bm— l,2|a bm—-2,1|)a eic.

Remark 2.5. Note the ordering of the entries in B, starting at the lower left-hand
corner and working toward the upper right-hand corner in a back and forth fashion.

Proof. We can assume that the diagonal of Xis A, - - - , A,, (in this order) and the
diagonal of Yis u;, -, u, (in this order). Let Z = X B — BY = [z;]i s = m;1 <j=n. Since
X and Y are upper triangular, we observe that z,,; = b,,;(N\,, — u1). Thus, if b,,; # 0,
then we are done. If b,,; = 0, then we note that

Zm2=bm2(>\m_”'2) and zp- 1,1 =bm— l,l(>‘m— 1 _ﬂl)-

Thus we are done unless b,,, = b,,—;; = 0. Continue inductively until the result is
established. O

Remark 2.6. If X and Y were diagonal, we could use an argument as in Proposition
2.2 and replace pq with the better bound p || B||, because p is then the minimum singular
value of the linear map X® I — I ® Y.

PROPOSITION 2.4. Let W be an rs X rs matrix partitioned into s X s blocks

Wi, j =1, r). Assume that W is a contraction, i.e., |W g = 1. Then there
exists an r X r unitary matrix P such that the matrix Z = W (P ® I, ) has the property
that the blocks Z,5, - - - , Z, are all singular.

Moreover, given an ¢ > 0, there exists a 6 > 0, such that if |I — W| < 8, then P
may be chosen so that |I — P|| < e.

Proof. The validity of the second statement of the proposition will be evident in
the text of the proof. Also, we will choose P so that for j = 2, - - -, r the jth column of
P lies in the span of the first j standard vectors e, - - - , €;.
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First pick p;» and p,, so that p,, Wi, + pnWi, is singular, | p,|2 + p% = 1, and
P2 2 0. This is clearly possible, and if W, is close enough to I, then (because W
is a contraction) W, is close to zero, and consequently p,, will have to be close to one.
In fact, if W, is already singular, we will choose p;, = 0 and p,; = 1. Now set p3, =
-++ = p,» = 0, and we have selected column 2 of P. To get column 3 of P, first choose
a vector v; in span {e,, e, } which is orthogonal to column 2 of P, say v3 = pye; — ppa€;.
Then choose numbers ¢ and ps3 so that tpL, Wy — tp1oWia + p33sWis is singular, ps33 =
0, and t2p3, + ¢?| p12|*> + p% = 1. Note, as before, that if W), is close to I, then we
will have to choose ps; close to one. Now we let column 3 of P be tp,,e; — tp12e; + Dases.
Continue in this fashion, to obtain columns 4, - - - , r of P and then choose column 1
by Gram-Schmidt with the (1, 1) entry close to 1 (if W, is close to I). O

PROPOSITION 2.5. Let {By, - -+, B} be an irreducible set of n X n Hermitian
matrices. Then there is a constant L > 0 depending only on the B; such that for any
singular matrix X we have

uxuzéL( » ||BkX—XBk||2).

k=1

Proof. This inequality is homogeneous in X, so we will confine our examination
to those X which lie on the unit sphere S consisting of all X such that | X | = 1. Let V;
be the matrices of determinant O and V| the scalar matrices. The V, N S and V; N .S are
disjoint closed sets in .S and hence have a positive distance between them. Let 7 be the
linear map on # X n matrices givenby (X )= (B, X— X By, - -+, B,X— X B,,). Clearly,
the scalar matrices are exactly the kernel of 7. Thus {[|7(X )| X € Vo N S} must be
bounded away from zero by a constant depending only on 7. This completes the proof.

PROPOSITION 2.6. Let By, - - - , B,, be an irreducible set of s X s Hermitian matrices.
Then there is a constant L, > 0 depending only on By, - - - , B,, and on the positive integer
r such that the following holds: Given any rs X rs contraction W = (W) (the W are all

sisnl=sj=

satisfies

m
» ||z,»,-||2§Ll( D3 ||Bkz,-,-—z,-,Bk||2).
k

i<j =li<j

Proof. By Proposition 2.4, we will first assume that W,, - -+, W, are all singular.
If Wy, - -+, Wy, are all zero, we can finish by induction on r (observe that for r = 2
Proposition 2.6 is easily gotten by combining Propositions 2.4 and 2.5). Otherwise, let
W, be the (r — 1)s X (r — 1)s principal submatrix of W obtained by deleting the first
block row and column. By induction, choose an (r — 1) X (r — 1) unitary matrix P
such that Zy = Wo(Po ® Iixs) = [Zjlasi=rps s, satisfies the result of the theorem,
namely, that

» ||zi,||2éL1(z » ||Bkzij—z,,-3k||2),

l<i<j k=11<i<j

where L; depends only on By, ::,B,. Now let P=1® Py, and set Z=
W (P® I;x). Now

[Zl2’ e ’er]=[W12’ e >er][P0®Is><S]'
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Of course Z3, - -+, Z;, do not have to be singular, but since Py ® I, is unitary,

1[Z2, -+ 5 Z N2 = 1 [Wh2, - -+, Wi, 1112 Since W), - -+, W), are all singular and not
all zero, we have from Proposition 2.5 that

r m
» ||z,»,~||2§L2( S S uBkW,-,»—W,»,BkuZ),

1=i<j j=2k=1

where L, > 0 depends only on By, - -+, B,, and r. This completes the proof. O

We will use Propositions 2.4 and 2.6 when the contraction W is a principal submatrix
of a unitary matrix. In connection with this we remark that any contraction is a principal
submatrix of a unitary matrix.

Case 1. Proofs for the reducible case. We will assume that 4 = {4, -+, A,y }
and the sequence { U;} are as before. In other words, { U;} 2, is a sequence of n X n
unitary matrices with the following properties:

(i) limj., U; =1,
(ii) The numbers f4(U;) = |1 — U;II*/Z 71 |U;Ax — Ak U;|* tend to infinity;
(iii) If {¥; } 2, is any sequence of unitary matrices centralizing 4, then

I7-vulzl1-yl,  j=12,---.

We have to prove (by contradiction) that this sequence is impossible.

Because there have to be several stages of partitioning the A, and U;, we will introduce
the required partitioning now. First, a definition. Two ordered sets of # X n Hermitian
matrices T = {T{", -+, TV} and T® = {T{? T(z’} are called equivalent if
there exists S € GL (n, C) such that S7!TVS = T(Z) (1 =1, , m). In fact, if such
an S exists, it can be chosen unitary. Since 4 = {A4;, -+ , A} 18 reducible, A is equivalent
to {B;® C;}/L,,where B= {By, -+, By} is irreducible. IfC={Cy, -+,Cp}hasan
irreducible component equivalent to B, then A is equivalent to { (/x> ® B;) ® Ci} 7L

for some C' = {C}, - -+, C},}. Continuing this process, we may assume that every Ay
has the form

Ak=(1r)<r®Bk)®Ck, k: 1’ ceeLm,

where the By are s X s, { By, -+, By, } is irreducible and no irreducible component of
{Cr} %=1 is equivalent to { By, * - - , B,y } . By Schur’s lemma, the latter condition means
that there is no nonzero matrix Q such that

(Irxr®Bk)Q:QCk; k=1> tct,m.

Next, partition U; conformally with the above partition of the A, as

U:Wij
Xz

where W, is the same size as I,x, ® By, namely, rs X rs. Next, partition W; conformally
with the block diagonal matrix I,x, ® By as (W};),, where each (W), is s X s. If the ith
block row of (W)) is (W))i1, -+ , (W))ir, then the corresponding ith block row of Y; is
denoted (Y)),.

There is one deeper partition that we will have to make. It will be necessary to
choose for each j a block diagonal rs X rs unitary matrix P; (the blocks on the diagonal

are of size s X §) such that the (p, p)th block of P; W,P; is upper triangular for every
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p=1,---, r. We will denote the (p, p)th block of P;(I ® B,)P as (Ekj)p, and the
(p, p)th block of P W,P; as (P} W;P,),,. These blocks will have the form

R; Sj]
0 ij .

The sizes of R, and @), will depend on j and p. The way R;, and Q,, are chosen
will be indicated later in the proof.

Let «, 3 be increasing integer sequences (not necessarily of the same length ) between
one and n. If U is n X n, we let U[a, 3] be the submatrix of U in the intersection of
rows « and columns 8. If R; = Uj[«, 8], we shall say that R; is bounded if there is a
constant L; independent of j (and hence dependent only on A4, -+ -, 4,,), such that

%
D kjp E kip

(By) =[
wr Ekjp ijp

]’ (PJ*I’Vij)pp:[

||Rj1|2§L3( S | Acle, 0] R~ R ALLB, B] n).

k=1

If R; = Uj[e, a] is a principal submatrix of U;, then we shall investigate instead the
boundedness of I — R;. We want to demonstrate the boundedness of I — W), I — Z;, X,
and Y; (or some subsequence thereof). As an example of this idea, we note that X; and
Y; must be bounded by Proposition 2.2. We will use the boundedness of X; and Y; in
our proof.

Now we consider the rs X rs matrix W;. We will show how to investigate ¥; and
from this it will be clear how to treat Z;. First we observe that any unitary matrix of the
form (P ® I,y ) ® I,x, commutes will all A. If all (W)),, are zero, we can continue to
the next step and bound || — (W)),, || by using the irreducible case inductively. Otherwise,
we use Proposition 2.6 to allow the assumption that if p < g, then (W}),, is bounded.
We do this by multiplying through by a matrix of the form (P ® I, ) ® I.

We now observe that since Uj is unitary, we have || X;||> = || ;[ %, and hence

2 N Vpall?= 2 1 (W))pgl>.

p<gq p>q

Therefore, since

Zp<g | (Wnl?
Z;Cn= 1 zp<q"Ak(VV])pq_(VV;)quk"2

is bounded in terms of the 4, alone, the same is true for

Zp> gl (Wl
zkm= 1 zp>q ”Ak(n/;')pq_(”/})quk ” 2

It may be that for particular p > g, (W}),, is not bounded; the weaker statement
above, however, will suffice for our purposes.

The most difficult part is to bound I — (W}),,. We assume that every eigenvalue of
(W), has a positive real part (indeed, { U;} is a sequence of unitary matrices approaching
I, so any principal submatrix of { U;} will be close to I as well (for j large enough) and,
in particular, all its eigenvalues will have positive real parts).

We may also assume that each (1)), is “adjusted” by multiplication by some scalar
o, of modulus one. The choice of ;, is crucial. Since (W)),,is s X s, let Ay, - -+, A; be
the eigenvalues of (W)),, after a suitable choice of «,.
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We consider two cases. In the first case, it is possible to choose «;, such that

Z =A== Z A= IND).

This would occur, for example, if all A, were on or in the circle r = cos 8, i.e., the circle
with center § and radius §. We now wish to examine

"I_(I/Vj)pp"2
zz; 1 ” Bk(I/Vj)pp_(VVj)pka ” 2

Let (U)), be the pth block row of U; with (W)),, removed. Since [[(U)),[* =
(Y17 + 2,24 |Whll% (U)), is bounded. Pick a block diagonal unitary matrix
P;i(n X n) such that in P} U;P;, the pth s X s principal block is upper triangular with
main diagonal A\, -+, A\;and 1 — |\ =21 = |N],v=1,---, s — 1 (this holds for
p=1,---,r).Set U= P} U;P,. Let Y;, X;, W;be defined in the obvious way. Note that
all s X s blocks in U, have the same norms as the corresponding s X s blocks in U;.

For notational convenience, let T be the pth principal s X s block in (7, (this is short
notation for ( Wj),,,,). The last row of Tis (0, - - - , 0, \;) and hence 1 — | \,|?is the norm
squared of a submatrix of (L7,~),,. Thus 1 — |X|? is under control and hence so is
. (1 — |\ ]?). Let N be the strictly upper triangular part of 7 and note that || +
<o+ | N]2+ NI+ [ (T;), 1% = s since this is just the sum of squares of the absolute
values of the entries in s rows of a unitary matrix. But

IT=T1*=Z 11 =NPHINIZ =22 1= N2 = 1(U), 112

v v

=22 (1= IND = U112

and hence || — T ? is clearly bounded because =, (1 — |X,|?) = [[(U)),lI% and (U)), is
already bounded. This concludes the first case.

Remark 2.7. The first case above is the one in which the A, are clustered sufficiently
close together. It includes, in fact, the case \; = --- = A,;. The next case occurs when
the A, are close to one in modulus, but far from one in actual distance. This forces
[ 7 — (W)),,1I* to be relatively large. We should also note that it was not necessary to
inspect the denominator in the quotient

”I_(I/V})pp"2
z]rcn=l “ Bk(u/}')pp—(u/j)pka"z'

The numerator could be bounded by direct comparison with other bounded submatrices
in U;.

For the second case we assume that T'is as before and the corresponding s X s block
in By, is By, as indicated previously. We further assume that X, is positive and greater
than 1, that |\, — \;| = |\, — \,| forall v, g, and that 2, |1 — \,[2 = Z, (1 — [\ ]?).
Split the eigenvalues into two disjoint sets { A, - =+, A\, }, {A.+1, -, Ay} such that the
distance 7 between the two sets is at least |1 — A;|/s. If this were not possible, all A,
would lie in the circle centered at A, with radius 1 — A, which is interior to the circle
r = cos 0 and we would be in the first case. Clearly, A\; and A\; must be in different sets.
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Moreover, by choosing a subsequence of the U; if necessary, we will assume that the size
u of the first set is independent of j. We now observe that for any v,

|1—>\v|2 Szll_xslz"_ |>‘u~>‘slzs4
|>‘l—>‘s|2_ |>‘v_>‘s|2 7

and this inequality is independent of j as long as we are in the second case.

Next observe that we can never have Eyj, = 0 for all k for any p or j. This would
contradict the irreducibility of By, - - - , B,,. Also, for the same reason there can be no p
such that there is for all k = 1, - - - , m a subsequence of the E};, approaching zero.

Order the positions in Ey;, starting with the lower left-hand corner and proceeding
toward the upper right as in the proof of Proposition 2.3. Thus if the size of Ey;, is y X
z, then the ordering of the positionsis (y, 1), (¥,2),(y — 1, 1), (y =2, 1), (y — 2, 1),
y—1,2),(»y,3), ---,(1, z). Let (3o, zo) be the first position in this ordering satisfying
lim; o, [(Ekjp)yezo | F 0. By Proposition 2.3 we must have

" ijEkjp - Ekjp ij " 2 = 7r2 |(Ekjp)yozo |/2

Recalling that = = |\ — A,|/s, we now see that if D is the diagonal part of T
(D = diag (A1, * -, \y)), then || I — D||? is also under control. Let N be the nilpotent
(strictly upper triangular) part of 7. Then

> = IN)+ NP+, 17 =s.

Since 2, |1 — A\J22 2, (1 — [A]?), and ||[I — D|? is controlled, we have concluded
the second case.

At this point we have shown the existence of a subsequence of the U; (which we
will take to be { U;}) such that (see (2.1))

where the L; are constants obtained in terms of the 4, only. A glance at the proofs of the
propositions in this section shows that the L; can be chosen independent of j, i.e., all L;
can be chosen the same. This concludes the proof of Theorem 2.1.

3. Proof of Theorem 1.1. We start with a lemma.

LEMMA 3.1. Let A = (Ay, -+ -, A,,) be an m-tuple of n X n Hermitian matrices,
and assume that at least one of Ay, * -+ , Ay, is positive definite. Then there are positive
constants K and e such that for every (B, - -+, B,,) € C(A) with

2 1Bi—4;l <e

i=1
there exists S € GL (n, C) with
B;=S*4;S, j=1,---.m,
and
[I-SI=K2> || Bi—4;l.
i=1

Proof. It is easy to see that if Lemma 3.1 holds fgr an_m-tuple_ A4 =
(A4y, -+, A,), then it holds also for any m-tuple of the form 4 = (4, -+, 4,) =
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(T*A,T, -+, T*A,,T), where T is an invertible matrix. Indeed, let ¢ = ¢/||77"||? ,
and let
(Bi, -+, Bn)eC(4)
with

"Ei_/Ii” <&
1

Defining B; = T*~ ! B;T"!, we find that

"M 3

1

m
2 I Bi—4;l <e,

i=1

and hence (since we have assumed Lemma 3.1 holds for (4,, -+ -, 4,,)) there is S €
GL (n, C) with

B,‘=S*AiS, i=1,"',m
and with
m
I7-SI=K > || B:— 4.
i=1
Letting S = T-' ST, we see that
é,':g*/.iig, i‘:l,"',m.
Moreover,
11— Sl =1-T7'STI =TI 1- ST
m
ITHITIKIT'? 2 1 Bi— 4l
i=1

and the result of Lemma 3.1 is verified for the m-tuple A.

Using this fact and the assumption that one of the A4,’s, say 4, is positive definite,
we shall assume without loss of generality that 4, = I.

Suppose S is an invertible matrix such that 27, | S*4,S — 4;|| < e, where eis a
fixed positive number. We need to replace S with an invertible 7 such that

T*A,T=S*4,S  (i=1,---,m)
and
m
V-1l éK( o ||T*A,-T—A,-||),
i=1

where the constant K depends on A4 only, for a suitable choice of e. Let S = UH be the
polar decomposition of .S, with unitary U and positive definite H. In the sequel we denote
by K, K,, - - positive constants that depend on A4 only. As

S*A4,S—A,=S*S—I=H?*-1,
it follows that | H — I|| = Kie.
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So

m m m
2N U- Al = 2 1S*4:S—Aill + 2 | U*A4,U—-S*4;8)

i=1 i=1 i=1

<ot S |(I- HYU*A,U(I—H)|

i=1
m m
+ 2 1UU-H)U*4;UH| + ¥ |HU*4;U(I- H)||
i=1 i=1
é K2£.
Using Theorem 2.1, and choosing a suitable ¢ > 0, we find unitary W such that
W*A,'W':U*AiU (i=1,"',l’Vl)
and
- wlsk( 2 I aw—a ).
i=1
Now put 7= WH. Clearly, S*4;,S = T*4;,T(i=1, --- , m).
Furthermore,

(3.1) I1-WH| s |I-W|+II-Hl,

(32) |- H| SKi| H*H—1| = K| T*T— 4, sm( S I T* A, T— 4 )

i=1

and

- W||§K3( 5 ||W*A,»W—A,~||)

i=1

(3.3) §K3Ks< S HW*A,~WH-—A,~|I)

i=1

= K3Ks( > T*A4;,T— A; ")

i=1

Combining the inequalities (3.1)-(3.3), we finish the proof of Lemma 3.1. O
Proof of Theorem 1.1. Using Lemma 3.1 choose ¢ > 0 and K; > 0 such that
the inequality

(3.4) I71-Sl=K, 2 | Bi— Al
i=1

is satisfied for some Se€GL (n, C) with B;= S*4,S, i=1, --
(Bl; e ,Bm)GC(A)and

, m whenever

> | B;(—4;ll <e.

i=1
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Since one of the 4, is assumed to be positive definite, without loss of generality we
may assume that 4; = I (see the proof of Lemma 2.3 in [PR]).

Next, we note the following fact (which can be easily verified arguing by con-
tradiction, for instance). For every Q, > 0 there exists @, > 0 such that whenever

(By, -+ ,Bn)eC(A), B;= S8*4;S,fori=1,---, mand some S € GL (n, C), and
(3:5) 3 154120,
then || S|| = OQ,.
Now consider the quotient
I-S
(3.6) M

There is a ¢ > 0 such that the quotient (3.6) is bounded when ||.S|| = ¢. Indeed,
write the polar decomposition S = UP, where U is unitary and P is positive semidefi-
nite; then

I1-sI _z-UP|
Is*s—11" 1721

(3.7)

and it clearly follows that (3.7) does not exceed

_(+lP
(IP?—Vn)’

and using the fact that s|| P|?> = || P?|| (the constant s depends on # only) and ||.S|| =
| P|l, we obtain our assertion from (3.8).

Combining the boundedness of (3.6) when || S| > ¢ with inequality (3.5), we note
that there exist constants M, K, > 0 such that whenever

(3.8)

(3.9) 2 | Bi—4il > M,
i=1

and B,, - -+, B,, are simultaneously congruent to 4;, -- -, 4,,, the quotient (3.6) is
bounded above by K.

We now consider the case where

i=1

We show that there exists K3 > 0 such that for every (B, -+, B,,) € C(A) for which
(3.10) holds and every S € GL (n, C) with
(311) B,’=S*A[S, i=1,"',m,

the inequality || 7 — S|| = K; holds. If (3.10) and (3.11) hold, then, in particular,
(3.12) |S*S—1I| =M.

It is easy to see that the set of all # X n matrices S that satisfy (3.12) is bounded
(indeed, for such S we have | S*S|z = 1 + M and hence || S|z = V1 + M). Now the
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existence of K3 with the required property is obvious. So for every (B, - -- , B,,) € C(A)
and for every S for which (3.10) and (3.11) hold we have

m
I I-S| =Kse™' X || Bi—4;].

i=1

Theorem 1.1 now follows with K = max (K, K>, Kze™!). O
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ON THE QUADRATIC CONVERGENCE OF THE
FALK-LANGEMEYER METHOD*

IVAN SLAPNICARY AND VJERAN HARI}

Abstract. The Falk-Langemeyer method for solving a real definite generalized eigenvalue problem, Ax =
ABx, x # 0, is proved to be quadratically convergent under arbitrary cyclic pivot strategy if the eigenvalues of
the problem are simple. The term “quadratically convergent” means roughly that the sum of squares of the off-
diagonal elements of matrices from the sequence of matrix pairs generated by the method tends to zero qua-
dratically per cycle.

Key words. generalized eigenvalue problem, Jacobi method, quadratic convergence, asymptotic convergence
AMS(MOS) subject classifications. 65F15, 65F30

1. Introduction. In this paper we study the asymptotic convergence of the method
established in 1960 by Falk and Langemeyer in [2]. Their method solves generalized
eigenvalue problem

(1) Ax = \Bx, x#0,

where 4 and B are real symmetric matrices of order » such that the pair (4, B) is definite.
By definition the pair (A4, B) is definite if the matrices 4 and B are Hermitian or real
symmetric and there exist real constants a and b such that the matrix a4 + bB is positive
definite.

The Falk-Langemeyer method is the most commonly used Jacobi-type method for
solving problem ( 1). Its advantage over other methods of solving problem (1) is that it
applies to problem ( 1) for the widest class of starting pairs. Although it is not, in general,
the fastest method for solving the given problem, in some cases it is the most appropriate.
The QR method [11] is usually several times faster, at least on conventional computers,
but it solves problem ( 1) only if matrix B is positive definite (or positive definitizing shift
for the pair is known in advance) and if matrix B is well conditioned for Cholesky
decomposition. The Falk-Langemeyer method is superior to the QR method in terms
of numerical stability if matrix B is badly conditioned for Cholesky decomposition. It is
also superior to the QR method if approximate eigenvectors are known, i.e., if the matrices
A and B are almost diagonal. This happens in the course of modeling the parameters of
a system where a sequence of matrix pairs differing only slightly from each other must
be reduced. This also happens in various subspace iteration techniques (see [11]). Another
reason Jacobi-type methods have attracted attention recently is that they are adaptable
for parallel processing (see [12], [10]).
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The Jacobi-type method for solving problem (1) recently proposed by Veseli¢ in
[15] is somewhere in between previously mentioned methods in both speed and require-
ments. Although Veseli¢’s method works for definite matrix pairs, a linear combination
pA — B which is reasonably well conditioned for J-symmetric Cholesky decomposition
must be known in advance. This method is one of the implicit methods, i.e., it works
only on the eigenvectors matrix, and is therefore approximately two times faster than
the Falk-Langemeyer method.

The Jacobi-type method considered by Zimmermann in [19] is closely related to
the Falk-Langemeyer method (this is briefly described in § 3) but requires positive-
definite matrix B. In [19] the convergence of this method is proved under the assumption
that the starting matrices are almost diagonal. The same conclusion holds for the Falk-
Langemeyer method as we show in this paper.

In [4] Hari studied the asymptotic convergence of complex extension of Zimmer-
mann’s method (also for positive-definite B). He showed that his method converges
quadratically under the cyclic pivot strategies if the eigenvalues of the problem are simple,
while in the case of multiple eigenvalues the method can be modified so that the quadratic
convergence persists. We are interested only in cyclic pivot strategies since some of them
are amenable for parallel processing.

These results, the informal analysis of the convergence properties of the Falk-Lan-
gemeyer method performed by Hari in [7], and the numerical investigation suggested
that the Falk—-Langemeyer method behaves in the similar fashion. In this paper we prove
that the Falk-Langemeyer method is quadratically convergent if the eigenvalues of the
problem are simple and the pivot strategy is cyclic. The technique of the proof, originally
established by the late Wilkinson in [16] (cf. [6]), is similar to that used in [4].

Two main problems that had to be solved are that neither of the matrices 4 and B
had to be positive definite and that the transformation matrices are not orthogonal and
therefore difficult to estimate. Both problems were solved using the results about almost
diagonal definite matrix pairs from [7].

The paper is organized as follows. In § 2 we state the known results about almost
diagonal definite matrix pairs from [ 7] and [14] to the extent necessary for understanding
the rest of the paper. In § 3 we describe the Falk-Langemeyer method, show that it
always works for definite matrix pairs (without use of definitizing shifts), and give its
algorithm. We also briefly describe the Zimmermann method from [19] and [4] and
relate it to the Falk—-Langemeyer method. Section 4 is the central section of the paper.
We first state the known result about the quadratic convergence of the Zimmermann
method from [4] and show to what extent this result can be applied to the Falk-Lange-
meyer method. We introduce measure &, which we use for defining and proving qua-
dratic convergence. Then we prove the quadratic convergence of the Falk-Langemeyer
method under the assumptions that the eigenvalues of the problem are simple, the pivot
strategy is arbitrary cyclic, and the matrices 4 and B are almost diagonal. At the end we
show that the quadratic convergence implies the convergence of the Falk-Langemeyer
method. In § 5 we give the quadratic convergence results for parallel and serial strategies,
briefly explain the possible modification of the Falk-Langemeyer method in the case of
multiple eigenvalues, and briefly discuss numerical experiments.

2. Almost diagonal definite matrix pairs. Here we consider the structure of almost
diagonal definite matrix pairs. We first state some properties of definite matrix pairs.
Then we introduce chordal metric for measuring distance between eigenvalues of definite
matrix pairs. We define the measures for the almost diagonality of the square matrix and
of the pair of square matrices. Finally, we state an important theorem from [7]. The
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theorem and its corollary reveal the structure of almost diagonal definite matrix pairs.
All results are given for the general case of Hermitian matrices even though in the rest
of the paper we shall consider only the case of real symmetric matrices.

Definite matrix pair (4, B) has some important properties:

(a) There exists a nonsingular matrix F such that

F*AF=diag(a;, - -+ ,a,) =Dy,
(2)

F*BF =diag (b, - ,b,)=Dg.
The ratios a;/b;, i = 1, -+ -, n, of real numbers a;, b; are the eigenvalues of the pair
(A4, B) and are unique to the ordering. If [ f1, - - - , f,] denotes the partition by columns
of F, vectors f;, i = 1, -+ - , n, are the corresponding eigenvectors. Matrices D4 and Dp

are not uniquely determined by the pair (4, B). In the real symmetric case F* can be
changed to F7 in the relation (2).
(b) The Crawford constant c¢(A, B),

3) c(A4,B)=inf {| x*(A4+iB)x|;xeC", | x| =1}

is positive. Therefore, A and B share no common null-subspace and |a;| + |b;] > 0,
i=1, -, n, independently of the choice of F. Note that the choice x = ¢; (the ith

coordinate vector) in the relation (3) fori = 1, - -+, n implies
(4) di=V(ai)*+(bi)*>0, i=1,---,n,
where A = (a;) and B = (b;;). Hence the matrix
(5) D=diag(i,--- ,L),

d d,

is positive definite. In the real symmetric case for #n # 2 only real vectors x can be taken
in the relation (3).

(c) There exists a real number ¢, such that the matrix B, from the pair (4,, B,),

A,= A cos ¢ — Bsin ¢,

6 .
(6) B,= Asin ¢+ Bcos ¢,

is positive definite. The matrices A and B can be simultaneously diagonalized if and only
if the same holds for the matrices 4, and B,,.

The proofs of the above properties are simple (see [14]). If some f; is a vector from
the null-subspace of B, the eigenvalue A; is infinite. Such eigenvalues are not badly posed
because they are zero eigenvalues of the pair (B, A) counting their multiplicities. Hence,
it is better to define eigenvalues as pairs of numbers \; = [a;, b;],i =1, - - - , n. Itis also
necessary to choose a finite metric for measuring the distance between eigenvalues. Such
is the chordal metric.

Let R2=R X R and R} =R?\{[0,0]}, where R is the set of real numbers.
We say that the pairs [a, b], [c, d] € R} are equivalent if ad — bc =0 and write
[a,blplc, d]. Itis easily seen that p is an equivalence relation on Rj. Let R3 |, be the set
of equivalence classes. Let A, u € R3 |, and let [a, b], [c, d] be their representatives, re-
spectively. Chordal distance between [a, b] and [ ¢, d] is defined with the formula

|ad — bc|
Va2 + b2V +d?

X([a,b],[c,d]) =
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It is easily seen that X is constant when [a, b] and [c, d] vary over A and p, respectively.
This defines metric X : R3], X R3|, = R by X(\, ) = X([a, b], [c, d), where [a, b]
and [c, d] are any representatives of A and u, respectively. However, for the sake of
simplicity we shall use X for both the functions X and X. We see that X(\, x) < 1 for all
\, u € R} |,. The proof of these and some other properties of the chordal metric can be
found in [11], [14], and [13].

From now on, let n denote the order of the matrices 4 and B and let p denote the
number of distinct eigenvalues of the pair (4, B). We assume that

nz3, p=2,

and that the pair (4, B) is definite. Note thatif p= 1 then 4 = AB,so A, =N\, = +++ =
A = \ and all vectors are eigenvectors of the pair (4, B).
The off-norm of the square matrix A is the quantity

S)=\/ 2 layl*=4—diag(4)l|,
Lj=1

i#j

where | - | denotes the Euclidean matrix norm.

The off-norm of the pair (A, B) is the quantity
(7) e(4,B)=VS*(4)+S*(B).
Where no misunderstanding can arise, ¢ shall be used instead of e(4, B). Let
(8) A= =N\, ANys1= =Ny "t Ny i+1= =Ny,
where
%) N=[s,al,  sitei=1,  i=1,---,p,
be all eigenvalues of the pair (4, B). Thus, we assume that the pair (4, B) has p distinct
eigenvalues A\, , - -+, A, with the appropriate multiplicities
(10) n=t—ti-, i=1,--+,p, =0,

and the representatives which behave as sine and cosine are chosen. Since p > 2 we can
define quantities

(11) 8=3 min X(\,,\,), &= min §.
1sj=sp I=sisp
J*i

Note that 6 > 0. . .
In the analysis we shall need matrices 4 and B defined as

(12) A=DAD, B=DBD,

where maErix D is defined with relations (5) and (4). Since D is positive definite, the
matrices 4 ang B are congruent to the matrices 4 and B, respectively. Let us partition
the matrices 4 and B,

. xiu"wim . gu"ﬂgm
(13) =\ Ee s,
Aprs - App By -+ By

where A; and B;; are diagonal blocks of order #;, i =1,---,p,and n’s are defined with
relation (10). The relation (13) shall be written as 4 = (A4;) and B = (B;).
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Let the matrices 4 and B be partitioned according to the relation (13). Departure
from the block-diagonal form of the pair (A, B) is the quantity

7(A,B)=V73(4)+7%(B),

where

P p p P
2 A)=2 2 l4;1%  AB)=2 3 1B~

i=1j=1 i=1j=1

J*i Jj#i

THEOREM 1. Let (A, B) be a definite pair and let the matrices A and B be defined
by the relations (12), (5), and (4). If

(14) e(/f,l‘?)<6,

then there exists a permutation matrix P such that for matrices A' = PTAP and B' =
PTBP, partitioned according to the relation (13), holds:

o o 12 o ~ .
(15) || ciA,ii_siB;‘i” é‘f 2 "CiA'y"“SiB'y"z, i=1,---,p.
ij=1

On both sides of the inequalities (15) the Euclidean matrix norm can be substituted with
the spectral norm.

Proof. The proof of this theorem is found in [7]. O

COROLLARY 2. Let the relation (14) hold for the definite pair (A, B). Then
there exists a permutation matrix P such that for the matrices A' = PTAP = (d W) B =
PTBP = (b)), A' = PTAP = (a};), and B' = PTBP = (b';), partitioned according to the
relation (13), holds:

744, B")

p
(16) > ledi—siByll*= 252 °

i=1

D t; 14 14 -
DD Xz([si,ci],[a}j,b}j])=2 > |c,-[i},-—-s,-b},-|2

(17) i=1j=ti_1+1 i=1j=ti-1+1
4. 11 D1
<7 (4',B')
262
’ ’ ~1 Br <72(/i,aé,)
(18) X([Siaci]a[ajj’bjj])zIciaji'_si jjl=Ta

j=li—l+1"”’tia i=la“'ap'

Proof. By Theorem 1 there ex~ists a permutation matrix P such that the relation
(15) holds for the matrices A’ and B’. The Cauchy-Schwarz inequality implies

I ci-"Ilij—sig:‘j ’< (| ¢l "/I'u" + |5l ||é'y||)2
(19) S
= 4512+ 1B, i#j.
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From the~relatiorrs (15) and (19), the definition of 7(A4’, B’), and the symmetry of
matrices A’ and B’ follows:

lc:As; s,Bi,II< Z(IIA 12+ 18512
11_1

(20) J#Fi

1, .
<—7%4,B =1,-,p.
257( ), i=1, ,D

Finally, the relations (15), (19), and (20) and the definition of 7(A’, B') imply that

2 ||c,A'u—S,Biz||2<—TZ(A B)Z Z—(IIA,,||2+||B 1)

i=1 t—lj—l(s
J*i

=3 6274(A B,
which completes the proof of the relation (16).

The equalities in the relations (17) and (18) follow from the definition of the chordal
metric and the fact that it does not depend upon the choice of the representatives. In-
equality in the relation (17) now follows from the relation (16) and inequality in the
relation (18) from the relation (20). O

Theorem 1 and Corollary 2 reveal the structure of almost diagonal definite matrix
pairs in both the Hermitian and the real symmetric case. The relation (18) implies that

fori=1,---, p,pairs [a}, bjl,je {ticy + 1, , 1;} approximate the eigenvalues )\,
with an error of order of magnltude TZ(A' B’ ) in the chordal metric. The relation (16)
implies that the blocks Ayjand By, i=1,--+,p,are proportlonal with the proportionality

constants being A, also with the error of order TZ(A B’ ). This proportionality becomes
apparent when 7(A4’, B') is small enough compared to 6. Note that the relations (15) and
(18) do not imply that the off-diagonal elements of blocks A’; and B’; tend to zero
together with 7(A4’, B'). The relation (15) shows that for fixed i the proportionality of
the blocks A'; and B; depends on the local separation §; of the eigenvalue A, from other
eigenvalues and on quantities || ¢;4}; — siByll%j=1,--,p,j*i

3. The Falk-Langemeyer method. In this section we define the Falk-Langemeyer
method, show that it always works for definite matrix pairs, and give its algorithm. At
the end of the section we briefly describe the method of Zimmermann from [4] and
[19], because it is closely related with the Falk-Langemeyer method. This relationship
is also described.

The Falk-Langemeyer method solves problem (1) by constructing a sequence of
“congruent” matrix pairs

(21) (A(l),B(')),(A(Z),B(z)), cee
where

A“)=A, B(')=B,
(22)

AR =FT 4O F, B*+*D=fIBWFE, k=1.

Note that the transformation (22) with nonsingular matrix Fj preserves the eigenvalues
of the pair (4%, B®). This is a Jacobi-type method, hence the transformation matrices



90 I. SLAPNICAR AND V. HARI

are chosen as nonsingular elementary plane matrices. An elementary plane matrix F =
(f;) differs from the identity matrix only at the positions (/, /), (/, m), (m, [), and
(m, m), where 1 =] < m = n. The matrix

o ﬁl flm
F l:fml fmm:l

is called (/, m)-restriction of the square matrix F = (f};).
For each k = 1, the (/, m)-restriction of the matrix F; has the form

(23) F [ : a"]
k= >
B 1
where real parameters oy and 3, are chosen to satisfy the condition
(24) asmV=0,  bi'"V=0.

Here A = (a(,f‘)) and B®W = (bg()). Indices / and m are called pivot indices and the
pair (I, m) is called pivot pair. As k varies, the pivot pair also varies, hence / = /(k) and
= m(k). The transition from the pair (4, B®) to the pair (4** D, B** 1) js
called the kth step of the method. The manner in which we choose elements which are
to be annihilated in the kth step (or just the indices (/, m) of these elements) is called
pivot strategy. The pivot strategy is cyclic if every sequence of N = n(n — 1)/2 successive
pairs ([, m) contains all pairs (i, j), 1 =i <j = n. A sequence of N successive steps is
referred to as a cycle. Two most common cyclic pivot strategies are the column-cyclic
strategy and the row-cyclic strategy. The former is defined by the sequence of pairs

(1,2),(1,3),(2,3),(1,4),(2,4),(3,4), - - - ,(1,n),(2,n), - -+ ,(n—1,n),
and the latter by the sequence of pairs
(1,2),(1,3), - -+ ,(1,n),(2,3),(2,4), - -+ ,(2,n),(3,4), - - ,(n—1,n).

These two strategies are also called serial strategies. Parallel cyclic strategies are cyclic
strategies which enable simultaneous execution of approximately n/2 steps on parallel
computers. These strategies have recently attracted considerable attention (see [12], [10]).
We state the quadratic convergence results for serial and parallel strategies in § 5.

Note that if the eigenvectors are needed, we must calculate the sequence of matrices
F(l), F(2), -- -, where

(25) FM=7, F¥¢rO=fp®OFE k=1.
From the relations (22) and (25) we obtain for k = 2
F(k)=F1"'Fk—|, A(k)=(F(k))TA(1)F(k), B(k)=(F(k))TB(1)F(k).

We shall now derive one step of the algorithm. Note that only (/, m)-restrictions
of the involved matrices are needed. Since (22) is the congruence transformation, the
pairs (4 X, B®)Y are definite for every k = 1 and the pairs of the corresponding (/, m)-
restrictions are definite as well.

Let (index k is omitted for the sake of simplicity)

FTAF=A4', F'BF=F,
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[ 1 —ﬁ][ @y A ] I al_[ah  aim
o 1 Aim  Amm _ﬁ 1 a?m a,mm ’
1 =B by bim ] I ol _[by bim

a 1 blm bmm _ﬁ 1 ,lm b,mm )

Condition (24) now reads a},, = b}, = 0. From the relation (26 ) the system in unknowns
o and (8 is obtained

or, respectively,

(26)

Alm= aqy+(1 —af)ay,— Bamm=0,
b,1m= ab11+(1 _aﬂ)blm—ﬁbmm=0~

Eliminating nonlinear terms in both equations we obtain

(27)

(28) o=Bn g B

14 14
where v is solution of the equation
(29) V2= Eimy —F1Sm =0
and
81= aubim — by,
(30) Fm = AmmBim = Orm Qi

Tim = Abpm — Ammby.

Defining
(31) T =(Jim)* +4F(Fom

we obtain

ve =1 sgn (Fim) (|Fim] = V).

The algorithm is more stable if « and 8 are smaller in modulus, so we take
(32) v =, =% sgn (Fim)(|Fim| + VF).

From the above formula we see that the necessary condition for carrying out this step is
& = 0. Let us show that this condition is fulfilled in each step due to the definiteness of
the pairs (4, B®), k= 1).
PROPOSITION 3. Let the pair (A, B) be definite. Then the following holds:
(i) 320,
(ii) The following statements are equivalent:
(a) & =0,
(b) Bim = &1 = Em = 0,

(¢c) There exist real constants s and t, |s| + |t| > 0, such that
sA+tB=0.

Proof. The proof can be found in [4] and [13], but for the completeness of exposition
we present it below.
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Using the relation (6) we can define the pair (A4,, B,) such that the matrix B, is
positive definite. Let us calculate the quantities (Fim)p, (F1)p, (Fm)e, and (F), from the
pair (4,, B,) using the relations (30) and (31). It is easy to verify that

%12(%1)¢9 %m =(%m)¢,
%lmz(%lm)qp, %=(%)¢-

Therefore, without loss of generality, we can assume that the matrix B from the pair
(4, B) is positive definite. The statement (c) is now equivalent to the statement 4 =
cB,ceR.

(i) With the notation

x=a Ymm y=a N/ bll
1l mm
11 mm bll bmm

the following identity holds:
T = bubmml (x—y)* + 4(x2 = @) (yZ — @) ]

Since the right side of the above relation is the square polynomial in g, we have

% = bllbmmP2(alm)zbllbmmP2(x;y Z)
(33)

2
= bllbmm(x—y)z(l _ZZ)= %%m 1 _M =20.
bllbmm

In the la§t inequality we have used the assumption that the matrix B, and therefore the
matrix B, is positive definite.
(ii) Let (a) hold. The relation (33) implies that ¥, = 0. Matrix B is by the as-

sumption positive definite. Therefore b, > 0, b,,,, > 0, and the equality ;,, = 0 can be
written as

mm
an= Amm.

bu

Using this relation we can write

bmm bmm
%m = ammblm - bmmalm = b (allblm - bllalm) = b %1,
/] Il

or byEm = bym ). From the definition of ¥, since §,, = 0, we conclude that &, = §,, =
0. This gives (b).
Let (b) hold. Then

an a
Arm = by —» Qim = bim 7~
by bu
Therefore, A = cB, where
_ A Amm
- )
bll bmm

and (c) holds.
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Let (¢) hold. Then obviously (b) holds, and if (b) holds, then (a) holds. Od

Now we see that the Falk—-Langemeyer method can be applied to all definite matrix
pairs. Note that definitizing shifts are not used and need not be known.

We have two special cases in the algorithm. If § = 0, then the matrices 4 and B are
proportional as shown in Proposition 3. Therefore, the two equations in the system (27)
are linearly dependent and the system has a parametric solution in one of the following

forms:
_ Cbmm—' b[m _ Cpm— Aim
(aaﬂ)_( b[[_cblm ,c)a (aaﬁ)_( ,0)9

ag—Caim
Cb[/ + b[m cay + Aim
o, = C,— > = c,—
(a.) ( byum + Cbyy, (e, 8) Ay + C Ay

where cis real. For every ¢ at least one of the quotients is well defined due to the definiteness
of the pair (4, B). It is best to set ¢ = 0 to ensure that a, and S tend to zero together
with e(4®, B®Yas k — oo (see step (5)(a) in Algorithm 4). Setting ¢ = 0 also reduces
the operation count. This choice yields four possibilities for («, §):

(34) (—%’0)9 (_glﬂ,o)’
bu ay
bl’" Aim
(35) (O,bmm), (O amm)
Due to the definiteness of the pair (4, B), we have
(36) |a,<,-|+|b,',~|>0, i:l’...’n,

so at least one quotient is defined in each of the relations (34) and (35). In order to
obtain better condition of the transformation matrix, we choose the relation in which
the defined quotient has smaller absolute value. If both quotients in the chosen relation
are defined, then they are equal, and for numerical reasons it is better to choose one in
which the sum of squares of the numerator and the denominator is greater.

The second spec1al case is when & > 0 and 3, = 0. This means that diagonals of
the matrices 4 and B are proportional, while the matrices themselves are not. Then
sgn (Fm) is not defined. Since F/Fn > 0, we have sgn (F;) = sgn (Fm). Substitut-
ing sgn (&) with sgn (F,) in (32) gives

v=sgn (F) VEiSm -

Inserting this in (28) gives, after simple calculation,

bmm amm
37 =\/——=\/—,
(37) * by ay

The relation (36) implies that at least one of the quotients b,,,,/ by and a,,,,»/ ay is defined
and different from zero. If both quotients are defined then they are equal and it is better
to choose one in which the sum of squares of the numerator and the denominator is
greater.

We can now define an algorithm of the method.
ALGORITHM 4. Definite matrix pair (4, B) is given.

(1) Setk=1,AM =4, BM = B, F) = J and choose the pivot strategy.



94 I. SLAPNICAR AND V. HARI

(2) Choose the pivot pair (/, m) = (I(k), m(k)) according to the strategy.

(3) Ifaly) = bl = 0, thenset k = k + 1, A®*D = 4® pk+D = py pk+D =
F™® and go to step (2). Otherwise go to step (4).

.. k
alculate the quantities , Bim » an rom formulas
4) Calculate th tities T, FR K and © from formul
(k) (k) 4 (k) (k) (k) (k) (k)
=aPp—pPalk T =al b, —byha

mm Im >
(k) k)1 (k (k) k) — (k) (k)
=ai’ b —alk b, TP =(Fim )2+4%1 T

(5) (a) If %(k) O perform the following steps: If |6 | = |a'’|, then set ay =

—bim [b3;
otherwise set oy = —af,'f,)/ a(k).
If |65, = |ak),|, then set B = bX) /6K

otherwise set B = aln/alk).
Finally, if | ;| = |B«|, then set a; = 0; otherwise set 8, = 0
(b) If §® > 0 perform the following steps:
(i) If §$%) # 0, then calculate
ve=4sgn (o) (1T | +VFD),

k (k)
_FW _ B
ap=—, Br=—"
Vi Vi

(i) If %5,’;) = 0, then, according to the relation (37), calculate

b, a'kd, 8 1
= —5 =
A

If both quotients for «; are defined, then choose one in which the sum
of squares of the numerator and the denominator is greater.

(6) Perform the transformation
(38) A%+ D=F{4®OF,  B**V=F[B®WF,
(39) F*+*D=F®OF,

(7) Set k = k + 1 and move to step (2). O

Since matrices 4 ¥, B®  4*+1D and B**D are symmetric, it is enough to store
and to transform only upper triangles. In the transformation (38) only /th and mth row
and column of the matrices 4®¥> and B® are changed and in the transformation (39)
only /th and mth columns of the matrix F are changed. Note that the eigenvalues can
be found without calculating the matrices F¥, k = 1, and therefore the transformation
(39) can be omitted. This reduces the operational count about 50 percent.

Stopping criteria of the infinite iterative procedure defined with this algorithm are
described in § 5.

From now on, the term “Falk-Langemeyer method” denotes the method described
by Algorithm 4.

The Zimmermann method. We shall now relate the Falk-Langemeyer method with
another method for solving the generalized eigenvalue problem. This method is due to
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Zimmermann, who roughly described it in her thesis [19]. Later on, in his thesis [4],
Hari derived its algorithm and proved its quadratic convergence.

The Zimmermann method is defined for symmetric matrix pairs (4, B) where
matrix B is positive definite. We shall denote this fact as B > 0. At the beginning of the
iterative procedure the initial pair (A4, B) is normalized such that

AM=paDp, BW=DBD,

where

1 1
D=diag|-—, -~ ,——|.
‘g(vb—“ w)—)

Therefore, bf-,k) =1,i=1, -+, n. The Zimmermann method constructs a sequence of
pairs ((4%, B®) k= 1) by the rule

A(k+’)=Z,ZA(k)Zk, B(k+1)=ZI{B(k)Zk, k=1.

The nonsingular matrices Z, are chosen to preserve the units on the diagonal of
B+ 1 (automatic normalization at each step) and to annihilate the pivot elements. In
[4] it is shown that for k = 1 holds

5 1 [cos Qr  sin <pk]

Zi= )
§ VI—(b)? [ —sin g  cos ¥

where
cos ¢ = cos O+ £, (sin 6, — ny cos 6;),
sin ¢y = sin 0, — £(cos Oy + ny sin 6),
cos Yy = cos 0, — & (sin 0, +n, cos 6),

sin Y, = sin 0 + £, (cos 0 — ny sin 6),

b(k)
s V1+b<k>+1f bP’
M= bﬂ:’)
(1+\f1+b<’<>)(1+\/1—b<,’;>)’
k= (k) a) 1_ b(k))z’
_Igg SI
4= kg

If a(k) b(k) 0 we set 0, = 0. If the (/, m)-restrictions of 4 ¥ and B(k) are proportional
and a1,,, and b'% ,m are not both equal to zero, we set 0, = 7 /4.

If the matrix B is not positive definite but the pair (A4, B) is, then there exists a
definitizing shift u such that the matrix A — uB is positive definite. If this shift is known
in advance, then the Zimmermann method can be applied to the pair (4, B) in the sense
that each Z is computed from the pair (B, 4% — yB®),

Although the Zimmermann method seems quite different from the Falk-Langemeyer
method, the two methods are closely related. The following theorem gives precise for-
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mulation of this relationship. For this occasion only we assume that in step (5)(a) of
Algorithm 4 (that is, when & ¥) = 0), parameters oy and Sy are computed according to
(37). For this version of the Falk-Langemeyer method the following theorem holds.

THEOREM 5. Let A and B be symmetric matrices of order n and let B be positive
definite. Let the sequences (A™, B®) k= 1) and (A®’, B®"), k = 1) be generated
from the starting pair (A, B) with the Falk-Langemeyer and the Zimmermann method,
respectively. If the corresponding pivot strategies are the same, then

A(k)/=D(k)A(k)D(k), B =D(k)B(k)D(k), k=1,

where

1 1
D® = dia, (—— e ——) kz1.
W

Proof. The proof of this theorem is found in [4, § 2.3]. O

Let us again suppose that the matrix B is not positive definite while the pair (4, B)
is, and that a positive definitizing shift u is known in advance. Let us apply to the pair
(A, B) the Zimmermann method in the sense mentioned above and the version of the
Falk-Langemeyer method which we used in Theorem 5. It is easy to see that the param-
eters oy and B from the Falk-Langemeyer method are invariant under the transformations
(A4, B) > (B, A — uB). Therefore, Theorem 5 holds in this case, as well, with

D<k>=diag( k=1.

1 1 )
b e b 3
P A

We can conclude that if the starting pair is positive definite or the definitizing shift
is known in advance, then the Falk-Langemeyer (Zimmermann) method is the fast scaled
(normalized) version of the Zimmermann (Falk-Langemeyer) method.

4. Quadratic convergence. In this section we prove that the Falk-Langemeyer
method is quadratically convergent if the starting definite pair has simple eigenvalues
and the pivot strategy is cyclic. Definitizing shifts are not used and need not be known.
We first state the result about the quadratic convergence of the Zimmermann method,
and show to what extent this result can be applied to the Falk-Langemeyer method if
the matrix B is positive definite. Then we define the quadratic convergence for the Falk—
Langemeyer method. In § 4.1 we prove preliminary results which we use in the proof of
the quadratic convergence of the Falk-Langemeyer method in § 4.2.

The result about the quadratic convergence of the Zimmermann method can be
summarized as follows. Let the sequence ((4, B®¥), k = 1) be generated by the
Zimmermann method from the pair (4, B), B> 0, and let ¢, = ¢(A4®, B®), where ¢
is defined with the relation (7). Note that ¢, is the natural measure for convergence of
the Zimmermann method since each matrix B has units along the diagonal.

We say that the Zimmermann method is quadratically convergent on the pair
(4, B) if g, > 0 as kK = oo and there exist a constant ¢, > 0 and an integer ry such that
for r Z ry holds

2
E(r+ YN+1=CoErN +1-

Hence of special importance are conditions under which the above relation holds for
r = 1. We call them asymptotic assumptions. Let

o=spr(A4,B)= max |\, vy =3min | \;— Nl
Iy

1=i=n
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THEOREM 6. Let the sequence ((A®, B®)), k Z 1) be generated by the Zimmer-
mann method from the starting pair (A, B), B > 0, and let the asymptotic assumptions

1
(40) S(B“))éﬁ, 2V1 + o2 <7,
hold. If the eigenvalues of the pair (A, B) are simple and the pivot strategy is cyclic, then
2
(41) 8N+1§VN(1+02)%.

Proof. The proof of this theorem is found in [4, § 3.3]. O

In Theorem 6 the term ¢ appears in the assumption (40) and in the assertion (41)
because matrix B is not diagonal and matrix 4 is not normalized. From Theorem 5 we
see that Theorem 6 holds for the Falk-Langemeyer method provided that step
(5)(a) of Algorithm 4 is appropriately changed, the matrix B is positive definite, and the
pairs (4%, B®) generated by the Falk-Langemeyer method are normalized so that
B =1,i=1-"nk=z1.

In the rest of this section we prove that the Falk-Langemeyer method defined with
Algorithm 4 is quadratically convergent on definite matrix pairs with simple eigenval-
ues if the pivot strategy is cyclic. We must first define the measure for the quadratic con-
vergence.

Let (4, B) be a definite pair. We shall use the measure ¢ = £(A4, B) defined by
8(4,B)=¢(4,B),

where A4 and B are given by the relations (12), (5), and (4). The measure ? enables us
to use the results of Corollary 2 and it takes into account the diagonal elements of
matrices A and B. Note that the measure ¢(A4, B) is generally not the proper measure

for almost diagonality of the pair (4, B) since it takes no account of the diagonals of
matrices 4 and B.

Let the sequence of pairs
(42) AV, BMY (AP, B@), -

be generated by the Falk-Langemeyer method from the starting definite pair (A4, B). For
k= 1 we set

(43) 5 =35(4%, BRIy =40 BK)y,
(44) /I(k)=DkA(k)Dk’ é(k):DkB(k)Dk’
(45) Dk=diag(ﬁ, ﬁ)

1 n
(46) A0 —@FEPY, -1,

From the relations (44), (45), and (46) we see that the pairs (4©, B¥)) are nor-
malized in the sense that

(47) &P+ =1,  i=1,---,n.

DEFINITION 7. The Falk-Langemeyer method is quadratically convergent on the
pair (4, B) if & — 0 as k = 0 and there exist a constant ¢, > 0 and an integer ry such
that for r = ry holds

~ ~2
(48) Er+ )N+ 1=Co8rn + 1-
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From Definition 7 we see that ultimately &, decreases quadratically per cycle. At the
end of § 4.2 we shall show that the quadratic convergence implies the convergence of
the sequence (42) towards the pair of diagonal matrices (D4, Dg), where

(49) DAzdiag(ala e 3an), DB=dlag(bla e ,bn)-

Here \; = [a;, b;],i =1, - - -, n, are the eigenvalues of the pair (4, B). Finally, we shall
show that ultimately the quadratic reduction of &,y implies the quadratic reduction of
en+1 and vice versa.!

In order to be able to observe the measure ¢ we must solve one more problem. The
transformation matrices Fy are calculated from unnormalized pairs (4%, B®)) and are
therefore difficult to estimate. To solve this problem we shall observe the sequence obtained
from the pair (A, B) with the following process:

normalization, step of the method, normalization, step ofthe method, - - -
This sequence reads

where

(51) (A, BWYy=(4M, By,

and for £ = 1 holds

(52) Akt FTAWE B+ FTRM

(53) j(k+1)=D‘k+lg<k+1)D*k+l, é‘(k+l)=D_k+lE(k+l)D_k+l,
= 1 1

(54) Dy 4 = diag pEa g )

(55) cigk+l)=\‘*/(d§:c+l))2+([_)gc+l))2, i= 1, ceen.

Of course, the sequences (42) and (50) are generated using the same pivot strategy. The
matrices Fy are calculated according to Algorithm 4, but from the pairs (4¥, B®),
Since, in the transition from (A4®, B®) to (4*+ VD, B**+ D) of all diagonal elements
only those at positions (/, /) and (m, m) are being changed, we conclude that

(56) %D = (@* D)2 1 (pEFDY2 =N/ (402 + (BP)2 =1,
i=1,---,n, i#1,m.

We will now show that the operations of normalization and of carrying out ong step
of the algorithm commute. This is equivalent to showing that 4® = 4® and B® =
B® for k = 1.

Let F; be the transformation matrices obtained according to Algorithm 4 from the
pairs (4®, B®), k = 1. The following proposition shows that the matrices F, and F,
are simply related.

! Here ¢, measures off-diagonal elements of the pairs from the sequence (42) and should not be confused
with the quantity used in connection with the Zimmermann method.



QUADRATIC CONVERGENCE OF THE FALK-LANGEMEYER METHOD 99

PROPOSITION 8. For k = 1, F, = Di' F,. Dy holds.
Proof. Because of the relations (44), (45), and (46) we have

(k) (k) (k) (k)
ajy Aim bi bim
(k)2 k) (k) (k)2 (k)

(k) (k) > pto b
Aim Amm Im mm
k TN 2 2

d¥dg  (dy) dPdP  (dy)

The assertion is now obtained by simply using the relation (57) in Algorithm 4 and
calculating the matrix Fj. O

PROPOSITION 9. For k = 1 the following holds:

(i) (/I(k), B’(k)) = (/f(k), g(k)),

(ll) Dk = D]D_zD_:;‘ N 'D_k.

Proof. The proof is by induction in respect to k.

(i) For k= 1 the assertion holds due to the relation (51). Suppose that the assertion
holds for some k = 1. This means that

(58) AR = J*) BW=pw  F=F.

From the relation (52) it follows that 4_ k+1) = BT F0F  which, because of the
relation (58), implies that A<+ D = FT4®F,  Since the relation (44) and Proposition
8 imply

A% Y= D FIDi' D AP DD Fi.Dy = Dy FfA© F, Dy
(59) =DkA(k+l)Dk,

we conclude that normalizations of the matrices 4**!) and 4** ! give the same ma-
trix. Now we use the same argument to show that B**D = B*+D for k = | and to
prove (1).

(ii) For k = 1 the assertion is trivially fulfilled. Let the assertion hold for some
k = 1. From the relations (59), (53) and the assertion (i) we obtain

D_k+ leA(kJr l)DkD_k+1=D—k+11‘I(k+l)D_k+l
=/I(k+l)=/1(k+l):Dk+1A(k+l)Dk+l.

It is obvious that Dy, = Dy Dy, and inserting the induction assumption we conclude
that (i1) holds. O

From Proposition 9 we see that the relations (50), (52), and (53) can be writ-
ten as

(60) (/i(l),g(l))’(j(Z),B'(Z)),(/I(Z),g(Z)),(J(3),B'(3))’(/I(3)’l§(3)), el

(61) ACHDZFLA0F,  BUD - FIEWE,
(62) ACD=Dy ACTOD,,,  BHD=D BB, .

The relations (60), (61), (62), (54), and (55) define the normalized Falk-Lange-
meyer method. We use the normalized method only as an aid to obtain information
about the quantity &.

4.1. Preliminaries. Here we define asymptotic assumptions and prove several lem-
mas which are used later in the proof of the quadratic convergence of the Falk—-Langemeyer
method. The quadratic convergence proof is based on the idea of Wilkinson (see [18])
which consists in estimating the growth of already annihilated elements in the current
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cycle. To this end we must estimate the transformation parameters &, and B and also
the growth of all off-diagonal elements in the current cycle. These two tasks are solved
in Lemmas 11, 13, 14, and 15. Lemma 10 gives us two numeric relations which are used
in the proof. Lemmas 11 and 12 estimate the transformation parameters & and §, and
the measure #; in one step. Lemmas 13-15 estimate the growth of &, 8, and & during
N consecutive steps. Lemma 15 is the most important for the proof of the quadratic
convergence. In this section we do not assume that the pivot strategy is cyclic. Therefore
the results of this section hold for any pivot strategy. However, if the pivot strategy is
cyclic, then Lemmas 13-15 explain the behaviour of &, 8k, and & during one cycle.

As we said in § 1, the quadratic convergence can always be expected if the eigenvalues
of problem (1) are simple. We will therefore use two quadratic convergence assumptions:
(A1) The eigenvalues of the pair (4, B) are simple, i.e.,

p=nx3.
(A2) The pair (A4, B) is almost diagonal, i.e.,
_ 1
6 2N’

Asymptotic assumption (A2) is similar to the assumptions used in Theorem 6 and
in convergence results of some other Jacobi-type methods (see [4], [1]). Assumption
(A1) implies

(63) Nz3
and
(64) Ek = Tk Ek:%ks kél,

where 7, = 7(A®, B®)and 7, = 7(4*®, B®). We shall use the notation
(65) ac=lag |, be=1b1, k=L

LEMMA 10. Let r be an integer such that r Z 3 and let x be a nonnegative real
number satisfying 2xr < 1. Then the following inequalities hold.:

(1-x)"=1+%r-x,  (1+x)S1+5r-x.

Proof. The proof of this lemma is elementary and can be found in [4]. O

The following lemma shows how the transformation parameters &, and B from
matrices Fy are bounded with 3.

LEMMA 11. Let the assumption (A1) hold. If for some k = 1 holds

2
(66) 5k<§7'\76,
then
~ 2 T N2
(67) SSIEARTATELE LSS

Proof. Suppose that for some k z1 the relation (66) holds. Then Theorem 1 and
Corollary 2 hold for the pair (4, B®) as well. Assumption (A1) and the relations
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(63), (64), and (18) imply that there exists an ordering of the eigenvalues of the pair
(A, B),% such that
42 1 2

70 o< A7 L 2 o 005, i1,
(68) X(Al,[all ’b ]) 25 9N2 26<81 5 l > 7n'

Applying twice the triangle inequality and using the definition (11 ) and the relation (68),
we obtain

|Sim | = 137D —abi’ | =xay”, by 1, 1a5%, BT
(69) = XNy Am) = X 1302, B50T) = X, [3 S0, DELT)

>3-6—2-0.025-6=2.95-4.
It is obvious that | X | # 0. This excludes cases (5)(a) and (5)(b)(ii) of Algorithm 4.
Therefore, we have

SO 2 2K | & (k
70 max i | ol, S—r————max {|F , %5}1) .
From the Cauchy-Schwarz inequality and the relations (47) and (65) we have

IS0 = 1ai" b — b ah | =V(@P)>+ (BF)2V (@) +(bP)?

The same estimate holds for & and therefore

(71) max {|F°1, 1§91} = V@) + (3.
Since

(72) (@)*+(b)*=5-%

the relations (69), (71), and (72) imply
V&P =V(F0)2 +4F0OF P = V(2.956)2 —4-57/2
=1(2.956)2—2-(4/9N?)82=2.9335.
The assertion (67) now follows from the relations (70), (69), (71), and the above

relation. O

The following lemma gives the relation between &, and &, ;. It is used later in the
proof of Lemma 15.

LEMMA 12. Let the assumption (Al) hold. If for some k = 1 the relation (66)
holds, then

” 1+0.494- ek/B N ~
73 2 =S 2 2 .
( ) Eas 1—0 077 ek/6[ (ak bk)]

A

Proof. Suppose that the relation (66) holds for some & = 1. The relation (62),
together with the definition of &, implies

(74) F2e1= S (Dp 1 A¥ T VD )+ S (Dis 1 BET DDy ).

2 Since p = n, the eigenvalues can be ordered so that the matrix P from Theorem 1 and Corollary 2 is the
identity matrix.
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If
mk+1=min{67§k“), ’d'gk+l)}’
then the relation (74) implies
(75) z,mész(—l—2,i<k+l>)+sz(—l—2§‘k+”)= 1 k1
(Mye4 1) (Myey 1) (Myev1)
Let us define vectors
a'=(ay,aig, Al a1 i, 8L,
am= (@8, a0, A AN s A1, @, A8,
af=(a\0,as, - ,a? a8 0 - a9 al @),
dgz:(d(lkr)md(zl,(r)m”‘ dyi)lmadyj—)lm," ~(k)lm,a£r’l(-)f-lm9"' (k))a

where generally a” denotes the transposed vector a. Let a’, a™, @, and a,, be row and
column vectors defined in the same way, but from elements of the matrix 4** V. Relation
(61) implies that

—] ]
a Ly a I ~ o~ L3
I:a_m:lek[dm , lai, am]=[a1, Gm) Fi.

=] M

The off-diagonal elements of the matrix A(’" which are changed in the transformatlon
(61), are exactly the elements of vectors a', a™, @, and 4, with the exception of d ay ,m ) and
‘¥ which are annihilated. Since || FT |, = || Fk ., we conclude that

S2A% M) = S2(APY+ (| E 3= D@+ lam12+ 1) 2 + a1 %) - 2a3
Since || Fi|ls = 1 (see further in the proof), we conclude that
S (A% D) 2| Bl 3(S2(AD)~ 24}
By applying the similar analysis to matrix X, we obtain

S2(B* D)< | F | 3(S2(B®) - 2b3)

Therefore,

2
— — < ~ ~
, L@, amlll* < | Fxll3 [ as, @ml 2

2
=1 FEI3

Adding two previous inequalities and using the definitions of &, and &, gives
et S| Fell3leR—2(a2 + )],
Inserting this inequality into relation (75), we obtain
AT
(M4 )4

To complete the proof we must find the upper bound for || ﬁ'k 1% and the lower bound
for my 4 4.
The relation (56 ) implies that

(77) My =min {1, 4", dE Y.

(76) ‘[8—2(ar+bi)l.

2
k+1

™
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Relation (61) implies that

—(k+1) ~(k) 5 ~(k) 52 ~(k T (k+1) _ 5(k) 5 7.(k) 3231

ay " V=ay’ - 2Bcam + LAk, bu " U =by —2Bibim + B,

- _ ~2alk) ~ (k) ~(k T (k _ ~27.(k) ~ 7.(k) 7

aka D =azay’ +2adm + aem, bGaV=aby’ + 28y, + bk,
Therefore

(@ 0y =@ )2+ BT = 1+483(a5) 2 + (B
+ Bt — 4B(ai by + b bin) — 4B a%hat + bLb)
(78) +263(as @l +bib )
2 1 —4|Bcllai’al, +bi’bL | — 418l @tk + BSbin) |

321 ~(Kk) ~(k 7 (k)T (k
—2B% | dy an+bi bSnl.

103

Using the relation (47) and the Cauchy-Schwarz inequality in the relation (78),

we obtain

(79) (@) 2 1= 418 (1+ 1B H V@) + (B2 - 263,
Using a similar argument we obtain

(80) (A5 D) 21 -4 &l (1+ &) V@) +(R)? —2at.
Relations (77), (79), (80), (72), and Lemma 11 now imply

Since X is chordal metric, from the relation (11) we see that § = 1. The relations (66)

3 .
and (63) therefore imply

. 2 2
(82) 8k<9N<27'

Inserting the relation (82) and the assumption (66) into the relation (81) we obtain

0.34 %, 034 2\2 2 2
mi, > 1 -2 & 4.(1+(—-._) )-————+o.34-\/§-— .
e V2 6[ V2 3N) ) 212 3N

Finally, taking into account that N = 3 we obtain

(83) mi, =1 —0.077%.
We shall now estimate || £ || 2. Since
IENE= 1 Felly - Fiell o
where || All, = max; Z; |a;|, | 4ll, = max; 2; |a;| for 4 = (a;), we obtain

I £ I3= (1 + max {l&l, 1Bcl )2
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Lemma 11 and the relation (66) now imply

s QM&Y
Fl3s(1+—==
| Fill 3 ( 5 b
0.34zk( 0.34 2 )
84 Sl+—=(2+——
(84) V2 @ V2 3N

<1 +0.494%".

The relation (73) now follows from the relations (76), (83), and (84). O

We shall now prove that if the assumptions (A1) and (A2) hold, then Lemmas 11
and 12 hold during N consecutive steps.

LEMMA 13. Let the asymptotic assumptions (A1) and (A2) hold. Then for each
ke{l,---,N} holds

1 . & 2

. —<—.
1—03-(k—1)8/6 " § 3N

Proof. The proofis by induction. For k£ = 1, the lemma is trivially fulfilled. Suppose
the lemma holds for some k € {1, ---, N — 1}. From the second inequality in the

induction assumption we conclude that, for the chosen k&, Lemmas 11 and 12 hold. From
Lemma 12 it follows that

§®=

1+0.494-5./5 _,
1—0.077 5/

IIA

~2
Ek+1

1

< ~2
(85) T (1 —0.494(5/6))(1 —0.077(Ek/6))8k
1
< - @@ =2
T (1-03(5/8)7 "
Hence
. 1
Er1=

1-0.3-%/8
Inserting the induction assumption in this inequality, we obtain
1 1 .
. S—
1 1—-0.3(k—1),/6

=03 0ak—na e

1 1
< B =
S1-03(k—1)8,/6—0.3(8,/0) ' 1-0.3-k-%/0

and the first assertion of the lemma is proved. From this assertion for k + 1, because of
the asymptotic assumption (A2), we now have

O N 1 A1 12
0 =1—0.3-k-51/66 1-03(N—1)/2N 2N 2-0.3 N 3N’

which completes the proof. O

G 1=

“€1,
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LEMMA 14. Ifthe asymptotic assumptions (A1) and (A2) hold, then the assertions
(67) and (73) of Lemmas 11 and 12 hold for every k€ {1, --- ,N}.

Proof. The assertion follows immediately from second assertion of Lemma 13. O

The next lemma explains the behaviour of S(A®), S(B®) and &, and of
the transformation parameters &, and @, during N consecutive steps. Let us define
the quantity

1+0.494-2/3N

(86) NT120077-2/3N
LEMMA 15. Let the asymptotic assumptions (A1) and (A2) hold. Then:
(i) Fork=1, -+, N holds
SZ(J(k+1)) SZ(IJ(I)) SZ(/I(I))
[SZ(B“””)] <(cN)k[SZ(B‘1))] = 1.566[S2(1§“>)] .
~D ~2
€k+1 & €1
(ii) For any choice &, € {d, B}, 1 = k = N, holds
N z%
> ®2=0.091- YR
k=1
Proof. (i) Because of Lemmas 12 and 14, for k = 1, - - -, N holds

§1 1= en(Ei—2(at+ b))
(87) écN{cN[sk_,—z(di_,+ bi-n1-2(ai+bd)}
=(ew)ei-2 Z (ew) 7Y@} +b}).
j=1
From the relation (87) immediately follows
(88) T 1 =(en)FT = (en)™ed, k=1,---,N.

Using Lemma 10 we obtain

4 2 12
N L il
(89) (ew) (1+3 -0.494- N N)(l-!— 7 -0.077- AN N)<1 566.

Inserting this inequality into relation (88), we obtain
8k+1_1566 81, k=1,"',N.

From~ the proof of Le~mma 12 we see that the above estimates hold for the quantities
S2(A%* D) and S?2(B** 1), as well. Therefore (i) is proved.
(ii) Since cy > 1, from the relation (87) for k = N we have

1 =(en)Vs -2 E( iz +b3).

Since %41 = 0, this inequality implies

N

> (ai+bp)=

1
-2- (cn)V63<0.783-52
k=1



106 I. SLAPNICAR AND V. HARI

The above inequality, together with Lemmas 11 and 14, implies
N N . N . 1
®F= Y max {&f,B1)= > 034%-(at+b7)
k=1 k=1 k=1 0

—N
™2
-t

=0.1156-0.783-5=0.091-

00(91
(=2)
N

and the lemma is proved. O

4.2. The proof. Here we prove that the Falk-Langemeyer method is quadratically
convergent if the assumptions (A1) and (A2) are fulfilled and the pivot strategy is cyclic.
Then we prove that the quadratic convergence implies the convergence of the sequence
of pairs (42 ) towards the pair of diagonal matrices. At the end we prove that the measures
& and ¢ are equivalent in the sense that ultimately the quadratic reduction of &y
implies the quadratic reduction of of &, ; and vice versa.

We can now prove our paper’s central theorem.

THEOREM 16. Let the asymptotic assumptions (Al) and (A2) hold and let the
sequence ((A®, B®), k = 1) be generated with the Falk-Langemeyer method from the
pair (A, B). Then for any cyclic strategy holds

L‘N+ | = N 6 .
Proof. Let us fix some k € {1, -+, N}. Then the pivot pair (/, m) is also fixed.
We want to know what happens with the element on this position until the end of cy-
cle. Therefore, we will observe the elements d },f,), =k+1, , N. We know that
a ;,’,(,"L D = 0 and that the elements ai,,,) actually change at most 2(n — 2) times. Let 7y,
, I's, § = 2n — 4, denote those values of r for which aﬁm) changes in the rth step. Let
us introduce the notation:

—(1 1 ~ M\
_ar:l+ )> (r:l+1),
(90) d_(-i)=‘4/(d}jri+l))2+(1_7](‘jri+1))2, jG{l,I?’I},

Mgy =min { 4", dP}, dy=V1-0.077-2/3N.
Performing the rth step according to Algorithm 4 gives
=(0-1+a"a,,),
where &,, € { &, 6, } and @ is some off-diagonal element of the matrix A", Since

Z:

(91) ZFW, i=1,--,s,
from the relations (90), (83), and Lemma 12, it follows that
1 1
92 Z = () =—|am .
(92) 2] = (_(,))2Ia &, | = dNIa [@ |

Furthermore, in the r,th step, we have

(93) L=(1-2%£d"7s,),
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where &, € {&,, B8, }, and @ is some off-diagonal element of the matrix 4. The
relations (93), (92), and (91) imply

- 1 (1 . ~ .
1315 G187 |+ 12135 ).

By induction we obtain

g 1
(94) || = Z,W

| 5 (ri

)ll‘:’nl, j:19..'3s°

i=
Fork =1, ---, N+ 1, the following notation is introduced:
(95) AP=pP+E® D =diag(a).

Matrix £+ obviously consists of elements which have undergone the maximal num-
ber of changes. If s(i, j) denotes the number of changes of the element on position
(i,J), then

s(i,j)=2n—4, i,je{l,---,n}, i#j.
”l:he quantity s(i, j) depends on (i, j) and the pivot strategy. Elements of the matrix
E®™*D can therefore be denoted as 2, ;).
Having in mind relation (94), we can now write

(96) |EW*D|= | PO & + | PO [a3) + -+ + | P |an).

1
( dN) 2n—4 (
Here the notation |C| = (| ¢;]) for C = (¢;) is used. Matrix P*) consists precisely of
those elements of /(k)th and m(k)th row and column of the matrix E® which already
were pivot elements, ® i.e., of elements which contribute to the final estimate. All other
elements of the matrix P are zeros.

Assertion (i) of Lemma 15 gives us

(97) IB®||=]PR|=5(A®)=V1.566-S(AV),  k=2,---,N

From the relations (96) and (97), Lemma 15, and the Cauchy-Schwarz inequality we
obtain

S(ANT D)= | 0| = || B0 |

(d )2n ———V1.566 - S(A") Z | O |
k=

2
98 1.252 . N 172
©8) éﬁmsmm)[w—l)zai]

1.242

- N R
=——7F7 504 IN % .
(dy)"* ( ) [ ’Z:‘wk]

3 Here (I(k), m(k)) denotes pivot pair in the kth step, so this k should not be confused with the k that
was fixed at the beginning of the proof.
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Since N 2 3, from Lemma 10 it follows that

1 1
(dy)>~* (1-0.077(2/3N))" 2

12 2
—_ 7 R— —
<1+7 0073 (n—2)

41
=1 0077—~<1059
3n

Finally, inserting this inequality and assertion (ii) of Lemma 15 into relation (98), we
obtain

S(AN+*Yy=0.4-S(AM)VN-

> | 2

Applying a similar analysis to matrices B® yields

S(BWN+1y=<0.4-S(BM)VN-

> |2

From the last two inequalities and the definitions of &5, ; and &, follows

~2
8N+ 1= 0 4 V_ %
and the theorem is proved. O
Note that in the proof of Theorem 16 it is not necessary to assume that the affiliation
is preserved i.e., that the pairs [a,, ), b,, ] approximate the eigenvalues \; for i = 1,
n,k=1,---, N. However, for large enough k this fact follows from Theorem 17.
From Theorem 16 and the assumptions (A1) and (A2) it follows that

b

1 1
99 3 VN'~—- 5, = .3 3-%.
(99) ev+1 < 2,,81 2\/_ £, <0.3-¢

Applying inductively the relation (99) we obtain

(100) 3rN+1‘—(03) 81, r=1.
Therefore,
(101) lim ErN+l:0-

From the relation (101) and the assertion (i) of Lemma 15 we conclude that

(102) klim & =0.

The relation (102) and Theorem 16 imply the quadratic convergence of the Falk-
Langemeyer method according to Definition 7 if the eigenvalues are simple and the pivot
strategy is cyclic.

Next we prove that under assumptions of Theorem 16 the sequences of matrices
(A%, k= 1)and (B®, k = 1), generated by the Falk-Langemeyer method, converge
towards diagonal matrices.
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THEOREM 17. Let the assumptions of Theorem 16 hold. Then
lim A(k)ZDA, lim B(k)zDB,

k— oo k—> oo
where D4 and Dy are diagonal matrices.
Proof. The relation (44) implies that

(103) AP =(D)TAD(DY),  BP=(D) ' BRO(D),

where diagonal matrices D, are defined with the relations (45) and (46). It is therefore
sufficient to prove that the sequences (4®, k = 1), (B®, k= 1), and (D) ", k= 1)
converge towards diagonal matrices. The relation (102) implies that the off-diagonal
elements of matnces A% and B® tend to zero as k — oo . Therefore, it remains to prove

that fori =1, , n the sequences (a,, ), k=1)and (b(,,k ), k = 1) converge. The relation
(18) and the assumption (A1) imply that for each k = 1 there exists an ordering of the
eigenvalues \; = [s;, ¢;]1, i =1, - -+, n, such that

(104) |cidi’ —s:bi | = i=1,--,n.

Let us consider unit vectors [s;, ¢;]7 and [a(,,k ) BT in R2. The left-hand side of the
inequality (104) is |sin <p(,-k)| where <pfk is the angle between these two vectors. The
relations (102) and (104) imply

lim s1n<p(k)—0 i=1,---,n.
k— oo
Hence, for each i the sequence of vectors ([af,k ), b(k)] T k = 1) has only finite number

of accumulatlon pomts in R2, Therefore, it suffices to show that for large enough k the
changes in a P and bf, are arbitrarily small. From the relation (102) and Lemma 11 we
see that o, — 0 and ﬁk — 0 as k = oo. Therefore, the changes in af, ) and b,, tend to
zero as k = oo. This proves that for each i € {1, ---, n} limits limy_ af, and
limy o bf,k ) exist.

We shall now prove that ((Dx)”!, k = 1) is a convergent sequence. Looking at
the definition of Dy (relatlon (45)) we see that it suffices to prove that for each i €
{1, --+, n} the sequence (d , k = 1) converges to a nonzero number. From Proposi-
tion 9 we have

dO=dPdD - dP, =1, k22,

From the definiteness of pairs (4", B() and (4®, B®) we conclude that d'\" and
07( ) are different from Zero for all i and k. Hence it suffices to prove that the infinite
product Hk 2 d converges.* This product converges if and only if the product
B d( ))4 converges. Therefore, it suffices to show that the latter product is absolutely
convergent From the relat1on (78) we see that for i € {1, ---, n} and k = 2 we can
write (d )4 1 + u, 2 , so it suffices to show that the series Zk 5 u( ) are absolutely
convergent for all i € {1, ,n}.
The relation (83) of Lemrna 12 implies that

(a?f-k+1))4§1—0.077-%‘—, 1=1,--,n,  k=1.

“Since all factors in the product are nonzero, the limit, if it exists, is also nonzero.
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Looking for upper bound instead of lower bound in the relation (78 ) and making similar
estimates as in the relation (83), we obtain

(¢7§k+")4§1+o.o77%, 1=1,---,n, k=L
Therefore,

|u§“"|=|(J§“”)4—1|§0.077-%, 1=1,---,n, k=l
Hence it suffices to show that the series 2 °-; & converges. From the assertion (i) of
Lemma 15 we have

ErN+i§1'3'ErN+la léléN, rél,

hence it suffices to prove the convergence of the sequence 2 2 | &+ 1. From the relation
(100) we see that the later series is majorized by the conver%ent series 22, (0.3)"-&,.
This proves the absolute convergence of the series 2 - ug ) for i € {1,-+-, n} and
therefore the convergence of the sequence ((Dy) ™', k = 1). O

Note that the global convergence (i.e., the convergence for all definite pairs (4, B))
of the Falk-Langemeyer method in the case of cyclic pivot strategies is not yet proved.

We end this section by showing that our asymptotic assumptions also imply ultimate
quadratic reduction of ¢,y ;. Indeed, for r = 1 the relation (103) implies

N+1)12,% ~
8rN+l§(dl(1:ax )) TEN+ 1> 8rN+1§(d(,N+1))28rN+1,
min

where
d,(,,rf,\,’(J'l):maX {d{rN+l), e ,dser-H)}’
diht D =min {d{N*D, ... dINTDY,

Theorem 16 implies

VN,

N+ 1) 2% 1)N 2
8(r+l)N+1§(dl(t(1£: IV )) e(r+l)N+l—'§(d§t(1£; ) +1)) TCrN+l

2
5 8rN+l§c'Ter+la rz1,

<[d§,§g;'>N+'>]2VN ) VN

@2 | s

where c is an upper bound of the convergent sequence ([d{F PV D /(dENTD)212,r2 1).
In a similar way we can prove that the quadratic reduction of ¢,y ; ultimately implies
the quadratic reduction of & ;.

The techniques described in this section can be used for studying asymptotic con-
vergence properties of various different Jacobi-type algorithms.

5. Concluding remarks. In Algorithm 4 only (/, m)-restrictions of the pair (4®,
B™®) are used in each step. Therefore, parallel strategies are in fact cyclic (see [10]) and
Theorems 16 and 17 hold for them as well.

In [13] it is proved that if the assumptions of Theorem 16 hold and the pivot strategy
is serial, then

Nt 1S
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Modified method. If the problem (1) has multiple eigenvalues, the method can fail
to be quadratically convergent. This failure occurs because when pairs [a?,k ), bﬁ,k )] and
[a$,, bS] (here (I, m) is the pivot pair in the kth step) approximate the same eigen-
values, then parameters & and S can be of order O(1) and, therefore, some previously
annihilated elements can become of order O(%;) again. This situation is described in
detail in [7] and [13]. Simple omitting of these critical steps does not yield to the quadratic
convergence, even though the measure 7, = 7(A®, B®), k = 1, from Corollary 2 tends
to zero. The relation (16) does not imply that the off-diagonal elements of diagonal
blocks tend to zero together with 7,, but merely that the diagonal blocks become more
and more proportional. Therefore, £, does not have to tend to zero at all and the con-
vergence of 7, can considerably slow down. If we modify the method so that in such
cases we use triangular transformation matrices similar to the matrix from step (5)(a)
of Algorithm 4, the quadratic convergence persists.

Modification of the Falk-Langemeyer method and the proof of quadratic conver-
gence of the modified method will be topics of our subsequent paper.

Numerical results. Our test program is written in FORTRAN in double precision.
Test pairs were generated in the manner that 4 = G7D,G and B = GT DG, where
diagonal matrices D, and Dy are being read and G is random. For elements of matrix
G only numbers which are sums of the powers of 2 were used, so the test pairs were
stored as accurately as possible.

The iterative process is terminated when, after some cycle r, inequality

evs1<eps-V[A|2+ | B|I*-2N

is fulfilled, where eps is machine precision. After the end of the process, the maximal
error of the residual

max [ "b'lAf/l_alle; ”max ]

rsisn (Wap)> + ()2 VIASIP+ 1 Bfi12)

is calculated. Here [a}, b}] are the calculated eigenvalues of the pair (4, B) and f’; are
the corresponding eigenvectors. Also the maximal absolute values of the off-diagonal
elements of matrices (F')TAF'and (F')T BF ' are calculated. Those three quantities were
usually of order of stopping criterion. Infinite eigenvalues were represented with numbers
of order of magnitude O(1/machine precision).

We observed the convergence of both measures ¢, and ;. Observations confirmed
all theoretical results. For starting pairs that were not almost diagonal, convergence was
in the beginning linear and several cycles were needed before quadratic convergence
started. The asymptotic assumption (A2) appears to be very adequate because in almost
all cases quadratic convergence started after it was fulfilled. Algorithm behaved very
regularly in the sense that the condition F* = 0, k = 1 (see assertion (i) of Proposition
3) was always fulfilled for definite starting pairs. This condition was fulfilled even in
some cases when the starting pair was semidefinite, or slightly indefinite.

Average number of cycles for smaller matrices (» = 15) was around 10 and for
larger matrices (n = 100) around 15. Last cycles were usually empty, i.e., not all N steps
were executed. For orientation, the approximate duration of the process is five minutes
for n = 40 and one and a half hours for » = 100 on IBM PC/AT with a coprocessor,
and about 30 times shorter on IBM 4371.
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In the presence of very close eigenvalues several additional cycles were usually needed
because the quadratic convergence was delayed. The existence of additional cycles does
not disagree with theoretical results since the quantity 6 from the asymptotic assumption
(A2) is in this case very small.

We observed that the results are generally better if increasing or decreasing order of
numbers defined with diagonal pairs [af-,k), bf,k )] is preserved by interchanging pivot rows
and columns if necessary. However, interchanging must be stopped after the asymptotic
assumption (A2) is fulfilled. Otherwise some off-diagonal element which was not yet
annihilated can “run away” from annihilation and therefore terminate quadratic con-
vergence.

Example. We give an example of the pair of order 10 generated in the previously
described manner. Elements of the matrices D, and Dy are

-2,1,10,0,—0.001, 10, 1,5,5,4
and
-1,0.1,—1,—100,—100,0,—1,0.1,1, 1,
respectively, so the exact eigenvalues of the problem are
2,10,—10,0,0.00001, o0, —1, 50, 5, 4.

Elements of the matrix G are uniformly distributed integers from the interval [ —10, 10].
Note that both matrices A and B are indefinite, while the pair (4, B) itself is definite
(for example, A — 3B > 0). In order to increase the stability of the computation, the
process started from the normalized pair (4, B).

Only upper triangles of the matrices 4 and B are displayed. Each row begins with
the diagonal element. Asymptotic convergence is described as follows: in column CYC
is the number of cycle; in column ROT is the number of rotations performed in the
cycle; columns SUMA, SUMB, SUM and SUMT display values of S(A4%), S(B™®), &,
and & after the cycle, respectively.

ORDER OF MATRICES N = 10
COLUMN CYCLIC PIVOT STRATEGY
STOPPING CRITERION: SUM(K) < .49D-13

MATRIX A
ROW
1 .21350D+04 .41900D+03 .11600D+03 —.11430D+04 —.10490D+04
.44002D+03 —.13750D+04 .20027D+02 .51903D+03 —.60802D+03
2 .14310D+04 —.32700D+03 —.34200D+03 —.26100D+03 —.10390D+04
—.29600D+03 —.43200D+03 .50000D+03 —.13100D+03
3 .18320D+04 .28000D+03 .93300D+03 .64100D+03 —.91000D+03
—.38500D+03 —.74500D+03 —.58200D+03
4 .11860D+04 .85799D+03 .34099D+03 .56100D+03 —.40001D+03
—.49101D+03 .57401D+03
5 .99295D+03 .68695D+03 .22402D+03 —.53006D+03 —.69606D+03
—.90965D+02
6 .13360D+04 —.57298D+03 —.43106D+03 —.97606D+03 .43035D+02
7 .134'70D+04 .29703D+03 .10027D+02 .67399D+03
8 .87292D+03 .32992D+03 —.49550D+01
9 .88792D+03 .40105D+03
10 *.82798D+03
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MATRIX B
ROW
1 —.'72420D+04 —.81550D+04 .40130D+04 —.20630D+04 —.39800D+03
.31460D+04 —.73170D+04 .83650D+04 .2'7080D+04 —.'78930D+04
2 —.99425D+04 .50853D+04 —.28814D+04 —.28007D+04 .93320D+03
—.'79655D+04 .68774D+04 —.11530D+03 —.'79841D+04
3 —.26020D+04 .14878D+04 .14297D+04 —.63790D+03 .39712D+04
—.34409D+04 —.16500D+02 .39654D+04
4 —.10848D+04 —.15558D+04 —.55260D+03 —.20896D+04 .11306D+04
—.83980D+03 —.18888D+04
5 —.59091D+04 —.46836D+04 —.23130D+03 —.41948D+04 —.61837D+04
.10755D+04
6 —.50607D+04 .28013D+04 —.69463D+04 —.62826D+04 .43479D+04
7 —.'72920D+04 .82531D+04 .26803D+04 —.'78484D+04
8 —.12938D+05 —.81476D+04 .10050D+05
9 —.82005D+04 .46091D+04
10 —.88056D+04
ASYMPTOTIC CONVERGENCE
CYcC ROT SUMA SUMB SUM SUMT
1 45 .60D+00 .35D+01 .35D+01 .18D+01
45 ."72D+00 .32D+00 ."7T9D+00 .12D+01
3 45 .57D+00 .28D+00 .64D+00 ."72D+00
4 45 .31D+00 .21D+00 .38D+00 .24D+00
5 45 .18D-01 .23D-01 .30D-01 .25D-01
6 45 .39D—-02 .13D-01 .13D-01 .93D—-02
7 45 .56D—04 .15D-03 .16D—-03 .92D—-04
8 44 .18D—-09 .61D—-09 .63D-09 .19D—-09
9 29 .26D—20 .19D—-20 .32D—20 .93D-20
TOTAL NO. OF ROTATIONS 388 TIME(sec) 5.68

CALCULATED EIGENVALUES

1 A(I, I) B(I) D(I)

1 .36774301D+01 .91935754D+00 .40000000000001D+01
2 .29605919D+01 .59211837D-01 .50000000000001D+02
3 .24951699D+00 .24951699D—01 .10000000000015D+02
4 .62005903D+00 .12401181D+00 .50000000000011D+01
5 —.16044487D+00 .80222433D-01 . 19999999999999D+01
6 ~.94464581D—04 .94464581D+01 .10000000000004D—04
7 ~.43510239D-16 .23229057D+01 . 18730953468577D—16
8 .62365226D—01 .62365226D-01 ~.99999999999990D+00
9 .42815492D+01 .25722206D-13 —.16645341957511D+15
10 .32339485D+01 .32339485D+00 —.99999999999999D+01

MAXIMAL (relative) ERROR = .15D—13FORI =3

MAXIMAL OFF -DIAGONAL ELEMENTS:
Ft AF = .35D—-14 Ft BF = .30D—-13
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LEAST SQUARES APPROXIMATION BY REAL NORMAL MATRICES
WITH SPECIFIED SPECTRUM*

MOODY T. CHU%

Abstract. The problem of best approximating a given real matrix in the Frobenius norm by real, normal
matrices subject to a prescribed spectrum is considered. The approach is based on using the projected gradient
method. The projected gradient of the objective function on the manifold of constraints can be formulated
explicitly. This gives rise to a descent flow that can be followed numerically. The explicit form also facilitates
the computation of the second-order optimality condition from which some interesting properties of the stationary
points are related to the well-known Wielandt-Hoffman theorem.
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1. Introduction. A matrix 4 € C"*"isnormalifand onlyif 4*4 = A4 *. Normality,
as it includes the Hermitian, unitary, and skew-Hermitian matrices, defines a rather
general and important class of matrices. In [7], 70 equivalent conditions are listed to
characterize a normal matrix. This again reflects that normality may arise in many dif-
ferent ways.

One interesting question that has received considerable attention is the determination
of a closest normal matrix to a given square complex matrix. This problem has only
recently been completely solved (in the Frobenius norm) in [4], and independently in
[12]. It turns out that finding a nearest normal matrix is equivalent to finding a unitary
similarity transformation which makes the sum of squares of moduli of the diagonal
elements as large as possible [8]. The Jacobi algorithm, therefore, may be derived from
this perspective to solve the nearest to normality problem.

In this paper we assume the following situation happens. Experimental data has
been collected in the matrix A which, by some prior knowledge, should be a normal
matrix with known spectrum. Generally, due to measurement errors, 4 will not satisfy
these requirements. Since A still contains some useful information, we would like to
retrieve its least squares approximation that satisfies these requirements.

In practice, we may well be interested in real matrices. It is well known [5, p. 284]
that a real normal matrix is always orthogonally similar to a real quasi-diagonal matrix

. Ao N v,
1 d IR sNagr1s Tt 5 A
(1) 138{[_V1 )\1] [—vq Ay 2g+ 1

where A\, v; are real numbers and v, # 0 (k =1, 2, - - -, q). Therefore, we consider the
following problem in this paper.

Problem A. Given a matrix 4 € R"*" and a set of eigenvalues { \; + ivy, -+, A\g £
Vg, Nag+1> *** » An} Where A, i are real numbers and v, # 0 (k= 1, 2, -+ -, gq), find
an orthogonal matrix Q that minimizes the function
(2) F(Q):=3}10"AQ—4]?
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where A is the quasi-diagonal matrix given by (1) and |- || means the Frobenius ma-
trix norm.

A special case of Problem A has been considered in [3]. There it is shown that
when A is symmetric and when A is diagonal with distinct elements arranged in descending
order, the columns of the optimal Q7 should be the normalized eigenvectors of 4 cor-
responding to eigenvalues arranged in the descending order. In this paper we study the
extension to more general classes of matrices.

Our idea is closely related to the setting in [1]. Our approach is parallel to
that in [3]. Without using the Lagrangian function, we first formulate explicitly the
projection of the gradient of the objective function F onto the feasible set O(n):=
{Q € R™"|QTQ = I}. This formula gives rise to the construction of a descent flow
that can be followed numerically. We then derive the so-called projected Hessian on
the tangent space of O(n). Wherever possible, we classify the stationary points from
the second-order condition. Finally, we discuss the connection between our results and
the well-known Wielandt-Hoffman theorem [9].

2. Preliminaries. Let <A , B) denote the Frobenius inner product of two matrices
A, Be R"™";

3) (A,B):=trace (AB")= 3 a;b;.

i,j
We first consider the function F in (2) to be defined everywhere in R"*". For Z, H €
R"*" the Fréchet derivative of F at Z acting on H is calculated to be

F(Z)H={Z"AZ-A,H"AZ+Z"AH)
={((AZ)Z"AZ~A)",HY+{(ATZ)(Z"AZ—A),H).

In the second equation above we have used the adjoint property

(A4,BCY=(B"4,CY={(AC",B)

to rearrange terms. With respect to the Frobenius inner product, the equation (4) suggests
that the gradient of F at a general matrix Z € R"*" may be interpreted as the matrix

(5) VF(Z):=(AZWZTAZ—A)T+(ATZ)(ZTAZ - A).

Let S(n) denote the subspace of all symmetric matrices in R”*". It is easy to see
that the tangent space T, O(n) of the feasible set O(n) is given by [3]:

(6) ToO0(n):=0S(n)*

where S(n)*, the orthogonal complement of S(#) in R"*", is precisely the subspace of
all skew-symmetric matrices. It is also easy to see that the orthogonal complement of
ToO(n) is the subspace

(7) NoO(n):=QS(n).

Therefore, an orthogonal matrix Q is a stationary point of Problem A only if
(8) (AQ)(QTAQ—A)T+(ATQ)(QTAQ— A4)€OS(n).

For convenience, we define in the sequel

9 X:=Q7AQ.

Then (8) is equivalent to

(10) X(XT—AT)+XT(X—A)eS(n),

(4)



LEAST SQUARES NORMAL MATRICES 117

or
(11) XAT+XT4=AXT+A7X.

Let [A4, B] := AB — BA denote the Lie bracket. Lemma 2.1 follows.

LEMMA 2.1. A necessary condition for Q € O(n) to be a stationary point for Problem
A is that the matrix [ X, AT] with X defined by (9) is symmetric.

We remark that if 4 is symmetric and A is diagonal, then X is symmetric and
[X, AT] is skew symmetric. In this case, we conclude, from Lemma 2.1, that at a sta-
tionary point the matrix X must commute with A. This is one of the results discussed
in [3].

The projected gradient of F on the manifold O(#) can be calculated without any
difficulty. Mainly this is due to the understanding that for any fixed Q € O(n),

(12) R"™"=To0(n)®NyO(n)=Q0S(n)*®Q0S(n).
Any matrix Z € R"*" has a unique orthogonal splitting
(13) Z=0{3(Q"Z-Z"Q)}+0{3(Q"Z+Z7Q)}

as the sum of elements from T, O(n) and NyoO(n). Accordingly, the projection g(Q) of
V F(Q) onto the tangent space ToO(n) can be calculated explictly as follows:

g(QF%{QTVF(Q)—VF(Q)TQ}

" =_§ {OT{(AQ)(QTAQ—A)T+(ATQ)(QTAQ~ 4)}

~{(AQ)(Q7AQ-A)T+(ATQNQTAQ 4)}0)
--2110"00,4"1-10720,4M")}.

It is clear that the vector field

‘fT?;= -g(Q)=§{[QTAQ,AT1—[QTAQ,AT1T}

(15)
defines a steepest descent flow Q(¢) on the manifold O(») for the objective function F
in (2). Upon substitution, the corresponding X () is governed by the ordinary differential
equation

dX dQT

Q
T
o g AeTeA-

6
(16) [X,AT]—[X,AT]T
2

=X’

Starting with an appropriate initial value, say X (0) = A, the positive orbit of (16) marches
to a limit point which is a (local) least squares normal matrix approximation to 4.

We remark again that if 4 is symmetric and A is diagonal, then the flow (16) is
reduced to

dx
(17) - - X4l

which is analyzed in [3].
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It is worth mentioning that the second term in the bracket of (16) is skew symmetric.
Therefore, the solution flow X (#) of (16) naturally is isospectral [2] to the initial value
X (0). In particular, we have | X ()X ()" — X(0)TX ()] = | X(0)X(0)T — X (0)TX(0)|
for all ¢. Thus, apart from numerical errors induced when solving the differential equa-
tion (16) on computers, the deviation of normality of X (¢) will remain the same as
that of X (0).

The function g in (14) is defined for orthogonal matrices only. We now derive an
explicit formula for the projected Hessian of the objective function F without utilizing
the Lagrange multiplier. Readers are referred to [3] for an explanation of why this tech-
nique works. Obviously we may extend g smoothly to cover the entire space R"*" simply
by defining

V4
(18) G(Z):=E{[ZTAZ,AT]T—[ZTAZ,AT]}.
The Fréchet derivative of G can easily be calculated. In particular, at any stationary point
Q of Problem A and for every tangent vector QK where K € S(n)*, it holds that
[[X,K],A"]" = [[X,K],A"] >
K
2
(19) =—([[X,K],A"],K)
=([X,K],[4,K]).

It can be proved that formula (19) is precisely the evaluation of the projected Hessian
of the Lagrangian function of Problem A [6, p. 80]. Thus a necessary condition (and a
sufficient condition if the strict inequality holds) for a stationary point Q to be a local
minimum is that

(20) {[X,K],[4,K]1)Z0 forevery KeS(n)".

3. Application I—real eigenvalues. We now apply the first-order condition (11)
and the second-order condition (20) to classify the stationary points for Problem A. It
will prove useful if we define

(21) E:=0407.

We observe that the first-order condition (11) and the second-order condition (20) are
equivalent to

<G’(Q)QK,QK>=<

(22) AET+ATE=EAT+E™A

and

(23) {[A,K],[E,K])Z0 forevery KeS(n)*,
respectively.

In this section we first consider the case when A has only real eigenvalues. It follows
that the matrix X = Q7AQ must be symmetric for any Q € O(n). For any general matrix
A€eR™" let

(24) A52=§(A+AT)
and

(25) Agi=3(4-47)
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denote the symmetric and skew-symmetric parts of 4, respectively. We observe that
(26) IX—All?=|.X - Ag]* + | Ak || >.

Since the second term in (26) is fixed once A is given, a least squares approximation to
A amounts to a least square approximation to As. Therefore, it suffices to consider the
case when A is symmetric.

Suppose A4 is symmetric. We shall arrange eigenvalues of A4 in the natural ordering

(27) MZ = = .

We further divide our discussions according to whether or not A has simple eigenvalues.
Cuase 1 (A has only distinct eigenvalues). For clarity, we shall assume the diagonal
elements of A are arranged in the descending order

(28) >\]>}\2>“‘>>\n.

The following theorem completely classifies all the stationary points.

THEOREM 3.1. Suppose A is symmetric and has eigenvalues arranged as in (27).
Suppose A is diagonal and has elements arranged as in (28). Then the stationary points
of Problem A are classified as follows:

1. An orthogonal matrix Q is a stationary point of F only if columns q,, - -+ , g, of

O7T are orthonormal eigenvectors of A.

2. A stationary point Q is a local minimizer (or, a local maximizer) of F only if
columns qy, -+ , g, of QT correspond with eigenvalues u,, - - , p, (0r, the reverse
order), respectively. All other stationary points are saddle points.

3. Any least squares approximation X to A is of the form

(29) X=Nqgi+ - +MNanqs.

The least squares approximation X is unique if A itself has distinct eigenvalues.

4. The minimal value of F is equal to ¥ 27— (N — )™

5. Local extreme points are also global extreme points.

Proof. The proof of this theorem can be found in [3]. The main point is that the
simplicity of eigenvalues of A and the condition (22) require that E be a diagonal matrix
[11, p. 416]. Also, part 5 follows from the fact that all extreme points yield the same
function value as specified in part 4.

Case 2 (A has multiple eigenvalues). When multiple eigenvalues occur, the analysis
becomes more complicated because the matrix E is not necessarily a diagonal matrix.
For demonstration purpose, we shall only consider the special case when all eigenvalues,
except the one which has multiplicity two, of A are simple.

We shall assume the diagonal elements of A are arranged in the ordering

(30) M> e >N= 1> >\,

with 1 = k = n — 1. Then the first-order condition (22) implies that at a stationary point
E must be a quasi-diagonal matrix of the form [11]

. e e
(31) E=d1ag{el,'~,ek-1,[ o ],ek+2,"',en]-
€y €Ly
It follows from (21) that ey, -+, €_1, €+2, *** , €, must be n — 2 eigenvalues of 4

(note that we are assuming that A4 is symmetric), and that columns g, - - -, gx—1,
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Qk+2, " » gn of the matrix QT must be the corresponding orthonormal eigenvectors.
Obviously, the 2 X 2 matrix

e e
(32) R :=[ koo ]

€x €k

determines the remaining two eigenvalues, denoted by u,; and u,, of 4. The columns
qr and gi ., are two orthonormal vectors in the spaced spanned by eigenvectors of

usand .
It is not difhicult to see that
(33)
{[AK],[E,K])=2 E (Ni—N)(ei—e)ky
iR
k1
+2 3 (M= N){(ex—e)kij+ 2ekikicr 1+ (€xs 1 — €)kt4 1)}
k+1<j
+2 2 (M= M) {(e— e ki—2ekikips 1+ (€i—exs 1)k}
i<k

We note that the three summations in (33) are mutually exclusive. Therefore,
{[A,K],[E, K]) Z 0 for every K € S(n)* if and only if every single term in (33) is non-
negative. Because of the specified ordering of the eigenvalues A;, we conclude that for a
stationary point Q to be a local minimizer, it is necessary that

(34) CIZ O 2 |22 2y,
and that the matrices

[e,- —e —e,

]=e,~I—R for every i<k,
€y €T €kt

(35)
[ek K G ]=R-—ej1 forevery k+ 1 <j
€ Ck+176
be positive semidefinite. From the above, we have proved the following theorem.
THEOREM 3.2. Suppose A is symmetric and has eigenvalues arranged as in (27).
Suppose A is diagonal and has elements arranged as in (30). Then the stationary points
of Problem A are classified as follows:

1. An orthogonal matrix Q is a stationary point of F only if columns q,, - - -,
Gk—1>Gk+2> *** » dn Of the matrix QT are n — 2 orthonormal eigenvectors of A,
and gy, gk + are linear combinations of the remaining two orthonormal eigen-
vectors.

2. A stationary point Q is a local minimizer of F only if columns q,, -+ , qx—, of
QT correspond with eigenvalues uy, - , pi—1, and Gi+2, -+ , qn correspond
with eigenvalues uy 1, *** , pn, and qx, qx+ are linear combinations of eigen-
vectors corresponding with eigenvalues uy, w1 . Similarly, a stationary point Q
is a local maximizer of F only if the above correspondence is in the reverse order.
All other stationary points are saddle points.

3. Any least squares approximation X to A is of the form

(36) X=NgigT+ - + Nl @eg ¥ + Qe 1F+ 1)+ -+ + Mg



LEAST SQUARES NORMAL MATRICES 121

The choice of qi and qi +, is immaterial. The least squares approximation is
unique if the first k — 1 and the last n — k — 1 eigenvalues of A are distinct.
4. The minimal value of F is equal to  Z7- ) (N, — w)~
5. Local extreme points are also global extreme points.
We remark that the proof for the above theorem can be generalized to cover other
cases of multiple eigenvalues. The details are left to the readers.

4. Application II—complex eigenvalues. One of the difficulties associated with this
case is that there is no clear way to order the eigenvalues. Even so, we have made some
interesting observations.

Case 3 (A is a 2 X 2 matrix). The simple 2 X 2 case offers considerable insights
into the understanding of higher-dimensional problems. Let

37 ac| M
(37) _[—V )\]'

For any E € R**?, it is easy to see that the matrix AE7 + ATE is always symmetric.
This is to say that any Q € O(2) is a stationary point. Indeed, we find that
(38) Xi= 0TAQ A ifdetQ=1,

' | AT ifdet Q=—1.

So the least squares approximation problem is trivial. The objective function value is
given by

(39) F(Q)=1((ai— N>+ (an—N)?+(anFr)*+(ay £v)?)

depending upon det Q = +1, respectively. It is readily seen from (39) that the signs of »
and a,, — a»; determine which one of A or A7 better approximates A.

Case 4 (A is a symmetric matrix). Again, for demonstration purpose, we shall
consider only the case when A is of the form

. A vy
(40) A=dlag >\l"”5 7”‘7>‘n
Vi Ak
where
(41) AM>A> >\,

and v, > 0. Since A is symmetric, so is E. We write A = Ag + Ag as the sum of its own
symmetric and skew-symmetric parts. The first-order condition (22) requires

(42) (AT+A)E=E(AT+A).

Because A7 + A = 2Agis diagonal, it follows that E must be a quasi-diagonal matrix of
the form (31). Furthermore, we know that

(43) <[AaK]a[E’K]>=<[AS,K]>[E>K]>

since [ Ak, K] is skew symmetric and [E, K] is symmetric. We state Theorem 4.1.
THEOREM 4.1. Suppose A is symmetric and has eigenvalues arranged as in (27).
Suppose A is quasi-diagonal and has elements arranged as in (40) and (41). Then the
stationary points of Problem A are classified as follows:
1. An orthogonal matrix Q is a stationary point of F only if columns q,, - - ,
Qk—1>Gr+2> *** » Gn Of the matrix QT are n — 2 orthonormal eigenvectors of A,
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and qy, Qi+ are linear combinations of the remaining two orthonormal eigen-
vectors.

2. A stationary point Q is a local minimizer of F only if columns q,, -+ , qx—1 of
QT correspond with eigenvalues ., - , wi—1, and Gi+2, *** , g correspond
with eigenvalues py 1o, - , tn, and qx, qr+1 are linear combinations of eigen-
vectors corresponding with eigenvalues i, pi + 1. Similarly, a stationary point Q
is a local maximizer of F only if the correspondence above is in the reverse order.
All other stationary points are saddle points.

3. Any least squares approximation X to A is of the form

(44) X=)\lqlqr+"'+>\k(QkQI{+qk+lq{+l)
v (@ ke = Qe 1G8)+ -+ Magngl.

The choice of qi and qy 4, is immaterial. The least squares approximation is
unique if the first k — 1 and the last n — k — 1 eigenvalues of A are distinct.

4. The minimal value of F is equal to v, + 1 27_ | (N — w)>.

5. Local extreme points are also global extreme points.

Proof. The analysis of stationary points for this case is essentially identical to that
of Case 2 in the preceding section.

Case 5 (A is a normal matrix). Obviously we should suppose 4 has complex ei-
genvalues, otherwise 4 would be symmetric. Now we have real difficulty in the analysis
of the stationary points. In fact, we do not even have a clear way of identifying all
stationary points. We can only report some partial results.

For simplicity, we shall assume that A is given by (40) and that (41) holds. We
partition A into three blocks A = A; ® A, ® A; where

Al=diag {Ala ot axk—l}a
A
(45) A2=[ ¢ ”*],
TV )\k
(46) A3=diag{>\k+2a .”axn}-
It can be verified easily that any E of the form
(47) E=E1®E2®E3

satisfies the first-order condition (22) if E; + E! is a diagonal matrix for i = 1, 3 and
E, € R**2, This, of course, is only a sufficient condition of being a stationary point.
We consider a simple 3 X 3 example. Let

[——0.44910244205626 —2.69770357656912 —0.84185971635958]
A

0.02746606843380 —0.23010080980457 —2.76631903691207
—2.82587649838907 —0.61291990656488 —1.32079674813917

and

00 —-12.0 -3.0

We calculate that || 447 — ATA| ~ 4.5540 X 107'*. So up to the fourteenth digit A4 is
a normal matrix whose eigenvalues are {1 + 2/, —4 }. Starting with X (0) = A, we follow
the descent flow (16) by using the subroutine ODE in [13]. The local error tolerance is

15.0 00 00
A=]1 00 -30 120}.
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set at 107!3, We regard that the flow has converged to its limit point and the integration
is terminated automatically whenever the difference between two consecutive output
values is less than 107!2. At ¢ ~ 0.5, we obtain an approximate limit point

5.047565112549 —12.481140871140 —1.983297617463
X= 1.946294703163 0.447719348364  12.759402874230
—12.486964555620  —3.288091746472  3.504715539087

for the flow (16). The corresponding stationary point is approximated by

0.668645609196 —0.437652789090 —0.601143148929
0=10.437652789090  0.885212316658 —0.157667975945 | .
0.601143148929 —0.157667975945  0.783433292538

We calculate that | X X7 — X7X || ~ 2.7084 X 107", Q70 — I|| ~ 1.3866 X 1073,

So X and Q are reasonably normal and orthogonal, respectively. The corresponding
matrix E := QAQ7 is given by

0.644444444445 —0.801988510684  2.173413906502
E=] 2314685340881 —0.608926976624 —1.676627286676 | .

—0.095631338793 —2.743293953342 —2.035517467820

We calculate that |AET + ATE — EAT + ETA|| =~ 1.2299 X 107!, So we may say that
up to the numerical error the matrix E satisfies the equation (22). But obviously E is
not of the form (47). We think this complication is due to the fact that the spectra of 4
and A are “incompatible,” i.e., the two triangles in the complex plane connecting eigen-
values of 4 and A, respectively, point to opposite directions.

In perturbation theory, we should not expect the spectrum of A to be distributed in
a significantly different pattern from that of 4. In part, this is because eigenvalues depend
continuously upon components of the matrix. In part, this is because 4, representing a
sensible empirical data, should more or less reflect the physical reality. Now that A is
assumed to be of the form (40), let us suppose that 4 also has only one pair of complex
conjugate eigenvalues. Thus 4 can be reduced to the matrix

e e
(48) E:=diag{e,,‘~,[ k *],---,e,,].
—€x €
Now we shall see how the ordering of {e;, - - - , e,} affects the definiteness of the projected

Hessian of F at such a point. By direct computation, we obtain

([AKLIEKD)=2 2 (M—N)e—e)kj

i<j

it kot 1
JEkk+1
(49) +2 3 (kkc+kik+1)((ei— @) (= M)+ vey)
i<k
+2 Y (kigt ki) ((ec—e)(M—N) +vgey).
k+1<j

Every single term in (49) needs to be nonnegative in order that the projected Hessian of
F is positive semidefinite. This, of course, will be the case if the ordering of {e;, - - - , e, }
is “compatible” with (41), that is, if

(50) ezZez e

n

and e, > 0. We, therefore, have established a result of the following sufficient condition.
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LEMMA 4.1. Suppose A is normal. Suppose A can be reduced by orthogonal trans-
Jormation Q to the canonical form E (48) whose elements are arranged as in (50). Suppose
A is a quasi diagonal in the form of (40) whose elements are arranged as in (41). Then

1. The orthogonal matrix Q is a local minimizer of F.

2. The local optimal value of F is given by }|A — E||%.

Remark. In the 3 X 3 numerical example above, we have —4 = ¢; < e, = 1. Thus
(49) is positive only if e, > (e; — €;)(A\; — A\3)/v, = 7.5. Since e, = £2 in our example,
we find that our descent flow X cannot converge to an E in the form of (47). In fact, it
turns out that such an E is a local maximum for F.

In contrast to the preceding three theorems, it is rather surprising that when 4 has
complex eigenvalues the differential equation (16) may have multiple limit points. This
phenomenon can be observed numerically by starting with different initial values on the
surface M(A) := {QTAQ|Q € O(n)}. For instance, if we start with X(0) = AT e M(A)
for the above 3 X 3 example, the flow converges to another limit point

13.442778205310 —0.124823985983  —6.168244962433
—5.831716696280 —2.460547718025 —10.728214876180 |,
—2.013431726775 12.210156961630  —1.982230487286

which is quite different from the one obtained earlier. The least squares distances from
these two distinct limit points to 4, nevertheless, are the same. We have experimented
with many other numerical examples. It seems true that when A is normal and has
complex eigenvalues, Problem A does not have a unique solution. Different least squares
approximations to 4 may result in different optimal values of F. Problem A, therefore,
has multiple local solutions.

At this point, it is worthwhile to look at Problem A from another aspect. The following
general perturbation problem [15] is of significant importance in many areas.

PROBLEM B. Suppose we know exactly the eigenvalues of the matrix 4 and that 4
is perturbed to become 4 + B. How do the eigenvalues change?

Usually we are interested in finding bounds of the perturbed eigenvalues in terms
of the perturbing matrix B. In application it is not uncommon to have a situation in
which both the original matrix 4 and the perturbing matrix B are real and symmetric.
In this case, and in the more general situation in which both 4 and 4 + B are normal,
a comprehensive bound, known as the Wielandt-Hoffman theorem (see [9], [10, p.
3681, and [15, p. 104]), is available on the perturbation to all the eigenvalues.

THEOREM 4.2. Let A, B € C"*". Assume that A and A + B are both normal. Let
Wi, 5 iy be the eigenvalues of A in some given order, and let \y, - - - , N, be the eigen-
values of A + B in some order. Then there exists a permutation o(i) of the integers 1,
2, - -+, nsuch that

X

n
(51) > Noy—mil*= | BJ2

i=1

In Problem A we have the situation that all the eigenvalues (the original ones and
the perturbed ones) are known and that we want to minimize the norm of the perturbing
matrix B.

What we have shown in Theorems 3.1 and 3.2 is that, in the real and symmetric
case, the minimum of || B| is attained if 4 + B = QTAQ where columns of Q7 are
orthogonal eigenvectors of 4 in a certain order. In this case, the equality in (51) holds.
In other words, we have shown that the bound in (51) for eigenvalues is sharp. This is
a reproof of the Wielandt—~Hoffman theorem. We think our proof, being different from
both the original proof of [9] and the one given in [15], is of interest in its own right.
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When the matrix A is real and normal, we can see immediately that the proof given
in [9] for Theorem 4.2 breaks down if the perturbed matrix 4 + B is restricted to be
only real and normal. Problem A, in which we try to minimize the right-hand side of
the inequality (51), becomes an interesting but difficult question. In Lemma 4.1 we have
proved that if eigenvalues of 4 and 4 + B (both real and normal) are “compatible,”
then again the equality in (51) holds. Our numerical experiments seem to indicate,
however, thatgenerally the minimal || B may be farlarger than any rearrangement of eigen-
values on the left-hand side of the inequality (51) if only real matrices are allowed in
the perturbation. Taking the 3 X 3 example to demonstrate our point, we calculate
| X — All* ~ 496.2 in comparison with the eigenvalue variation

min E |>\,(,’)_[.Li|2=461.

7 =1

Case 6 (A is a general matrix). Given a quasi-diagonal matrix A as in (1), an
arbitrary matrix 4 € R™*", and letting X := QTAQ, we have established that necessary
conditions for Q € O(n) to be a local minimizer for Problem A are

(52) XAT+XT4=AXT+A47X,
(53) <[X, K],[A,K]}éO for every K € S(n)*.

If the strict inequality holds in (53), then the above conditions are sufficient for Q €
O(n) to be a strong local minimizer of Problem A.

Thus far, we are able to characterize an analytical solution of Problem A from (52)
and (53) for the following cases:

1. All eigenvalues of A are real, and 4 € R"*" is arbitrary.

2. A has complex conjugate eigenvalues, and 4 € R"*" is symmetric.

3. A has complex conjugate eigenvalues, and 4 € R"*" is normal but not symmetric.

(Indeed, only partial results are obtained for this case.)

For a general nonnormal matrix 4, the analytic comprehension of solutions satisfying
both (52) and (53) becomes a much harder problem.

We have pointed out (Case 3) that when n = 2, all orthogonal matrices Q € O(2)
are stationary points and the corresponding X can only be either A or A”. From here,
we might be able to characterize some stationary points for higher-dimensional cases.

For example, suppose A is given by (40). Suppose 4 can be reduced by orthogonal
similarity to the matrix

(11) (12)
. (9 (4%
(54) E:=diag {6’1, t ,[ 1) (22)}, ce ,en],
e e

which is conformal with A except that eﬁfj ), 1 =i, j = 2 are arbitrary real numbers. Then
we can show that (52) is satisfied. This, of course, is just one special type of stationary
points.

Recently, the Wielandt-Hoffman theorem has been generalized to nondefective
matrices [14], [16].

THEOREM 4.3. Let A, Be€ C"*". Suppose both A and A + B are nondefective, i.e.,
suppose there exist nonsingular matrices S and T such that

ST'AS=diag {u1, - 0},
T4 +B)T=diag {\, -+ , A\, }.
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Then there exists a permutation o(i) of integers 1,2, -+ - , n such that

n
(55) 2 ey — mil* = (k2(S)k2(T))?| Bl 2
i=1
where k,(S) := || S|l S~ |, is the condition number of S and | - ||, means 2-norm.
In the context of our discussion, the matrix 4 + B is required to be a real and

normal matrix. In this case, clearly x,(7") = 1. Suppose the given matrix A4 is nondefective;
then the inequality (55) becomes

(56) > ey — il = (k2(S))?I Bl -

n=1
The inequality (56) suggests that when A is a general nonnormal matrix, the min-
imum value of | X — 4| may be smaller than the so-called eigenvalue variation. That it
indeed is the case can be seen from the 2 X 2 matrix considered in Case 3—Suppose
a =0, a;» > 0, v > 0. Then it holds that
2

(57) min 2 | A= wil*=(an—N)*+(an—N)>+ 242
o =
while
(58) min [|QTAQ—AlI*>=(a;; = N)?+(an—N)*+(an—v)*+v2
0<0(2)

Obviously, the value in (58) is less than that in (57) if a;» < 2v. This observation is
interesting when compared with the Wielandt-Hoffman theorem for normal matrices.
In the latter case, the minimum value of || X — A| is always bounded below by the
eigenvalue variation.

Although closed forms of solutions of (52) and (53) generally are difficult to obtain,
our approach offers an alternative way to solve Problem A. We note that the differential
equation (16), derived from the projected gradient of the objective function F, is nu-
merically traceable for an arbitrary matrix 4. Thus, by following trajectories of (16), we
may locate stationary solutions of the least squares problem numerically. Different starting
points may lead to different stationary points. The asymptotic rate of convergence is
expected to be similar to that of the usual steepest descent method. But the flow, by its
definition, is guaranteed to converge regardless of the location of the starting point. Our
numerical experience is that the flow usually reaches a stable equilibrium point within
a reasonable interval of integration.
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[14] and [16] to his attention. The provision by the same referee of additional statistics
that enlighten the numerical examples is also gratefully acknowledged.
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DIVIDE-AND-CONQUER SOLUTIONS OF LEAST-SQUARES PROBLEMS
FOR MATRICES WITH DISPLACEMENT STRUCTURE*

J. CHUNt aND T. KAILATHj

Abstract. A divide-and-conquer implementation of a generalized Schur algorithm enables (exact and)
least-squares solutions of various block-Toeplitz or Toeplitz-block systems of equations with O(«?n log? n)
operations to be obtained, where the displacement rank « is a small constant (typically between two to four for
scalar near-Toeplitz matrices) independent of the size of the matrices.

Key words. divide-and-conquer, least squares, displacement structure, fast convolution, Toeplitz, Schur
complements, generalized Schur algorithm

AMS(MOS) subject classifications. primary 65F05, 65F30; secondary 15A06

1. Introduction. In recent years, there has been considerable research on fast al-
gorithms for the solution of linear systems of equations with Toeplitz matrices. The
Levinson and Schur algorithms allow solutions with O(#n?) floating point operations
(flops) for systems with # X n Toeplitz matrices.

In 1980 Brent, Gustavson, and Yun [ 5] described a scheme for obtaining a solution
with O(n log? n) flops. This was based on two ideas—the use of the Gohberg-Semencul
SJormula [11],[13], [17], [26] for the inverse of a Toeplitz matrix, and the use of divide-
and-conquer (or doubling) techniques for computing (generators of) the Gohberg-
Semencul formula.

Let x and y denote the first and last columns of 77! € R**", Then if the

first component of x, say X;, is nonzero, Gohberg and Semencul [13] showed that we
could write

1 ~ .
T =x—[L(X)LT(InY)—L(ZnY)LT(ZnInX)], x1#0,
1

where I, is the reverse-identity matrix, Z, is the shift matrix,

1 0
I,= 7 Z,= 1o ,
1N
10

and L(v) is a lower-triangular Toeplitz matrix with first column v. The significance of
the Gohberg-Semencul formula in the present application is that the product of a vector
and a lower- or upper-triangular Toeplitz matrix is equivalent to the convolution of two
vectors, which can be done using O(n log n) flops (see, e.g., [4]).

Brent, Gustavson, and Yun used a divide-and-conquer scheme for a certain Euclidean
algorithm to factorize row-permuted Toeplitz matrices (i.e., Hankel matrices), and to

1
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obtain the vectors {x, y} of the Gohberg-Semencul formula with O(n log?® n) flops.
Later Bitmead and Anderson [3] and Morf [21] used another approach based on the
displacement-rank properties of matrix Schur complements, to obtain similar results;
while this approach allows for generalization to non-Toeplitz matrices, the hidden coef-
ficient in their proposed O(n log? n) constructions turned out to be extremely large (see
Sexton, Shensa, and Speiser [25]). Later Musicus [22], de Hoog [11], Ammar and Gragg
[2] used a more direct approach based on a combination of the Schur and Levinson
algorithms to obtain better coefficients; in particular, Ammar and Gragg made a detailed
study and claimed an operation count of 8z log? n flops. With this count, the new (called
superfast in [2]) method for solving (exactly determined ) Toeplitz systems is faster than
the one based on the Levinson algorithm whenever n > 256. We should mention here
that Schur-algorithm-based methods are natural in the context of transmission-line and
layered-earth models, so it is not a surprise that similar techniques were also conceived
in those fields (see Choate [7], McClary [20], Bruckstein and Kailath [6]). A good
source for background on the Levinson and Schur algorithms, transmission line models,
displacement representations as mentioned and used in the present paper may be [14].

The method we have taken in this paper is in the spirit of the generalized Schur
algorithm (see, e.g., [8], [9]). Our algorithm can be applied to non-Toeplitz matrices,
and is simpler than the methods of Bitmead and Anderson [3] or Morf[21]. Furthermore,
we can readily handle matrices such as (777)~! and (T7T)"!T7, where T may be a
near-Toeplitz matrix or a rectangular block-Toeplitz matrix, or a Toeplitz-block matrix;
in particular, therefore, we can also obtain the /east-squares solutions of overdetermined
Toeplitz and near-Toeplitz systems with O(n log? n) flops. Our algorithm is closely related
to the algorithm of Musicus [22]. However, our presentation is conceptually much simpler
(especially for the non-Toeplitz cases treated in [22]) than previous approaches; in par-
ticular, we do not use the relationship between the Schur algorithm and Levinson al-
gorithms needed in [2], [11], and [22].

An outline of our approach is the following. For a matrix E,

(1) E= [El’l El’z] s E, ,, nonsingular,
E2,l E2,2
the Schur complement of E; ; in E is
S=E;,~E;ET\Ei2.
Note that matrices such as
2) S\ =T S=(T"T)7", Ss=(TTT)'TT

can be identified as the Schur complements of the northwest blocks in the following
extended matrices:

3) s [T 1 E_TTTI E_TTT T7
""l-1 ol -1 ol -1 ol

Now the matrices E in (3) have the following (generalized ) displacement representation,
for suitably chosen matrixes { F/, F?}:

E= 2 K(xiaFf)KT(thb)’
i=1

where K(x;, F) and K(y;, F %) are lower triangular matrices whose j columns are
(F/)U=Dx; and (F?)U~Dy,, respectively. The smallest possible number « is called the
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displacement rank of E with respect to {F/, F}. For an example, let 7 be an m X n
scalar Toeplitz matrix, with m 2 n. Then the matrix E, has displacement rank four with
respect to { F, F}, where F = [§ 9 ], and has a displacement representation [15],

2 4 In 10}
(4a) E,= 2 K(y:, F)K"(xi, F)— 2 K(y;, F)K"(x;, F), y;—=—[0 _7 ]X,u
i=1 i=3 n

If we define x7 = [w7, v7T], note that the matrix K(x;, F) in (4a) has the form

[L(wi) o

(4b) L(v;) O

]€R2n><2n’ OeRan,

where L(w;) and L(v;) are lower triangular Toeplitz matrices with first columns w;
and v,.

Given a displacement representation of E, we use a certain generalized Schur al-
gorithm (see § 2) to successively compute displacement representations of the Schur
complements of all the leading principal submatrices in E. For the above example, »
steps of the generalized Schur algorithm will yield

4

0] o 2
|~ K i>F KT l',F - K i’F)KT i’Fa
[0 (T7T) ,] El (w, F)K'(u;, F) 53 (u (u;, F)

where the top n elements of u; are zero. Therefore, if we denote the bottom 7 elements
of u; as u,;, we can have the displacement representation

2 4
(T'T)'= 2 L(up) LT (up,) — 2 L(uy) L™ (uyy).

i=1 i=3

Now, the generalized Schur algorithm, which is a two-term polynomial recursion,
can be implemented in a divide-and-conquer fashion with O(«3f(n) log n) flops, where
f(n) denotes the number of operations for the multiplication of two polynomials. There-
fore, if the multiplication of two polynomials is done again by divide-and-conquer, i.c.,
by using fast convolution algorithms, then the overall computation requires O(«3n log? n)
flops. Once we have a displacement representation of the desired Schur complement .S,
the matrix-vector multiplication, S'b, can be done with O(an log n) flops using fast con-
volutions. As an example, we can obtain the least squares solution for the Toeplitz system

Tx=Dh, TeR™™", mzn

as follows:
(i) Form T7Tb using two fast convolutions,
(ii) Obtain a displacement representation of (777) ! using the divide-and-conquer
version of the generalized Schur algorithm,
(iii) Form (T7T)~'(T7b) using eight fast convolutions.
If we had obtained the displacement representation of (777T)'T7 directly (using E3),
then step (i) above would not be needed.

2. Generalized Schur algorithm. After a brief review of basic concepts and defini-
tions, we shall describe the generalized Schur algorithm of references [8], [9], and [15],
but in a polynomial form important for the divide-and-conquer implementations. We
shall need to recall some definitions and basic properties.
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Generators of matrices. Let F/ and F? be nilpotent matrices. The matrix
Vi pyA=A— F AF®T

is called the displacement of A with respect to the displacement operators {F/, F®}.
Define the (F/, F°)-displacement rank of A as rank [V w s»4]. Any matrix pair
{X, Y} such that

(5) v(F/,F”)AAZ/YT),T’ XE[XI’XZ’ o axa]a YE[YI,Yz, e 3ya]

is called a (vector form) generator of A with respect to { F/, F®}. The generator will be
said to have length «. If the length « is equal to the displacement rank of A, we say that
the generator is minimal. A generator such as Y = X2, where 2 is a diagonal matrix
with 1 or —1 along the diagonal, is called a symmetric generator.

The following lemma [15], [16] establishes the connection between generators and
displacement representations.

LEMMA. Let E be an m X n matrix. If F/ and F® are nilpotent, then the equation
VrrE = 29 x;y7 has the unique solution E = 2§ K(x;, F/)K"(y;, F®), where
K(x;, F')=[x;, F/x;, - -+, /" Yx,) and K(y;, F*) = [y, Fly;, - -+, F*" " Dy,].

Choice of displacement operators. The generalized Schur algorithm operates with
generators, and needs O(amn) flops for sequential implementation and O(«*n log? n)
for divide-and-conquer implementation. Therefore, for a given matrix A, we should try
to choose the displacement operators that give the smallest «. If the matrix 4 is an n X
n Toeplitz matrix, the appropriate displacement operator F is Z,, an # X #n shift matrix.
If A has some near-Toeplitz structure, then F would have forms such as

F=27,02,,  F=®2Zz,,  F=2Z
1

where ® denotes the direct sum, Z,® Z,,=[% 9 1, and ®}- | denotes the concatenated
direct sum.

Example 1. Let T = (t;—;) be an m X n pre- and post-windowed scalar Toeplitz
matrix, i.e., t;; = 0if j > i or i > m — n + j with m Z n. Then it is easy to check that
the matrix C = (¢;— ;) = TTT is also an (unwindowed ) Toeplitz matrix, and with respect
t0 {Z,® Z,, Z,® Z,}, E; in (3) has a generator { X, Y } of length two, where

x;=[co,C1, "+ s Cam1,—1,0, -+ ,0]7/cd/?,

x2=[0,¢1, =+ ,cp-1,—1,0, - - ,O]T/C(x)/z,

vi=lco,c1, - -1, 00,t1, ** tm—n,0, <+ ,017 /0",

Y2=—[0,¢1, *** sCamt1slo b1, tm—n,0, -+ ,017 /. O

Example 2. If T is a Toeplitz-block matrix, i.e.,

T1,1 T1,2 : Tl,N
T2,1 T2,2 : T2,N

(6) T= eR™*", T, ;= scalar m; X n; Toeplitz matrix,

TM,l TM,2 : TM,N
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then for the matrices E in (3), we choose [9], [15] the following displacement operators:

r M N
(7a) E;:F= @zmi]e)F,, F”=[®Z,,i]®F,, m=n,
Li=1 i=1
r N N
(7b) ExF/=|® Z,,,]@Fl, F”=[® z,,,]caF.,
[ i=1 i=1
- N N M
(7¢) ExF=|® Z,,,]@F,, Fb=[® z,,,]@[@ z,,,i],
[ i=1 i=1 i=1

where F; can be either Z, or ®¥_, Z,,. However, for the divide-and-conquer implemen-
tation, we prefer to choose @Y, Z,,; see the remark in § 4.

Example 3. On the other hand, if the matrix T in (3) is a block-Toeplitz matrix
with 8 X 8 blocks,

By By - B.yy:
@) 1=| B Bo B logmxn peRixe m=mp, n=Ng,

By-1 By-2'B nium
then for the extended matrices E, we should choose [8], [9] the displacemerit operators
9) Fl=78®75, F'=2z£02ZE,

where for E, we assumed that 7" is a square # X »n matrix.
Generators of the above and other extended block-Toeplitz or Toeplitz-block matrices
can be found in [8].

Polynomial form of generators. In general, the displacement operators F/ and F?
for both extended block-Toeplitz matrices and extended Toeplitz-block matrices have
the form

N N
(10) F=®ZzE,  n=3n.
i=1 _

We shall say that the displacement operator F in (10) has N sections. One of the key
operations in generalized Schur algorithms is matrix-vector multiplication Fv, i.e., a
sectioned shift operation. With the polynomial representation of vectors, the shift oper-
ations has a nice algebraic expression. For a given vector v, let v( z) denote the polynomial
whose coefficient for the term z' is the (i + 1)st component of the vector, i.e.,

(11) v=[Vo,V;,0s, +** ,Vp— 11T 0(2) =+ V1z+ 022+ - -1, 2" L.
Then,
Z,v=v'=[0,00,0;, -+ ,0,_2]Tv(z)z mod z".
In general, for the matrix whose displacement operator is the Fin (10), let us define
integers { 6;} by
0;= El:nk, 01 <0<+ <Op.
k=1

Let v(z) and 6(z) be polynomials of degree less than or equal to » — 1, and define the
degree at most (#; — 1) polynomial, v;(z), by

(12a) W(z)=0,(2) + 2% 05(2) + 2%203(2) + - - - + 2% -1, (2).
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Given two polynomials v(z) and 6(z), and the displacement operator F in (10), the
(polynomial form) displacement operator ®r is defined by the following operation:

(12b) W(2)®pb(z)=r(z)=ri(z)+ 2% ry(z)+2z%r;3(z)+ - - - + 2V~ 11,,(2),
where
(12¢) ri(z)=v;(z)0(z*) mod z",

i.e., r;i(z) is the polynomial v,( z)6( z”) after chopping off the higher degree terms, so that
r:(z) has the degree at most (n; — 1).
Let

X=[x1,%X2, -+, Xa], Y=[y1,y2, "+ ,¥dl
be a generator of a matrix 4 with respect to certain { F/, F*}, and let
x; <> xi(2), yieoyi(w).
Then we call the pair of polynomial vectors { X(z), Y(w)}, where
X(2)=[x1(2),x2(2), -+, x2)],  Y(W)=[ni(w),y2(w), -+, yu(W)],

a (polynomial form) generator of A, with respect to (polynomial form) displacement
operator { ®ps, ®ps}.

Example 1 (continued). The matrix E3 in (3) has a generator { X (z), Y (w)} with
respect t0 {®ps, ps}, where F/' = 7, ® Z,, F* = Z,® Z,,, and

x1(z)=[co+ciz+ - +c,_ 12" 1 —=z"]c5'?,
X(z)=[ciz+cz?+ -+ +c,_ 12" ' —2z"]c5'?,
nw)=[cotcaw+ - +co 1w w1 T g, W ep V2,
mw)=—[ew+ -+ e W T tgw"+ 1wt - w2
Also note that
x1(2)®prz=[coz+c1z*+ -+ +Cp-2z2" ' —=2" g2,
Vi(w)®pw
=[cow+ew?+ AW T W w2 W 2 O

Next we note that for given vectors a and b such that a”b # 0, we can always find
[8] matrices ® and ¥ such that

(13) a’®=[a},0,0, --- ,0], bW =[b},0,0, - -+ ,0], 0-¥'=1,
and therefore, a”b = ab’. We define polynomial matrices ©(z) and ¥(w) by
z w
, ¥(w)=V¥
1 1

(14) 0(z)=0

We also remark that if a = b, then we could choose ¥(w) = @(w), and if b = Za,
where 2 = [,® — I,, then ¥(w) = @(w)Z, so that we only need to find, and post-
multiply by, 6(z).
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Generalized Schur algorithm. Let a matrix E have a generator { Xo(z), Yo(w) } with
respect t0 {®pr, ®p }, and define E; ; by

E E
E= [ 11 12

—_ :IeRan,
E,, E;,

where E| , is a k X k strongly nonsingular matrix, i.e., the one with all nonsingular leading
submatrices. The k-step generalized Schur algorithm [8], [9], [15] presented below in
polynomial form gives a generator of the matrix

O O
O S
with respect to {®p,®p}, or equivalently, a generator of S with respect to

{®fr, ®ps}, where F/ and F° denote the trailing square submatrices of size (m — k)
and (n — k) of F/and F?, respectively.

], S=E;;—E;  ET\E R ROX(1=h),

ALGORITHM ( k-step generalized Schur algorithm).
Input: Generator of E, { Xo(z), Yo(w)}; displacement operator { ®ps, ®ps};
Number of steps k.
Output: Generator of S { Xi(z), Yi(w)}
Procedure GeneralizedSchur
begin
for i := 0 to k — 1 do begin
al:=[z7Xi(2)].=0;
b7 = [z27Yi(2)).-0;
Find 0;(z) and ¥;(w) to transform a” and b such as (13);
Xiv1(z) = Xi(2)®r0i(2); Yipi(w) = Yi(w)Op,¥i(w)
end
return { Xi(z), Yi(w)}
end

Remark. The polynomial vectors, X;(z) and Y;(w), have degrees m — 1 and
n — 1, respectively, for all i. Each step eliminates the nonzero lowest degree term, and
therefore the terms of X;(z) and Y;(w) whose degrees are less than z’ and w' are zeros.

By applying the generalized Schur algorithm we can obtain generators, or equivalently
displacement representations, for various interesting Schur complements.

3. Divide-and-conquer implementation. The (sequential) k-step generalized Schur
algorithm in § 2 can also be implemented efficiently using the divide-and-conquer ap-
proach. We shall only explain how to find X, (z); essentially the same argument applies
for Yi(w).

Let us define 0,,(z) and X,.,(z) by

0,4(2)=0,(2)0,+,(2) - - 9,(z2),
szq(z)EXO:q(Z)®Ff®0:p— 1(2), XO;q(Z)EXO(Z) mod z9%! s

where 0 = p = ¢. The polynomial matrix 0,,(z) has a degree ¢ — p + 1. The polynomial
vector X),(z) has degree ¢, and is obtained by dropping from X,(z) all terms of degree
higher than z% Also note the useful properties,

[x(2)®F0,(2)1®Fb:(z) = x(2)®OF[0,(2)02(2)],
[x1(2) +2x2(2) I®F8(2) = [x1(2)Dp0(2)] + [x2(2) OFb(2)].
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These properties and the fact that 0,,(z) is completely determined by X,,(z) allow a
divide-and-conquer implementation of the generalized Schur algorithm.

Given X,,(z), we can compute 0,.,(z) as follows. If p = ¢, then we are successful,
and compute 0,,(z) = 0,(z). Otherwise, we choose an “appropriate” (see § 4) division
point r such that p < r < g, and try to solve the smaller subproblem of finding 0, (z),
given X,,_(z). Once we know 0,,_-,(z), we can compute X,.,(z) by

(153) Xr:q(z) = XO:q(Z)®Ff®0:r— I(Z) = [XO:q(Z)G)Ff@O:p— I(Z)]®Ff®p:r— I(Z)
(15b) = p:q(Z)®Ff®p:r~l(Z)-

Now we again try to find 0,.,(z) given X,,(z). After we obtain 0,.,(z), we can combine
the two results, 0, (z) and 0,.,(z), by multiplication,

(16) G)p:q(z)=®p:r—I(Z)G)r:q(z)-

Programming details of the above recursive generalized Schur algorithm are shown in
the Appendix.

The previous recursive description can be visualized nonrecursively using trees

(See Figs. 1 and 2). Each node in the tree is annotated with the rules: “find,” “apply,”
and “combine,”

Jop: Find 0,.,(2),
Apyg- Xr:q(z):=Xp:q(Z)®F®p:r—I(Z)s
Cpg: (')p:q(z)::@p:r—I(Z)G)r:q(z)~

We traverse the tree in post-order (i.e., follow the order labeled on each node of the tree),
and evaluate the rules.

co:7
22
o3
10
12-21
€23
1 2 3 5 6 71 8 11
foo a1 fi1 ao3 2  as  f3 aor

F1G. 1. Sequence of computations for Example 4.
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-

C24 12

4 e a4 \
S I c3a 11
axz4
; \
1 2 3 6 8
a2

Joo aon  fua faa
10

€09

agg 14

f3 azs

F1G. 2. Sequence of computations for Example 5.

Now, we shall consider two examples in detail.
Example 4. Pseudoinverse of pre- and post-windowed Toeplitz matrices. Consider
the matrix E3 in Example 1, where

16 8 4 1 3211 -1 0 0 0
8 16 8 4 0321 1 -1 0 0

T T_
=14 316 8| T'"loo32 1 1 -1 o
1 4 8 16 0003 2 1 1 -1

We would like to find a displacement representation of (777)~!TT. This can be done
by the four-step recursive generalized Schur algorithm. The input to the algorithm is a
generator { Xo(z), Yo(w)} of
[T T T T]
E3 = s

-1 O

with respect to {®;,®m}, where F/'=27,®Z, F’=Z,®Z,. The output
{X4(z), Ya(w)} is a generator of (T7T)~'T7 with respect to {®;,, @, }. The com-
putational sequence is illustrated in Fig. 1, where it is assumed that the division points
were chosen successively by two, one, and three.

0
-1

[2]  a01:X1:1(2) = Xou (2)®prO00(2) = [4 422,22 OO0 (2) = [42, —22].

=
o ﬁ:.:em(z)=%.[_l jl][z 1].

-
[4] Co:13@0:1(2)=®0:0(Z)®1:|(Z)=_2"[ ‘ z/ ]
—z/2 1

V3

1
[1] ﬁ):0390:0(2)=[0 ][Z 1] because Xo.0(z)=[4,0].
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2
[5] ao:31X2;3(Z)=Xo:3(Z)®Ff90:1(Z)=V_§'[322+ 3z%/2,—2%/4].

0

1
[6] fi:2:®2:2(z)= [0 —1

2
][Z 1] becauseX2;2(z)=ﬁ-[3zz,0].

2
[7] a23:X33(2) = X23(2)®pr0,,(2) = ﬁ [323,2°/4].

2 1 =

12 z/12][z
[9] 02;3292:3(2)=92:2(Z)93:3(Z)=V_]7§'[l 1 ][ 1]‘
12

N

24 z4=z2/24  Z3/12—z/12
[10] 00:3390:3(2)=90:1(Z)92:3(Z)=m'[_23/12+Z/12 —22/24+1

[11] ap7r:Xar(2)=[4+2z+22+23/4—2%/4,2z+ 22+ 23 /4 — 2* | 41®prOp.3( 2)
=[(4+2z+22+23/4,2z+ 22+ 23 /4) — 2*(4,3) 1 ®r003(2)
=—2*[(3,1)803(z) mod z*]

62
= v_m[z/u 2224 —23/2,1—z/2 — 2?24 + Z3/12].
Because T7T is symmetric, ¥o.3(w) = 0p3(w)Z, where £ = 1 ® —1, and therefore,
Yas(w)=[(4+2z+22+23/4)+2%(3/4+z/2+ 2% /4 —2%/4),

(2z+ 22+ 23/4)+2z*(3/4+2/2+ 2% /44234 — 2%/ 4) |®pBO03(W) Z

Z4

,—[1/4z+zz/24 3z3/2+492%/24+ 112°/8 +132%/24 + 327 /2,
v_

—3—z/2+z%/8-223/3+11z%/8—13/242°—2°/8—27/12].

Therefore,

(TTT)'TT=~?[L(x))LT(y)) + L(x2)L"(y)], 7=ﬁ,

where L(x;) and L(y;) are the lower triangular Toeplitz matrices whose first columns
are x; and y;, respectively, and

x1=[0a _‘_12,_217‘,%]T’
x2=[_1>%’§’_ll_2]T9

yi= [09%’713’ 2 %93 —aé—?"%]T
y2=[_39_%’!l!9_%,%9 ;_?b_%aﬁ]T
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Remark 1. For a symmetric generator of length two with 8 = 1, the 2 X 2 polynomial
matrix 0(z) in (14) can have the form (hyperbolic reflection)

Ch,‘Z Sh[
'—Sh,'Z _Chi

@i(z>=[ } ch?—shi=1.

Let

GP:Q(Z)EGP(Z)@I,+ l(Z) e @q(z)El:@l,l(Z) @1,2(2)].

05,1(z) 0,2(2)

Then, by induction, we can easily prove that
z47P0, (27 =(— 1) 10,,(2), z97PT10 (27 ) = (1)1, (2).

Therefore, we need to compute and store only two entries of 0,,,(z).

Remark 2. For an unwindowed scalar Toeplitz matrix, the matrix E, in (3) has
displacement rank four, whereas the matrix E; has displacement rank five. Therefore,
when we solve Toeplitz least squares problems, it is more efficient to find a displacement
representation of (777)~! rather than of (T7T)"'T7”. With the notation in (4), the
matrix E, for an unwindowed scalar Toeplitz matrix 7 = (f;_ ;) € R”*" (m = n) has a
generator [15],

w =T/, wy =1, wy=2,Z wi, ws=2Z,1,
tIE[thtl’.'.atm—I]Ta tZE[Oat*l"..’tl—n]T, lE[tm—l,”'atm—n]T,
vi=vi=e//[t], v2=v,=0,

where || - | denotes the Euclidean norm, and e, is the vector with one in the first position,
and zeros elsewhere.

Example 5. Displacement representation for the inverse of a Sylvester matrix. Let
T denote the following Sylvester matrix,

2 0 010
1 2 0 2 1
(17) T=|3 1 2 1 2
0 3 1 11
0 0 3 01

and suppose that it is desired to obtain a displacement representation of 7!. Then the
appropriate extended matrix is

T 1
(18) E,=[_I O],

and it is easy to see that the following { Xo(z), Yo(w)} is a generator of E; with respect
to {@Ff, ®Fb}, where Ff= ZS ® ZS, Fb =275 ® Z, ® Z5,

Xo(z)=[x1(2),x2(2),x3(2)], Yow)=[»(w),y2(w), ys(W)],
(192) x1(z)=2+z+3z%—2, X(2)=142z+22+ 23— 28, x3(z2)=1,

(19b) y»i(w)=1, ya(w)=w?, yi(w)=w’.
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Now the five-step recursive generalized Schur algorithm gives a desired generator of 77!,
with respect to {Zs, Zs}, and a possible computational sequence is shown in Fig. 2,
where the division points are chosen successively as two, one, three, and four.

z -5 -3 w 0 0
[1] J00:000(z)=[0 1 Of, Yoo(w)=|w/2 1 0.
0 O 1 w/2 0 1

[2]1 401 Xiu(2)=[22,32/2,-2/2],  Yi(w)=[w,0,0].

[z -3 -} w 00
[3] Si1:014(2)=1 0 1 Ojl, ‘I’lzl(W)=[3W/4 1 0]~
|0 0 1 -w/4 0 1
(22 —3z/4—1/2 z/4—1/2
[4] C0:1:001(2)=1 0 1 0 :I,
| O 0 1

w? 00
Yo (w)=| w?/2+3w/4 1 0].
w2/2—w/4 0 1

[5] Ao.a: Xr4(2)=[222+ 23+ 32%,—522/4 - 5234, 522 /4 + 323 /4],
Y2.4(W) = Yo.a (W) ®ps W, (W)
=[(1,0,0)¥o.;(w) mod w?]+w>[(0, w,0) ¥ (w) mod w?]

= [w2+3w*/4,w3,0].
z § 3 w 0 0
[6] f22:020(2)=10 1 0, Voo(w)=|-5w/8 1 0.
0 0 1 —5w/8 0 1

[7] ra: X34(2)=[223+ 2%, —523/8 + 152%/8,11z3/8 + 15z*/8],
Y3.4(w) = Yaou (W) O Wan(W)
= [(w%0,0)W¥,,(w) mod w31+ w?[(3w/4,1,0) ¥,,(w) mod w?]
=[—5w*/8, w3 0].

01 0 —16w/5 1 0
[8] f3:033(2)=|z ¥ ¥ |, Yi3(w)= w 0 0f.
0 0 1 “1iw/5 0 1

[9] 03:41X4:4(Z)=[_524/8,724,624], Y4:4(W)=[W4,_5W4/8,0]-
z/(2V2)  28/(5V2) %]

[10]  caa:Oua(z)=| —5z/(16V2) 1/(2V2) -3
0 0 1

w(2V2)  5/(16Y2) 0
Voa(w)=| —28w/(5V2) 1/(2V2) 0©
—12V2w/5 0 1
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Operations [11]-[13] are obvious. After evaluating, ¢s.4, ¢2.4, and ¢p.4, We obtain
00.4(z) and Y¥y.4(w), and finally,

[14] Q0:9: Xo:9(2) = [X1(2),Xx2(2), X3(2) 1 ®ps0p.4(2)
=2°[(—1,-2>,0)®prBp4(z)]

=2°[(—=1,-2%,0)80.4(2) mod z°] = z°[ui(2), x(2), us(2)],

where
u(z)=—z/(2V2)— 22/ (2V2) + 23/ V2 + 24/ V2,
ur(z)=4/(5V2) + 4z/V2+1622/(5V2) — 2823/ (5V2) — 282%/(5V2),
us(z)=2/5+2z/5+2z%5+z3/5—6z%/5.
Yoo(w) = [y1(W),2(W), y3(W) | Ops Wo.4(w)

= WS[(Oa Oa 1 )®Fb\l,0:4(w)] = WS[UI(W), vZ(W); v:;(W)],
where

v (w)=—12V2w/5+ 12w?/(5V2) + 12w3/(5V2) — 12w*/(5V2),
va(w)=—w/V2+ w2/ (2V2)+ w3/ (2V2) — w?/(2V2),
vs(w)=1.
Therefore,
T-'=L(u)L7(v;)+ L(uz) LT(v2) + L(us) L7(v3),

where u; and v; are the vectors whose jth component is the coefficient of z/~! and w’/ ™!
of u;(z) and v;(w), respectively. O

Remark 3. If we had chosen the displacement operator F/' = Zs ® Z; ® Z,, F? =
Z3 ® Z, ® Zs for the matrix 7 in (17) we would have the same generator (19) for E,,
but the obtained generator of 7' would be the one with respect to {Z; ® Z,, Zs } rather
than with respect to {Zs, Zs}. The displacement ranks of 7' with respect to both
displacement operators are two, but the above procedure gives nonminimal generators
of length three.

Remark 4. The following extended matrix:

T b .
(20) , T'=Sylvester matrix

-1 0
also has a displacement rank of three. We could as well obtain the solution 7'b directly
by applying the recursive generalized Schur algorithm to (20); the last column of X,

where { X, y} is the computed generator of 7'b with respect to {Z,, 1}, can be shown
to be the solution 7" 'b.

4. Polynomial products with fast convolutions. The product of two polynomials of
degree d; and d, can be performed efficiently using d = d, + d, + 1 point fast cyclic
convolution algorithms [4]. A d-point fast cyclic convolution needs O(d log d) flops.
Among others, Fast Fourier Transforms (FFTs) can be used for convolutions, and Ammar
and Gragg [2] carefully examined the use of FFTs for a doubling algorithm for square
Toeplitz systems of equations. We shall only consider the subtle complications that arise
in the recursive generalized Schur algorithm in this paper.
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The polynomial matrix-matrix product of (16) needs > of ¢ — p point cyclic con-
volutions. The polynomial vector-matrix product of (15b) has «? of scalar polynomial
products of the form, x(z)®gs0(z), where x(z) is a polynomial with nonzero terms of
zP, zP*1 ... | z9 Let us assume that

0<01< " <HUSEP<0j+1<" " <0=Sr<is4 1< <6,=2qg<6,41<*"*<6n.
Then
(2la) X' (2)=x(z)®pb(2)

=[2%x1(2) + 2% x4 2(2) + -+ 2% 41 (2)

(21b) + -+ 2%, 1(2) O 2)
(22a) = [2%x41(2)+ - + 2% 1 x,(2) | Opr0( 2)

(22b) +2%[ x4+ 1(2)0(z°) mod z"+1]

(22¢) +z%+1[x, 4 2(2)0(z°) mod z"+2]

(22d) +z%[x,4+1(2)0(z%) mod z™+1].

The terms in (22a) do not need to be computed because these terms will be summed to
zeros after adding all the partial sums in the vector-matrix multiplication of (15b). Recall
that x;(z) has degree n;, and 0(z®) has degree 3¢~7* 1), Therefore, the product x;(z)0(z")
from (22b) to (22d) can be performed by

2n;+ 1 point cyclic convolutions if degree [0(z°)]= degree [x;(2)],
n;+8Y"P*D+ 1  point cyclic convolutions if degree [0(z?)] < degree [x;(2)].

Remark 5. Note that two d/2 point convolutions take cd log (d/2) flops if one d
point convolution takes cd log d flops. Therefore, the polynomial product (21) is more
efficient for the displacement operator F/ with more sections, because such displacement
operators break a long convolution into many smaller convolutions. Therefore, for a
given matrix we prefer to choose a displacement operator with as many sections as
possible, while keeping the displacement rank minimal. Also we remark that the first
and last terms (22b) and (22d) need smaller point convolutions.

If the dimensions of the matrix are powers of two, then we can always choose the
center division point r = [(p + q)/21. This balanced division (or doubling) gives the
least number of computations, in general. For this case, let » = p — ¢, and T'(5) denote
the number of computations for one recursion. Then

T(n)=2T(n/2)+W(n),  W(n)=0(a’nlogn),
and therefore, we can show [1] that the k-step recursion takes
T(k)= O(o’k log? k).

However, in most cases the doubling is not possible, and for such circumstances,
the desirable choice of r is such that r — p and g — r + 1 are highly composite numbers
(so that fast convolution algorithms can be applied efficiently), as well as r is close to
(g — p)/2 (so as to achieve balancing).
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Matrix-vector products using displacement representation. The final step of finding
solutions for linear equations is the matrix-vector multiplication Sb, given a displacement
representation of S € R™*",

(23) S= 2 K(x;,F/)K"(y;,F"),
i=1
where the length « is a multiple of the block size 8, a = 36, say, and
M N M N
F'=®Zz8, F=02z m=XXm, n=3n.

i=1 i=1 i=1 i=1

The expression in (23) can be rewritten in the block displacement form

)
(24) S= z Kﬁ(Xt’Ff)Kg(K’Fb)’ XieRmXﬂa YieRnXﬂa
i=1
where
(253) Kﬁ(XlaFf): [XiaFin’Fszia e aFf[(m/ﬁ)_ l]Xi]GRmxna
(25b) Kﬁ( Yi’Fb)Z[YianYvianZYi’ o an[("/ﬂ)—l]}fi]GRnX"'

Furthermore, because F/ and F? have M and N sections, respectively, (25a) and (25b)
have the forms

Ks( X\, Z5,) O Ks(Y\;,Z5) O
78 .78
Kﬂ(Xl,Ff)= Kﬂ(XZiI’Zmz) Q , KB( Yj,Fb)= Kﬁ( Y2:1aZn2) Q ,
Ks(XpmiZh,) O Ks(Yni Z5) O

where Ky X, Z*) is the block lower triangular Toeplitz matrix with the first column
block X. The matrix O denotes a null matrix of appropriate size such that Ks( X;, F)
and Ks(Y;, F by are m X n and n X n matrices, respectively.

To see how to use convolutions for the product

Ko( X, F/)KE(Y;, F*)b

it is enough to consider matrix-vector multiplications of the form Kz( X, Z®)b. Note
that K3( X, Z*)b can be expressed as sum of 3 products of scalar lower triangular Toeplitz
matrix and vectors. As an example,

ap Co bO
ay ¢ b
a ¢ a ¢ || b
(26) as ¢ a; b3
ao bo Co by
| a ao 0 f|la @ 0
a a; Q bz C €1 O b3
as a a; Q 0 C3 C €1 C 0

The multiplications in the right sides of (26) can be done by fast convolutions, and
therefore, so can the multiplication Sb.

5. Concluding remarks. We have presented O(a’n log? n) algorithms for the de-
termination of exact and least squares solutions of linear systems with matrices having
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(generalized ) displacement rank «. Such algorithms for exact solutions have been studied
by several authors, most recently by Ammar and Gragg [2] for Toeplitz systems. They
also made a very close study of the implementation of the convolution operation in an
attempt to obtain the smallest coefficient. Although we have not attempted so close an
operation count for the more general algorithm in our paper, the hidden constant in the
operation counts for solving Toeplitz least squares problems is quite high because a =
4 for the matrices E, or E; (see (3)) with a full rectangular 7'. Also we conjecture that
our algorithm suffers numerical stability problem when E, ; in (1) has a leading principal
submatrix that is close to singular; nevertheless we might hope that numerical refinements
devised for the Schur algorithm (see, e.g., Koltracht and Lancaster [18]) may be carried
over to the divide-and-conquer framework as vell.

We also mention that the fast algorithms for Hankel and close-to-Hankel ma-
trices in [10] can be implemented with divide-and-conquer fashion using the spirit in
this paper.

Appendix. We shall summarize the explanation in § 3 using a Pascal-like recursive
procedure. First, note that the polynomial 0,,(z) (and ¥,,(z)) has ¢ — p + 2 terms.
The first column of ©,,(z) has terms ranging from degree z to z? ”*!, and the other
columns have terms from 1 to z¢77. Hence, by shifting the first column by one position,
we can store 0,,,(z) and ¥,,(z) in the array “Poly” from p to g slots inclusive:

Poly: array [1..a, l..a, 0. MAX-1] of record
0: coefficients;
¢: coeflicients

end;

The computation of 0,.,(z) is sequential, i.e., once we compute 0,.,(z), we do not need
to keep 0O,,,— ;(z), and therefore, the array “Poly” can be kept as a single global variable.

The polynomial vector X,,(z) has ¢ — p + 1 terms, and therefore, can be stored in
an array type GENERATORS:

type
GENERATORS = array [1..a, 0. MAX-1] of record
x: coefhicient;
y: coefficient
end

However, X,,,(z) cannot be kept as a global variable, and local copies should be maintained
until we compute X,.,(z).

Now we can describe the recursive generalized Schur algorithm as follows.

ALGORITHM (recursive k-step generalized Schur algorithm).
Input: Generator of E, { Xo(z), Yo(w)}; displacement operator { ®zs, O} ;
Number of steps, k.
Output: Generator of S, { Xx(z), Yi(Ww)};
procedure RecursiveSchur
var
G, LowerG: GENERATORS;
begin
Find (0, k-1, G);
Apply(0, k, n, G, LowerG);
return(LowerG)
end
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The procedure Find (p, g, G) computes 0,,(z), and ¥,,(w) given { X,,(2), Y,u(w)},
and the procedure Apply (p, r, ¢, G, LowerG) returns LowerG = {X,,(z), Y,4(w)}
given G = { X,,(2), Ypo(w)}

procedure Find(p, g: index; G: GENERATORS);
var
r: index;
G, LowerG: GENERATORS;
begin
if p = g then begin
Compute 0,,,(z) and ¥,,(w);
return
end
r := appropriate integer close to [(p+q)/21;
Find(p. r-1, G);
Apply(p, r, q, G, LowerG);
Find(r, g, LowerG);
(* Use fast convolution for polynomial products *)
®p:q(Z) = ®p:r— 1 (Z)er,q(z);
Vg(W) i= Wy 1 (W), (W)
end

procedure Apply (p, r, q: index; G: GENERATORS; var LowerG: GENERATORS);
begin
(* Use fast convolution for polynomial products *)
Xrg(2) := Xp:q(Z)®Ff®p:r— 1(2);
Y, y(w) = Yp:q( W)®Fb‘1,p:r —1(w);
LowerG := {X,.4(2), Y,.q(w)}
Free the storage of { X,,(z), Y,q(w)};
return (LowerG);
end
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INERTIA, NUMERICAL RANGE, AND ZEROS OF QUADRATIC FORMS
FOR MATRIX PENCILS*

NAM-KIU TSINGt AND FRANK UHLIG}

Abstract. Definite, semidefinite, and indefinite Hermitian and symmetric matrix pencils P(4, B) are
classified by their /c and /g numbers where /x = dim span {X € F™ x*4x = x*Bx = 0}. Using ideas from
numerical range theory, it is proved for F = C that P(A4, B) is a definite pencil if and only if /c = 0, P(4, B)
is an indefinite pencil if and only if /c = n, while P(4, B) is a semidefinite pencil if and only if 0 < /c < n. In
contrast, for F = R the /g number for indefinite pencils can be as low as # — 2. In the cases for F = R with
Ig = n— 2 or n — 1, the Kronecker canonical form theory is used to describe sets of generators for indefinite
and semidefinite pencils P(4, B).

Key words. matrix pencil, inertia, numerical range, Kronecker form
AMS(MOS) subject classifications. 15A48, 15A42, 15A57, 15A63, 15A60

1. Introduction. Let H, be the set of all # X » Hermitian matrices, and let S, be
the set of all # X n real symmetric matrices. For any pair of 4, B in H, or S, the pencil
generated by A and B is the set

P(A,B)={aA+bB:a,beR}.

P(A, B) is called a definite pencil (d.pencil) if it contains a definite matrix; it is a
semidefinite pencil (s.d.pencil) if it contains no definite matrix but contains a nonzero
semidefinite matrix; it is an indefinite pencil (i.pencil) if all its nonzero elements are
indefinite. In particular, if 4 = B = 0, then P(4, B) = {0} is an i.pencil.

Let X * denote the conjugate transpose of X if X is a complex vector or matrix, and
the transpose of X, i.e., X/, if X is a real vector or matrix. Let F stand for either C or R.
For any A, B € H,,, or S,, we define

l¢(A,B)=dim (span {xeF":x*Ax=x*Bx=0}),
and the F-numerical range of 4 and B by
Wg(A4,B)={(x*4x,x* Bx):xeF",x*x=1}.

The number /g(A4, B) may be regarded as a measure of the “size” of the set of vectors
x € F” which are annihilated simultaneously by the Hermitian forms 4 and B. As the
unit sphere {x € F" x*x = 1} is compact, it follows that Wg(A, B) is a compact
subset in R2.

In this paper we want to explore the relationship between the inertia of a matrix
pencil P(A4, B), the associated numbers /c(A4, B) or [g(A, B), and properties of the field
of values Wg(A4, B) c R2. Definite matrix pencils have been studied for over 50 years.
The first classification in 1936/1937 is due to Finsler [Fi]; we refer the reader to the
survey [ Uhe] for the history of this subject. The field of values or numerical range of a
matrix has been studied for 70 years since [To] and [Ha], while the /-numbers were
originally introduced in 1973 in [Uhb]-[Uhd].

* Received by the editors November 21, 1988; accepted for publication (in revised form) November 28,
1989.
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In § 2 we shall first obtain some auxiliary results, and then deal with the case F =
C completely to obtain a very clear result (Theorem 2.4) for the inertia of Hermitian
matrix pencils and their /c numbers: definite pencils can only have /¢ = 0, semidefinite
pencils can have any /c number greater than zero and less than 7, while indefinite pencils
have Ic = n.

Section 3 deals with the case F = R and A4, B € S,,. The results here become more
complicated due to the fact (Theorem 3.2) that when n = 3, indefinite real symmetric
pencils can have /g numbers between n — 2 and #, while the /g numbers of semidefinite
pencils are bounded by 1 and n — 1 as in the Hermitian case. The “overlapping region,”
Ig = n—2,n— 1, for s.d. or i.pencils, will be investigated in § 4 where we will use the

Kronecker pair form to determine sets of generators for the four overlapping cases if 4,
BeS,.

2. Some auxiliary results and the complex case. We shall first develop some of the
properties of numerical ranges for mixed base fields in Lemma 2.1, and relate the position
of (0, 0) € R? with regard to Wy to the inertia of the pencil as well.

LEMMA 2.1. Let A, B€ H,. Then

(a) Wc(A, B) is convex;

(b) Wg(A, B) is convex if n # 2;

(c) Wr(A, B) is a (possibly degenerate) ellipse in R? if n = 2.

Proof. Part (a) of the lemma follows from the well-known Toeplitz—Hausdorff
theorem [Ha], [To], which asserts that the set {x*(4 + iB)x: xe C", x*x = 1} isa

convex subset of C. For 4, B € S, part (b) was proved by Brickman [Br]. In general,
if A is Hermitian and x € R”, then

X'Ax={x'Ax)'=x'A'x=x"'Ax,
where A is the complex conjugate of 4. Note that
A=(A+A4)/2
is real symmetric and that
Wr(A4,B)=Wg(4, B).

Hence (b) is true for Hermitian 4 and B also.

If n = 2, by letting x = cos fe, + sin fe,, where 8 € R and {e,, e,} is the standard
basis for R?, we see that

Wr(A,B)={cos 20(a,,a,) +sin 20(b,,b;)+(¢;,c2):0€R}, where
(a1, @) =[(e} e\, el Bey) —(erAer, €2 Ber)1/2,
(by,by) =[(€' Aey, €' Bey) + (ehAey, ¢4 Bey)]/2,
(c1,0)=[(e} Aey, €' Be,)+ (ehAe,y, ehBer)] /2.

Hence Wg(4, B) is an ellipse in R2. |

Let A, Be H, where n # 2 if F = R. By Lemma 2.1, Wg(A4, B) is either a convex
set with nonempty interior, or a line segment, or a point in R2. If W (A4, B) has nonempty
interior, we use dW (A4, B) to denote its topological boundary. If Wg(A4, B) is a line
segment, its two endpoints will form the set dW g(A, B). If Wg(A4, B) is a single point,
we define AW g(A, B) to be the empty set. In all cases, we define

int We(A,B) = We(A, B)\OWg(A4,B).
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The following theorem relates the inertia of the pencil to the position of (0, 0) € R? with
respect to Wg.

THEOREM 2.2. Let A, Be H,if F=C,and A, Be S, withn+# 2 if F = R. Then

(a) P(A, B) is ad.pencil if and only if (0, 0) ¢ Wg(A, B);

(b) P(A, B) is a s.d.pencil if and only if (0, 0) € OW (A, B);

(c) P(A, B) is ani.pencil if and only if (0, 0) € int Wg(A, B).

Proof. We can use a Hahn-Banach style argument which was first introduced to
this problem by Taussky [Ta]: By (a) and (b) of Lemma 2.1, Wg(A4, B) is convex.
Therefore, if (0, 0) ¢ Wg(A, B), there is a straight line in R? with equation ax; +
bx, = ¢ where ¢ > 0, which separates (0, 0) and W (4, B). Consequently, we have

x*(aA+bB)x=ax*Ax+ bx*Bx>c>0

for all x € F” with x*x = 1. This means (a4 + bB) is positive definite, and hence
P(A, B) is a d.pencil. Conversely, if P(A, B) is a d.pencil, we may reverse the argument
and get (0, 0) ¢ Wg(A4, B).

If (0, 0) € dW (A, B), then there exists a straight line in R? with equation ax; +
bx; = 0, such that Wg(A4, B) is on one side of the line and Wg(A4, B) is not entirely
contained in the line (because we have assumed that W (A4, B) cannot be a single point
in R? in this case). Hence we may assume that

(1) x*(aA+bB)x=z0 forall xeF” with x*x=1.

Since P(A, B) is not a d.pencil (because (0, 0) € Wg(A, B)), (a4 + bB) is nonzero
positive semidefinite by (1). Therefore P(A, B)is a s.d.pencil. By reversing the argument,
we get the converse.

Since (a) and (b) hold, by the principle of exhaustion, (¢) must hold also. O

If A, Be H,, then Wg(A4,B) is a (possibly degenerate) ellipse in R? by
Lemma 2.1(c). For any subset S of R?, denote the convex hull of S by conv S. Then
conv Wg(A, B) is a (possibly degenerate) elliptical disc. We define d conv Wg(A4, B)
and int conv Wg(A, B) for the set conv Wi(A4, B) in the same manner as for the set
W (A, B) above. Using Taussky’s idea again, we have Theorem 2.3.

THEOREM 2.3. Let A, B€ S,. Then

(a) P(A, B)is ad.pencil if and only if (0, 0) ¢ conv Wg(A4, B);

(b) P(A, B) is a s.d.pencil if and only if (0, 0) € d conv Wg(A4, B);

(c) P(A, B) is ani.pencil if and only if (0, 0) € int conv W (A, B).

Now we use the value /c(A4, B) to characterize the pencil P(A, B).

THEOREM 2.4. Let A, B€ H,,. Then

(a) P(A, B)is ad.pencil if and only if Ic(A, B) = 0;

(b) P(A, B) is a s.d.pencil if and only if 0 < [c(A, B) < n;

(c) P(A, B) is ani.pencil if and only if Ic(A, B) = n.

Proof. (a) This follows from the definition of /c(A4, B) and Theorem 2.2.

(c) By Theorem 2.2, P(A, B) is an i.pencil if and only if (0, 0) € int W (A4, B).
Suppose W (A, B) is a single point. Then (0, 0) € int W (A, B) = W(A, B) if and
only if A = B = 0 and hence /c(A4, B) = n. If Wc(A, B) is a line segment, then
(0, 0) € int W (A4, B) if and only if (0, 0) is not an extreme point of W (A4, B) and
W (A, B) « L where L is the supporting line of W (A4, B) at (0, 0). If W (A4, B) has
nonempty interior, then (0, 0) € int W (A4, B) if and only if (0, 0) is an interior point
of Wc(A, B). In the above two situations, we can apply a result of Embry [Em,
Thm. 1] to show that the conditions are equivalent to /c(A4, B) = n.
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Since (a) and (c) hold, by the principle of exhaustion, (b) must hold also. O

3. The real case. As shown in Theorem 2.4, the number /c(A4, B) can be used as
an indicator for the definiteness of the Hermitian pencil P(A, B). In this section, we
consider real symmetric pencils and the number /r(A, B) instead. Clearly,

0=/r(4,B)=<Ic(4,B).

We shall deal with the two-dimensional case first.

THEOREM 3.1. Let A, B€ S,. Then

(a) Ir(4, B) =0 if P(A, B) is a d.pencil;

(b) Ir(A4, B) = 1 ifand only if P(A, B) is a s.d.pencil,

(c) Ix(4, B) =0 o0r2if P(A4, B) is an i.pencil.

Proof. (a) If P(A, B) is a d.pencil then [c(4, B) = 0 by Theorem 2.4. Hence
Ix(4, B) = 0.

(c) Suppose P(A, B) is an i.pencil. Then by Theorem 2.3,

(0,0)€int conv Wg(A, B).

If Wgr(A, B) is a single point, then clearly the above will imply (0, 0) = Wg(A, B) and
hence [g(A, B) = 2. If Wg(A, B) is a line segment then, since (0, 0) € Wg(4, B),
W r(A, B) is contained in some straight line in R? with equation ax + by = 0. Therefore
xT(ad + bB)x = 0 for all x € R” with x”x = 1. It then follows that a4 + bB = 0 and
hence 4 and B are linearly dependent. We may therefore assume B = 0 and 4 # 0. As
A is indefinite, let —a, b (a, b > 0) be the eigenvalues of 4, and let u,, u, € R? be the
corresponding orthonormal eigenvectors. Then x‘’Ax = 0 where

x=b""2y xa " ?y,.

Hence /g(A, B) = 2. If Wgr(A, B) is a nondegenerate ellipse, then (0, 0) ¢ Wgr(A4, B).
Hence /x(A4, B) = 0.

(b) Suppose P(A, B)is a s.d.pencil. Then (0, 0) € d conv Wg(4, B) c Wg(A, B)
and hence /j(4, b) = 1. Note that Wgr(A, B) cannot be a single point in this case.
Therefore there is a supporting line L, with equations ax + by = 0, to Wg(4, B) at
(0,0), and Wg(A4, B) £ L. As a result, ad + bB is a semidefinite matrix with zero as
an eigenvalue of multiplicity one. Therefore

1 =Ilg(A,B)=dim (span { xeR" x'(a4+bB)x=0})=1.

Conversely, if [g(A, B) = 1, then by (a) and (c) and the exhaustion principle, P(A4, B)
must be a s.d.pencil. O

THEOREM 3.2. Let A, B€ S,, where n + 2. Then

(a) Ir(A, B) = 0 ifand only if P(A, B) is a d. pencil,

(b) 0 < Ix(A4, B) <nif P(A, B) is a s.d.pencil;

(¢) max {1, n — 2} = Ig(A4, B) = nif P(A, B) is an i.pencil.

Proof. Tt is obvious that the theorem is true if # = 1. Hence in view of Theorem
3.1 we consider only the case n = 3.

Part (a) follows from Theorem 2.2(a) and the definition of /g.

(b) Suppose P(A, B) is a s.d.pencil. Then (0, 0) € dWg(A4, B) =« Wg(A, B) by
Theorem 2.2, and hence 1 = /x(A4, B). As Wg(A4, B) cannot be a single point in this
case, we may follow the argument in the proof of Theorem 3.1(b) to conclude that, for
some a, b, € R, (a4 + bB) is a nonzero semidefinite matrix. Hence

1 =Ig(A,B)=dim (span {xeR™x'(aA+bB)x=0})=n—1.
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(c) Now suppose P(A, B) is an i.pencil. By Theorem 2.2(c) and Lemma 2.1(b),
we have
(0,0)€int Wg(A,B)c Wg(A,B).

Therefore Ir(A, B) = 1. Hence (c) holds if n = 3. Suppose n = 4. If Wg(4, B) is a
single point, then /g(A, B) = n. Hence we may assume W g(A, B) is not a single point,
and we want to show that /g(A4, B) 2 n — 2. In fact, if (0, 0) € int Wg(A4, B) and

Ig(A,B)=m=n-—3,letu,, -, u, be linearly independent vectors in R” such that
uiAu;=u'Bu;=0 for j=1,--- m.
Let V = {uy, -+, y,}*, where the orthogonal complement is taken in R”. Then

dim V = 3, and u € V* whenever u € R” satisfies
u'Au=u'Bu=0.

It follows that W x|y (A, B), i.e., the R-numerical range of 4 and B when restricted on
the subspace V, which is defined by Wg|y (A4, B) = {(x'Ax, x'Bx): x€ V, x'x = 1},
does not contain (0, 0). Let v, v;, v, be three linearly independent unit vectors in V.
Denote the point (v'Av, v'Bv) in Wg| (A, B) by n. Then 5 # (0, 0). Since (0, 0) €
int Wg(A4, B) and Wg(A4, B) is convex, there exists a chord [%;, 7.] (in R?) of
W (A, B) which passes through (0, 0) and 7, such that (0, 0) lies between 5 and 7,
and n; # (0, 0). Let w be a unit vector in R” such that (w'Aw, w”Bw) = 5,. Clearly,
w ¢ V (otherwise Wg|y(A4, B) contains both n and 75,, and hence (0, 0) also, as
Wr|v(A, B)is convex for dim ¥ = 3). Let U = span {v, w}. Then dim U = 2, and by
Lemma 2.1(c), Wgl|u(A4, B) is a (possibly degenerate) ellipse in R? which contains
the two distinct points 7 and n,. We consider two cases.

Case 1. If Wg|y(A, B) degenerates into a line segment, then it must contain
(0, 0) (which lies between 5 and #,). Since dim U = 2, and (0, 0) € int Wg| (4, B) c
Wglu(A4, B) in this case, by Theorem 2.2(c) and Theorem 3.1(c), there exist two
linearly independent vectors w; and w, in U, such that

widw;=wiBw;=0 fori=1,2.

Thus w;, w, € V'*. Since v € V, w; and w, are orthogonal to v. But this is impossible, as
wy, wo, and v are in U and dim U = 2.

Case 2. Suppose Wg|y(A4, B) is a nondegenerate ellipse. Then (0, 0)¢
Wwlu(A4, B). Let i = 1 or 2 and define U; = span {v;, v, w}. Note that dim U; = 3,
and hence Wy |y(A4, B) is convex and contains (0, 0). It follows that there exists a non-
zero vector w; in U, such that

widw;=wiBw;=0.

The vectors w; and w, must be linearly independent (otherwise w, € U N U, =
span {v, w} = U, and hence (0, 0) € Wg|y(4, B), a contradiction). However, this is
impossible, since

Wi, wyespan { vy, 0,0, w}

and
1 4
W],W2€V C{vl,vz,v} .

Hence we must have /g(A4, B) = n — 2 if P(A4, B) is an i.pencil. O
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From the above, we see that if 4, B € S, where n = 2, and /g(4, B) = 0, then
P(A, B) can either be a d.pencil or an i.pencil. Also, when n=3 and n—2 =
Ir(A, B) = n — 1, then P(A, B) can either be a s.d.pencil or an i.pencil. In such cases,
we need further information to determine the inertia of P(A4, B). If for any pair of 4,
B € S, we are in one of the “overlapping cases” for which the number /g(A4, B) alone
does not determine the inertia of the pencil P(A4, B), we will find a set of sparse genera-
tors C, D for P(A, B) in § 4. There we are interested in finding some canonical forms,
up to congruences, for the generators of those pencils whose /g number alone cannot de-
termine their inertia.

4. The canonical pair form approach. Originally, classifying definite, semidefinite,
and indefinite real symmetric matrix pencils via their /g numbers was done for nonsingular
pairs 4 and B (A nonsingular) by use of the real canonical pair form (see, e.g., Uhlig
[Uha]) in [Uhb]-[Uhd]. Here we shall use the Kronecker canonical pair form as de-
scribed in Gantmacher [Ga] or Thompson [ Th], [ Th1], for example, for not necessarily
nonsingular pairs 4 and B. Our proofs will rely on our original work in [Uhb]-[Uhd].
The numerical computation of the Kronecker form has recently become important in
numerical methods for linear control theory (see, e.g., Van Dooren [VDo]).

Kronecker canonical form for a pair of real symmetric matrices A, B: A pair of real
symmetric matrices 4 and B is simultaneously congruent over R to a direct sum of three
(possibly void) parts:

The regular part:

diag (¢;E;) and diag (¢;E;J;) wheree;=*+1,

0---0 1
: 0
Ei=\¢ .
1 0---0
and J; is a real or complex real Jordan block;
The E part:
0 -0
-1
diag| ¢; "0
0100
with ¢; = =1 and

The L part:.

diag (Li,+1) and diag (LM2m* 1)
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where
0 0
0k+1,k+1 1
0 0
1
L1,2k+1 = 01 0
T O,
0 0 1
and
3.' 0
0 -
0k+1,k+1 ' 2
LAkl o 0 0 for A €eR,
A0 O
- O, &
0O A 0

while for k = 0: L, = L* = (0).

Note that all L and E blocks are square. Complete proofs can be found in Gantmacher
[Ga, Vol. II, p. 44] and Thompson [Th, pp. 4, 18, 24, 30] or [THI, § 2]. The aim of
this section is to provide a complete description of the “overlapping cases” for the critical
lg numbers n — 1 and n — 2 in terms of generators and the finest simultaneous block
diagonal structure for 4 and B. Note that if the pairs A, B and C, D are congruent, then,
because of the invertibility of the congruence transformation, /x(A4, B) = [x(C, D).
What complicates matters for S, is the fact that the analogue of Theorem 2.4 for S, is
true only for linearly dependent pencils P(A4, B).

THEOREM 4.1. Let A, B € S, be linearly dependent. Then

(a) P(A, B)is ad.pencil if and only if Ig(A4, B) = 0;

(b) P(A, B) is as.d.pencil if and only if 0 < [x(A, B) < n;

(c) P(A, B) is an i.pencil if and only if [(A, B) = n.

To simplify notation we define the quadratic hypersurface

Q4={xeR™x'Ax=0} forAeS,.

Proof. If A and B € S, are linearly dependent, we can assume without loss of gen-
erality that P(4, B) = {ad: a € R}, and hence /r(4, B) = dim span Q4. To compute
this dimension we consider A diagonalized by a real congruence D = X'AX and use
Lemma 1 of [Uhc, p. 545] again so that (a) and (b) follow immediately. In (c) we
can, without loss of generality, assume that for D = diag (d;) we have d;d, < 0. Then
| d2| e, + | d,|'?%e, € Q4 and if di = O then e, € Q,, while in case d;k; > 0 we have
| di|'%e, + | dy|'%ex € Qu, and in case d d; < 0 we have |di|'/%e, + | d,|'?e. € Q,
for k = 2. Hence (c) holds. O

We note in passing that linearly dependent pairs 4 and B will not have any E or L
part in their Kronecker normal form. Next we give some remarks on the /g numbers of
E parts and L parts.

Remark 4.2. (a) Ix(L,, L") = dim L, = dim L* =2k + 1,

(b)

dim E(o) if dim E(O)g“-,

IR(E 0y, E(1y) =
RUL 0)> (1) [dimE(orl ifdim Eg)<4,
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where

0 -0 0---0 1

: 1 : :
Eg={ - and Eg=| o 0

010 1 0---0

Proof. (a) Forall 1 £j<k+ landk+ 2 =<k =2k + 1, we have ejL,e; =0 =
etL*e;, where ¢; is the jth unit vector.

(b) Let dim E(o) = dim E(l) = j If} =1, then E(o) = (0), E(l) = (1), and
sodim Qg, N Qg,, = 0. If j = 2, then Qg, N Ok, = span {e1}, while for j = 3,
QOr, N Qk,,, = span {e, e;}. For j > 4, we can use Theorem 1(i) of [Uhc, p. 544] to
obtain lR(E(O), E(])) = dim E(o). O

In view of Theorem 4.1 we will henceforth only consider matrix pencils in S, with
linearly independent generators 4, B.
First we deal with n = 2.

THEOREM 4.3. Suppose A, Be€S, are linearly independent matrices with
Ir(A, B) = 0. Then

(a) P(A, B)is ad.pencil if and only if P(A, B) is congruent to P(C, D) where

1 0 0 1
C—(O 1) and D—(1 0),

(b) P(A, B) is an i.pencil if and only if P(A, B) is congruent to P(C, D) where

c 1 0 i D 0 1
= an = .
0 -1 1 0
Here we call two pencils P(A4, B) and P(C, A) congruent if there is a nonsingular matrix
S € R™ with S'(P(4, B))S = P(C, D).

Proof. (a) Let P(A, B)be ad.pencil. Then P(A, B) contains a definite matrix. We
may let this definite matrix, after a suitable congruence transform if necessary, be the
identity matrix I. Let E € P(A, B) be linearly independent of I. After subtracting a scalar
multiple of I, we may assume E to be indefinite. Let X € R2*? be orthogonal such that

xex=(" ¢
a 0

for some a > 0. Then P(A4, B) is congruent to P(I, D) where D = ({{). The converse
can be verified directly.

(b) Let P(A, B) be an i.pencil. Choose any indefinite matrix D € P(A, B). After a
suitable congruence we may assume D in the form

0 1
D= .
1 0
Then choose any E € P(A, B) which is linearly independent of D. After subtracting a
scalar multiple of D, we may assume FE in the form

e=(5 )
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Since E is indefinite, we can assume a > 0 > b. With a suitable congruence transform,
we see that P(A, B) is congruent to P(C, D) where

ool Oy (01
_(0—1 an 1 0)

The converse clearly holds as well. O

Next we deal with s.d.pencils, n Z 3 and large /g numbers.

THEOREM 4.4. P(A, B) is an s.d.pencil with Ig(A, B) = n — 1, n 2 3 where
A, B are linearly independent if and only if A and B or B and A are simultaneously
congruent to:

(a) Cases (D) + 0 and (E) + 0, where the (D) type block has size greater than
or equal to four and the (E) type block has size greater than or equal to three (here
(D) and (E) stand for the block structure described in the main theorem of [Uhb,
pp. 537, 5381); or

(b)  diag(l,—1,%1,---,%1,0,0,---,0), and
diag (\,— A, =N, -+ ,EN,£1,0, - ,0) forAeR; or

di + 01 0
(c) lag(—(l 0), s
diag (i—(g T),O, cee ,0) for \eR.

Proof. The Kronecker canonical form of an s.d.pencil can contain E parts and L
parts only of block sizes less than or equal to two, for otherwise the pencil would be
indefinite.

Let /g = [r(A4, B) and assume that the overall dimension of the regular part is
m = n. Much of our work has already been prepared in [Uhb] for nonsingular pencils
P(A, B), where the first matrix A4 is nonsingular. To be able to use this, we need to
“symmetrize” the statements about the generator 4 and B by allowing “A4 and B or B
and 4” to be congruent to specific generators as indicated in this and the following
theorems. With this understanding here, the regular part can be (1) indefinite with m =
2, or (2) definite, or (3) semidefinite, or (4) void.

Case (1). There is only one possibility for an s.d.pencil to have an indefinite regular
part: diag (1, —1, =1, ---, 1) and diag (A, —\, £\, - -+, £X) so that the regular part
of A4 — B is congruent to 0,,,,. In this case the E part cannot have a two-dimensional
block since A($ 9) — (9 ) is indefinite. If the E part contains more than one one-dimen-
sional block we would drop more than one / number, contradicting /g(4, B) = n — 1.
Since the L part must be empty or made up of one-dimensional blocks we clearly have
case (b).

Case (2). If the regular part is definite, then independently of its dimension m1, we
have /., = 0. Since overall /g(A4, B) = n — 1, we must have m = 1, so the regular part
for A and B is congruent to (*1), (£\). The E part must be empty for we cannot drop
any more / numbers. So 4 and B are simultaneously congruent to diag (+1, 0, -+, 0)
and diag (£A, 0, - - -, 0), contradicting the assumed linear independence of 4 and B.

Case (3). (a) The regular part for A and B is semidefinite of size m = 3: Using
the main theorem of [Uhb], we get that 1 = /.o, = m — 1. S0 ez = m — 1 if we want

Ir(A4, B) = n — 1. That makes cases (D) or (E) from the main theorem in [Uhb]
augmented by arbitrarily many one-dimensional L blocks or case (a).

O) and
4
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(b) The regular part for A and B is semidefinite of size m = 2: Using Theorem 3
of [Uhc p. 557] we can see that the regular parts in the Kronecker form for the pair A4,
B must be (9 §) and +(8 }) with /., = 1 or case (c). Note that m = 1 would not yield
a semidefinite regular part.

Case (4). If a semidefinite pencil has no regular part and /gx(A, B) = n — 1, then
the L-part can have arbitrarily many one-dimensional L blocks and the E part can consist
of either (aa) one two-dimensional E block, or (bb) one one-dimensional E block.

In the case of (aa) we have case (c) in the theorem, for A = 0 and for the pair 4
and B, while in the case of (bb), 4 and B are linearly dependent matrices. The converse
is obvious. O

THEOREM 4.5. P(A, B) is an s.d.pencil with [g(A, B) = n—2,n 2 3 and A and

B linearly independent if and only if A and B or B and A are simultaneously congruent
to

. 0 1
(a) dlag(81(1 0),83,0,“',0), and

. 0 A
dlag(cl()\ 1 a83ﬂ3303"'30 s

where eje3(us — N) > 0,6, = 1, \, u3€R; or

. 0 1 0 1
(b) dlag(c(l O)’c(l 0),0, ,0), and

0 A 0 A
diag [ ¢ ,€ ,0, -+ ,0| wheree==x1,AeR; or
Al P

. 0 1 0 1
(C) dlag €1 1 0 5 €1 1 0 3853“'a8m90,.”30 5

. 0 A 0 X
dlag(cl(x 1),81(>\ 1)a€5>\9“'>8m>\>0a”'30)3

wheree; = +1, N€ R, and e;e; = —1 at least once for i, jZ 5 and m =
6, or
(d) diag (1, -+ -~ , 1, —1, -+, —=1), where 1 appears k fold and —1 ap-
pears s = n — k fold on the diagonal, and
(d1) diag (N, ©-+, A\, u, K, =\, *++, —\) witheither u, k < \oru,

k > N\, where \ appears k — 2 fold, while —\ appears s fold on the
diagonal andk =z 3,s= 1; or

(d2) diag (N, ==+, A, m, —\, =+, —\, k) with either u < X and k <
—Xor u > Nandk > —\. Here \ appears k — 1 fold and —\
appears s — 1 foldandk=2,s=2; or

(d3) diag (N, -+, N\, =\, -+, =\, u, k), where either u, k > \ or u,
k < X with X\ appearing k fold and —\ s — 2 foldandk =z 1, s =
3, or
(e) diag (¢, €, 0, -+ ,0), and

dlag (81>\a 20, 03 e 30) fOr
=1, \, ue Rwith N\ # u; or

. 0 1
(f) dlag(€1(1 0),83,"‘,€n), and
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di o A A A
1 cee ey, s
ag| e A 1 s €31, E4N, 5 €

wheree; = =1, \, u € R, e1e3(A — u) > 0; or

0

. 0 A
dlag €1 A 1 ’83Aa“'98k>\>6303'..a0 >

0 1
(g) dlag (81(1 )ae:’n e >8ka0a U >0)3 and

wheree; = 1, k = 4, e;e; = —1 at least oncefori, j =2 3, k 2 4 and
e6=1;, or

(h) d1ag (81, Ly Em—1s Ems 0, """ . O), and
diag(C]A, Y 8m—1>\a EmM, Cm+|,0, e aO)a
wheree; = *1, ;5 = —1 at least oncefori, j = m, m = 3, A # pand
em(N — wem+1 =0; or

(i) diag (¢, 0, ---,0), and
diag (e/\, 62,0, ---,0) wheree; = £1, N€R; or

() diag (ey, "+ , em, 0, - = -+ -+ -+, 0), and
dlag (81>\a o aem>\a Em+1s €Em+2, Oa e ’0)
withe,- =+1,e6;= —1atleastoncefori,jSm,m=Z2and ey em+2 =
1
1
(k) dlag(el( O),O,'-',O), and
0 A
diag | & X 1 ,62,0, -+ ,0) wheree;=+1,e1e,=1,A€R; or
00
1) dlag(el(o 1),O,--°,O), and

. 0 1
dlag (81(1 0)982a0, ct ,0) Wheree,':il,

Proof. As we remarked earlier, a semidefinite pencil cannot have any L blocks of
large dimension or it would be indefinite. Similarly, the E part must have only one- or
two-dimensional blocks.

If ., = m — 2, then the E part must be void and the L part must contain one-
dimensional blocks only. For /., = m — 2 we conclude from [Uhc, p. 545] for a s.d.pencil
that we must have cases (viia) or (viib) or (ix) only. For (viia), we must have k = m —
2 where 2k = m, so k = 1 or 2 are the only possibilities. If £ = 1, then m = 3 and case
(a).If k = 2, then m = 4 and case (b). If (viib) holds with k = 2, then r = m — 4 makes
Leg =k +r=m— 2 or case (c). If (viib) holds with k = 2 and r = m — 2, then [, =
m — 1 and we must drop one / number in the E part or case (g). If (viib) holds with
k=1and r=m — 3, then /., = m — 2 and we have case (f).

For (ix) we use Theorem 1 of [Uhb, p. 538] for m > 2: 4 and B must be simulta-
neously congruent to diag (a;), diag (b;) where

bi . bi . bi i
max—=min— Or mimnm—=max—.
a;>04a; a;<04Q; a;>04; a;<0d;



INERTIA 157

(Note the obvious misprinting of formula (i) of [Uhb, p. 538].) So without
loss of generality we can assume that 4 and B are simultaneously congruent to
diag (1, ---, 1, —1,---, —1)and diag (A, - **, M\, p1, " ** , pg) Where k, s 2 1 and
MM 2N = 2, If maxg, o bi/a; = minai<0 b;/a;, then \; = —u,,
while A\, = —u, in the alternate case. In the former case —A\ 4 + B = diag (0, A\, — Ay,
oo oM — AL O, o — py, 0, us — M) IS @ nonpositive diagonal matrix, while in the lat-
ter case \kA — B =diag (A\x — Ay, ~-+ , Ao — A, 0, g —pq, - -+, up — g, 0) is nonposi-
tive as well. But /x(4, B) = n — 2, so only two nonzero entries \.. — Ay, and/or u.. —
u; are possible, giving case (d) with its three possibilities. If m = 2 and (ix), the regular
parts of 4 and B are simultaneously congruent to diag (e;, &;) and diag (&;A, e;1). Then
(A4 — B),, = diag (0, e(N — p)) is semidefinite if X # p, in which case /(4, B) =0
or case (e).

Note that cases (a), - - -, (f) all deal with /¢, = m — 2. If [, = m — 1, then we can
use the cases from Theorem 4.4 for s.d.pencils with [g = m — 1 if we add one more one-
dimensional E block to 4 and B. The previous case (a) involving (D) makes case (g)
now; while old (a) involving (E) makes case (h) here. Case (i) derives from the rejected
possibility (2) in the previous proof: We can add one one-dimensional E block to the
pencil, which then becomes linearly independent, hence case (i). The remaining cases
(j), (k), and (1) come from the cases (b), (c), and (d) of the previous theorem. Finally,
note that the old case (bb) does not yield a new case here either, since adding one more
one-dimensional E-block would keep 4 and B linearly dependent. The converse is again
obvious. O

Finally, we will classify i-pencils with /g numbers, smaller than #.

THEOREM 4.6. P(A, B) is an i-pencil with Ix(A, By =n— 1, n = 3, and A, B
linearly independent if and only if one of the following 14 cases holds for the regular, E
and L parts of the Kronecker canonical pair form of A and B or B and A, where we set
dim (regular part) = m = n. (Note that the cases (A), -+, (E) in part (d) (Table 1)
below refer to the cases mentioned in the main theorem in [Uhb, p. 538].)

Note that there are 14 possible cases here: (a), (al), (b), (c), (cl), (d1), (d2),
(d20), (d3), (d30), (d4), (d40), (e), (el).

Proof. If m = 1, then /., = 0 so that E and L parts of 4, B cannot drop any /-
number. Hence the E blocks must have dimension greater than or equal to four by
Remark 4.2. To ensure an i-pencil, should no E block occur, then at least one L block
must be of size greater than or equal to three. If m = 2 and /., = m, then exactly one E
block must be of size less than or equal to three to drop /g to n — 1. If [, = m, then the
regular part of the pencil is indefinite according to the main theorem of [Uhb, p. 537].
If m = 2 with [, = 1, then by Theorem 3 of [Uhc, p. 557], £(A, B)reg Or £(B, A)reg
is congruent to ((9 ¢), (2 1)) and the E and L parts cannot drop another / number
and must be indefinite. If m = 3 and /[, = m — 1, then the E and L parts must have
full / numbers and if the E part should be void and the regular part semidefinite
(in cases (D) and (E)), then at least one L block must have size greater than or equal
to three to ensure an i-pencil. Finally cases (e) and (el) are obvious if the regular part of
(4, B) is void. O

Note that this theorem describes the finest simultaneous block structure of 4 and
B completely (as did the previous two theorems for s.d.pencils) except in case (b) when
leg = m. While Theorem 1 and 2 of [Uhc, pp. 544, 545] described some i-pencils with
I=nin (i), - -+, (viil), we did not attempt to describe all such pencils then nor are we
able to do so now.

THEOREM 4.7. P(A, B) is an i-pencil with Ig(A, By=n—2,n= 3 and A and B
linearly independent if and only if
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TABLE 1
Regular part E part L part

(@ m=1 All blocks of size = 4 or void Any size blocks or void

leg =0 (1) But if E part void, then one L block of size = 3
by m=2 Exactly one block of size = Any size blocks or void

3, possibly more of size = 4

leg =m

(c) m=2, All blocks of size > 4 or void Any size blocks or void

leg = 1, and (S, T)req
or (T, S)reg is
congruent to

(L)

d mz3,Lg=m-—1

(1) But if E part void, then one L block of size = 3

(1) Case (A), | All blocks of size = 4 or void Any size blocks or void
?Zr) Case (B), All blocks of size = 4 or void Any size blocks or void
?;) Case (D), All blocks of size = 4 or void Any size blocks or void
?‘I) Case (E), All blocks of size = 4 or void Any size blocks or void

(0) But if E part void in case (2), (3), or (4), then at least one
L block of size = 3.

(e) m = 0, regular part Exactly one block of size = Any size blocks or void
void 3, possibly more of sizes = 4

(1) But if there is a one-dimensional E block, then there must
be an E-block of size = 4 or an L block of size = 3.

(a) Any of the cases of an i pencil with | = n — 1 from Theorem 4.4 holds except
that the E part must now contain one extra block of size less than or equal to three; or

(b) Any of the cases of an s.d.pencil and | = n — 2 from Theorem 4.3 holds except
that there must be an additional E block of size greater than or equal to four or an
additional L block size greater than or equal to three; or

(c) Ifthe regular part is void, then there must be exactly two E blocks of sizes less
than or equal to three. If both are one-dimensional or one is one-dimensional , the second
two-dimensional,, then there must be an E block of size greater than or equal to four or
an L block of size greater than or equal to three. If both small E blocks are two-dimensional,
then they must carry opposite signs or there must be an E block of size greater than or
equal to four or an L block of size greater than or equal to three.

The proof'is obvious since for regular i-pencils | = n — 1. Note that the extra conditions
for small E blocks ensure an i-pencil of dimension two.
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EXPONENTIAL NONNEGATIVITY ON THE ICE CREAM CONE*
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Abstract. Let K, denote the n-dimensional ice cream cone. This paper investigates the structure of those
matrices A4 such that e K, = K, for all t = 0. The characterizations extend to general ellipsoidal cones.

Key words. ice cream cone, ellipsoidal cone, matrices, exponential nonnegativity, copositivity, spectrum
AMS(MOS) subject classification. 15A48

1. Introduction. A set C < R" is a cone provided that aC < C for all o = 0. We
call a cone C proper provided that it is closed, convex, possesses nonempty interior, and
is pointed (C N {—~C} = {0}). Given a proper cone C < R", we denote by p(C) the
set of matrices A € R™" which are exponentially nonnegative on C; that is, e"'C < C for
all 1 = 0, where e = X%, (t4)7/j! is the familiar matrix exponential. Hence p(C) is
the set of matrices A4 such that for an arbitrary start point x(0) € C, the solution x(¢) =
"' x(0) of the linear differential equation x(¢) = Ax(#) remains in C for all future time.

The purpose of this paper is to investigate the structure of the set of matrices
p(K,), where

n—1
K,,=[x€R": > x?=x2, x,,éO]

i=1

is the n-dimensional ice cream cone. It will be seen that our results can be extended to
general ellipsoidal cones.

In the following section, we review some required technical material on ellipsoidal
cones. Then, in § 3, the main results are presented. A key result which we employ is a
lemma on copositivity for the ice cream cone K, due to Loewy and Schneider [3]. To
a certain extent our results complement some of those in [3], which provided charac-
terizations of those matrices which leave K,, invariant.

2. Ellipsoidal cones. Let Q < R™" be a symmetric nonsingular matrix, with a single
negative eigenvalue A,. Therefore Q has inertia (n — 1, 0, 1), where by inertia we mean
the triple (P, Z, N), indicating the number of positive, zero, and negative eigenvalues,
respectively. Let u, be a unit eigenvector of Q corresponding to \,,. With Q we associate
two ellipsoidal cones; these are

(2.1) K=K(Q,u,)={xeR": x'Ox=0, x'u,20}

and —K = K(Q, —u,). In the sequel we will employ the fact that at each 0 # x € 9K =

{xeK: x'Ox =0}, the vector Qx is an outward pointing normal at x (where d denotes
boundary).
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Clearly, K, is an ellipsoidal cone with

where I, | denotes the (n — 1) X (n — 1) identity matrix. Also, we denote the kth unit
vector by ey.

We shall require the following lemma from [5], which says that in formula (2.1)
we may replace the eigenvector u,, with vectors v satisfying certain requirements (which
are met by u, itself).

LEMMA 2.2. Suppose that K is as above and assume that v € R" satisfies

(2.3) {v}*N{K U{—-K}}={0}
and

(2.4) v'u,z0.

Then

(2.5) K={xeR": x'Ox=0, x'v=20}.

Remark 2.6. In view of the fact that the orthogonal complement { u, } * is a hyper-
plane which supports the proper cones K and — K only at the origin, it follows from the
preceding lemma that if v is a vector whose distance from u,, is sufficiently small, then
(2.5) holds.

For Q as above, let the spectrum be {\;, Ay, -+, A\,} where \; = N, 2 --- =
MAi—1 > 0 > \,, and let the orthogonal diagonalization of Q be given by U'QU =
diag (A(, A2, -+, \). The following lemma will also prove to be useful. Its proof, which

employs Sylvester’s theorem, may be found in [5].

LEMMA 2.7. K is an ellipsoidal cone as in (2.1) if and only if K = TK, for some
nonsingular T € R™".

In particular, for a given ellipsoidal cone K = K(Q, u,), we have K = TK, for T =
UD, where D is the diagonal matrix with entries d;; = |\;|™"/%,i=1,2, -+, n, and
then Q =(7T7')'Q,T"". Conversely, for a given nonsingular 7" € R™", the matrix
(T7")'Q,T " has inertia (n — 1,0, 1) and 7K, = K(T")'Q.T, (T ")'e,).

3. Main results. To begin, we require the following lemma, in which ( -, - ) denotes
the standard inner product on R”.
LEMMA 3.1. Let K be an ellipsoidal cone as in (2.1). Then

(3.2) p(K)={AeR™": (Ax,0x)=0 for all xedK}.

Proof. Since Qx is the unique outward pointing normal vector (up to scalar mul-
tiples) to K at any nonzero x € 4K, then the condition that {Ax, Ox) = 0, for all such
X, is, in the terminology of Schneider and Vidyasagar [4], cross-positivity of A on K,
which was shown in [4] to be equivalent to exponential nonnegativity. O

We now turn our attention to the problem of characterizing p(K,). We will make
use of the following copositivity result from Loewy and Schneider [3].

LEMMA 3.3 [3, Lemma 2.2]. Let W e R™" be symmetric. Then there exists u = 0
such that W — uQ,, is negative semidefinite if and only if

(3.4) xeK,=x'"Wx=0.
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Our main characterization of p(K,,) is given next.

THEOREM 3.5. A necessary and sufficient condition for A € p(K,,) is that there exists
£ € R such that

(3.6) 0, A+A4'0,—£0,=0,

where “=” means negative semidefinite.
Proof. Let us denote

W(Qu, A):=0nA+A'Qy.

Upon symmetrizing the quadratic form (Ax, Ox), it follows that 4 € p(K,) if and
only if

(3.7) x€dK,= x'W(Q,,A)x=0.

Since x'Q,x = 0 for all x € dK,,, we have that (3.7) is equivalent to
(3.8) x€dK, = xW(Q,,A+~y)x=0

for any given vy € R. Since

(3.9) W(Qn, A+yI)=W(Qn, A)+2vQn,

we may choose 7 large enough to ensure that W (Q,, A + vI) has inertia (n — 1, 0, 1).
For such +, consider the ellipsoidal cone

C(y):={xeR": x'W(Qp, A+¥Nx=0, x'u,(v)=0},

where u,(v) is a unit eigenvector of W (Q,, A + «I) corresponding to its only negative
eigenvalue. Since y may be chosen so large that u,(+y) approximates e, to any prescribed
tolerance, Remark 2.6 tells us that for sufficiently large v we have

(3.10) C(v)={xeR": x'W(Q,,A+v)x=0, x'e,=Z0}.
Hence (3.8) implies that 4 € p(K,,) if and only if for all  sufficiently large we have
(3.11) 0K, cC(v).

Since C(v) is an ellipsoidal and therefore convex cone for large v, it follows that for
such v, (3.11) is equivalent to

(3.12) K,cC(v).

Therefore, Lemma 3.3 implies that 4 € p(K,,) if and only if for each sufficiently large v
there exists u., = 0 such that

(3.13) W (Qn,A+vQ)~ 1, On=0.

Since

(3.14) W(Qn, A+vI) = pyQn=W(Qp, A)+ (27— 1y) Op»
the theorem is proven. O

In what follows, we shall partition 4 as
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where A, denotes the leading (n — 1) X (n — 1) principal submatrix of 4. Then

(3.15) W(Q,, A) = (_ﬁ‘_l_’::‘ll_ 8) ,
g 1 -2a.,
where
g:=c—d,
and therefore
(3.16) W(Qn, A) - 800 = (_1_4_‘_34;:;_;_5_1___,_;_%_:%;;_)

We have the following corollary to Theorem 3.5. It provides sufficient conditions
for membership and nonmembership in p(K,).
COROLLARY 3.17. Let A € R™". Then the following hold:

n—1 n—1
(3.18) max [2au+ lel+ 2 |aij+aji|]§20nn_ 2> &l =>Aep(K,),
1=i=n-1 i#j=1 i=1

n—1 n—1

(3.19) max [Zau—lg,-l— > Iai,-+a,~,-I]>2ann+Z | gil = Aep(K,).

1si=n—1 itj=1 i=1

Proof. Theorem 3.5 implies that 4 € p(K,) if and only if there exists £ € R such
that the (symmetric) matrix W(Q,, 4) — £0, has no positive eigenvalues. A straight-
forward application of Gershgorin’s theorem then yields (3.18) and (3.19). O

A different sufficient condition for 4 € p(K,,) is provided in the following result. We
shall denote the euclidean norm by || - ||, and the largest eigenvalue of a symmetric matrix
Mby N\ (M).

THEOREM 3.20. A sufficient condition for A € p(K,) is
(3.21) A4+ A7) =2(am— |l gl).

Proof. Let us write

W(Qn, A)—£0,=U(§) +V,

where

Then, since U(£) and V are symmetric, we have
(3.22) MUE)+HV)=MUE) + (V).

(See, e.g., Wilkinson [6, p. 101].) Therefore, in view of Theorem 3.5, a sufficient condition
for A € p(K,) is the existence of £ € R such that

(3.23) MUE)+M(V)=0.

Since A (V) = | gl, the existence of such a £ is readily seen to be guaranteed by
(3.21). O
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It is not difficult to construct examples where the sufficient condition (3.21) holds,
but (3.18) fails. The reverse may occur as well, as is evidenced by the matrix

-2 0 2
A= 0 -1 0]).
0 0 O

The next result provides a general necessary condition for 4 € p(K,,).
THEOREM 3.24. Let A € p(K,,). Then

(3.25) N(A4,+A47)=2ay,,.

Proof. Theorem 3.5 tells us that if 4 € p(K,,), then there exists a real number §
such that all the spectrum of W (Q,, A) — £Q, is nonpositive, which implies that each
principal submatrix has nonpositive spectrum as well. Applying this fact to the principal
submatrices A, + A5 — &I, and £ — 2a,, readily yields (3.25). O

Theorems 3.20 and 3.24 immediately yield the following complete characterization
of p(K,,) for matrices satisfying a certain ‘“‘partial symmetry” condition.

COROLLARY 3.26. Let A € R™" be such that a;, = a,; forall1 =i=n—1 (i.e.,
g =0). Then (3.25) is necessary and sufficient for A € p(K,).

Another general necessary condition is given next.

THEOREM 3.27. Assume that A € p(K,). Let { pi, u2, - - , ux } be any set of eigen-
values of A (not necessarily distinct), and let {x,, X2, - - - , Xx } be a corresponding set of
eigenvectors. Consider the (possibly empty) index sets

L={i:x]Quw;>0} and I-={i:x]0,x;<0}.
Then
(3.28) inf {Re y;:iel_}=Zsup {Re y;:icl,}

(where sup (J) = —co and inf (J) = oo, & denoting the empty set).
Proof. Since A4 € p(K,), there exists £ € R such that

(3.29) H(E):=0,4A+A4'0,— £0Q,=0.
Then
(3.30) xFH(E)x;=2x] Qpx;(Re u;—£)<0 foralli=1,2, --- k.

Hence £ = Re p; for all i € I, and £ = Re y; for all i € I_, yielding (3.28). O
Our final result provides a characterization of the set of matrices

p(9K,):={AeR™": ¢"(3K,)cdK,forall t=0}.
Hence p(9K,,) is the set of matrices A4 such that solutions of the linear differential equation
X(t) = Ax(t) with x(0) € dK,, remain in 9K, for all 1 = 0.

THEOREM 3.31. A necessary and sufficient condition for A € p(adK,,) is that A =
B + al, where a € R and

with B; being an (n — 1) X (n — 1) skew-symmetric matrix.
Proof. The matrix 4 € p(dK,,) if and only if the vector field Ax is tangent to the
locally smooth surface 9K,/ {0 }; that is,

(3.32) (Ax,0Ox)=0 for all x€dK,.
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This is equivalent to 4 € p(K,,) and — A4 € p(K,,). Hence in view of Theorem 3.5, (3.32)
is equivalent to the existence of real numbers £, and £, such that

(3.33) W(Qn, A)—60,=0 and W(Qn, —4)—§0,=0.

But (3.33) implies that £, = —& and W(Q,, A) = £,Q,. In view of (3.15), the conclusion
of the theorem follows. O

We conclude with some remarks.

Remark 3.34. (i) The proof of Theorem 3.31 shows that p(dK,) is the max-
imal subspace of the closed convex cone p(K,)€ R™". The theorem implies that
dim (p(9K,)) = (n®2 — n+2)/2.

(ii) It is interesting to note that if 4 satisfies either of the sufficient conditions
(3.18) or (3.21), or if 4 is of the form specified in Theorem 3.31, then 4 must satisfy
the conditions of Elsner [1] for the existence of a proper cone K such that 4 € p(K);
namely, that the spectral abscissa

A(A4):=max {Re X\ : A is an eigenvalue of 4}

is an eigenvalue of 4 and no eigenvalue A of 4 with Re A = A(A4) can have degree
exceeding that of A\(4). (By the degree of an eigenvalue, we mean its degree in the
minimal polynomial.)

(iii) Our results can be extended to general ellipsoidal cones by applying Lemma
2.7. In particular, let K = K(Q, u,) be a given ellipsoidal cone, and let T be a nonsingular
matrix such that K = TK,,. (One such T is provided by Lemma 2.7.) Then 4 € p(K) if
and only if T7'AT € p(K,,), and likewise, 4 € p(dK) if and only if T7'AT € p(3K,,).

(iv) In view of (3.7), 4 € p(K,,) if and only if x'W (Q,, A)x = 0 for all x € R" such
that x, = 1 and 272} x? = 1. Hence a necessary and sufficient condition for 4 €
p(K,) is

(3.35) max {y'(4; +4))y+2y'(c—d): |yl =1}=0.

A numerical method for obtaining the maximum in (3.35) may be found, e.g., in Fletcher
[2]. Thus we can computationally check whether 4 € p(K,) in cases where our necessary
conditions are met, but sufficiency is not.

Acknowledgments. We are indebted to the referees and A. Berman for detecting
errors in earlier versions of this work.
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NONNEGATIVE IDEMPOTENT MATRICES AND THEIR GRAPHS*

MORDECHAI LEWIN{#

Abstract. A graph-theoretic characterization of nonnegative matrices having idempotent pattern is given.
Given a directed graph, it is either decided that its adjacency matrix has no idempotent pattern, or else a
nonnegative, idempotent matrix whose graph is the given graph is supplied.

Key words. nonnegative matrix, idempotent, pattern, directed graph, clique, source, sink
AMS(MOS) subject classifications. 15A18, 15A47, 05C50

1. Introduction. A square matrix A is called idempotent if A> = A. In [2] Flor
establishes the structure of nonnegative idempotent matrices. In particular, he shows the
following proposition.

PROPOSITION [2, Thm. 2]. Let A be a nonnegative idempotent matrix. Then there
exists a permutation matrix P such that

J JT 0 0
0O 0 0 0

_1=

PUAP= o syt 0 0
0O 0 0 0

where J is the direct sum of nonnegative idempotent matrices of rank one. Conversely,
while S and T are arbitrary matrices of appropriate sizes, every matrix of the above-
mentioned form is idempotent.

Let A = (a;) be a given square matrix. Let G(A) be the directed graph associated
with A4 such that the order of the graph is the order of the matrix with a; # 0 if (i, j) €
E(G) where E(G) = E is the set of edges of G. A nonnegative matrix 4 is positive if all
its elements are positive.

A nonnegative matrix A4 is of idempotent pattern if there exists a nonnegative idem-
potent matrix having the same zero-pattern as 4. Let ¥ be the set of nonnegative idem-
potent matrices and let 9 be the set of all matrices of idempotent pattern.

The purpose of this paper is to characterize this idempotent pattern family graph
theoretically. This characterization enables us to decide whether an arbitrarily given
matrix 4 is in N or not, simply by observing the graph of the matrix. In case of an
affirmative answer, we suggest a construction of a nonnegative idempotent matrix having
the same zero pattern as 4.

2. Definitions. Let 4 = (a;) be a square matrix and let G be its directed graph. Let
V=1{1,2, -+, n} be the set of vertices of G, n being the order of the matrix. An (i, j)-
walk in G is a sequence of directed edges from i to j of the form (i, v,), (vy, v2), - -,
(vi, j). We shall also use the form (i, v, v3, *** , Uk, ). An (i, j)-path is a walk in which
no edge appears more than once. A k-(i, j)-walk(path) in G is a walk(path) of length
k (number of edges from vertex i to vertex j). A clique in a (directed) graph is a maximal
complete (directed ) subgraph. A proper clique is a clique whose set of edges is nonvoid.
A clique of order one is a loop. A null-clique is a nonisolated vertex not belonging to any
proper clique. A subgraph of G is cliqgue-free if none of its edges belongs to a proper
clique. A source (sink) is a vertex with positive outgoing (incoming) degree and zero

* Received by the editors March 22, 1989; accepted for publication (in revised form ) November 26, 1989.
This research was supported by the Technion V.P.R. Fund and the Loewengard Research Fund.

1 Department of Mathematics, Technion-Israel Institute of Technology, Haifa 32000, Israel
(MAR32AA@TECHNION. BITNET).
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incoming (outgoing) degree. Let So (.Si) stand for the set of sources (sinks) of a given
graph. A graph is fransitive if any two of its edges (i, j), (J, k) imply that (i, k) is in
the graph.

A directed graph is strongly connected if there is a walk from every vertex to every
other vertex in the graph.

A matrix A is reducible if there is a permutation matrix P such that
X 0 ]

P'AP=
Y ZzZ

with X and Z both square blocks. Otherwise, the matrix is called irreducible. It is now
common knowledge that 4 is irreducible if and only if G(A) is strongly connected (see,
for example, [4]).

3. A necessary condition. Let 4 be a matrix in R. Then there exists a matrix 4 in
S having the same pattern as 4. Considering G(A4), it follows that (i, j) € E(G(A)) if
and only if for some k, 1 = k = n and (i, k) and (k, j) are both in E. An immediate
consequence of the idempotence of 4 is that G(A4) is transitive. Now let 4 be irreducible.
Then G(A) is strongly connected. Since it is also transitive, it is necessarily a complete
directed graph, so that A is positive. We should also bear in mind that in a transitive
directed graph, distinct proper cliques are disjoint. We thus have obtained the follow-
ing lemma.

LEMMA 1. A nonnegative idempotent matrix is either positive or reducible.

Let 4 € J. Without loss of generality, we may assume G(A) to be connected, since
each connected component of G(A) is the graph of an idempotent matrix of a smaller
order. We have the following lemma.

LEMMA 2. Let A€Sy. Let further (xo, X, X2, X3) be a 3-walk in G(A). Then x, and
X, belong to the same proper clique in G.

Proof. Let U, be the subgraph of G(A4) spanned on X, and all its incoming vertices
and let U, be spanned on the rest of the vertices. Then G(A) consists of the disjoint
union of U; and U, (the latter may be empty) and possibly some edges from U, to U,.
Let k be the order of U,. Number its vertices from 1 to k and those of U, from k + 1 to
n. Then A4 already assumes the form

X 0
v 2)

If x, is in U,, then, by the transitivity condition, x, and x; belong to the same proper
clique. We may therefore assume x, in U,. Then Xx; is also in U,. The edges of U, and
U, represent the nonzero entries of X and Z, respectively; the edges from U, to U,
represent the nonzero entries of Y. We now have

- X? 07_ X 0
YX+2Y Z?| |\YX+zy Z]
It follows that both blocks X and Z are idempotent. We also get YX + ZY = Y. Multiplying
both sides from the left by Z we get ZYX + ZY = ZY and hence
(1) ZYX=0.

The graph theoretic interpretation of (1) is that there is no 3-walk starting in U; and
ending in U,. This contradiction implies Lemma 2.

COROLLARY 1. Let A € R. Then every null-clique of G(A) is either a source or
a sink.
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Proof. Let x be a null-clique in G(A4). Suppose x is neither a source nor a sink.
Since x is nonisolated by definition, it has an incoming edge (», x) and an outgoing edge
(x, z) with x, y, z all distinct. Since 4 is of idempotent pattern, there is a 2-walk from
ytoxin G(4). Let it be (y, u, x) for some u. Then (¥, u, x, z) is a 3-walk in G(A4) and
so, by Lemma 2, u and x belong to the same proper clique in G, an obvious contradiction.

Let A € N, and let x be a vertex and C a proper clique of G(A4). Then, because of
the transitivity of G, x is adjacent to all the vertices of C or to none. A contraction of G
is a graph derived from G, whose vertices are the cliques of G. The edges in G whose
vertices belong to distinct cliques are edges from a source to a proper clique, from a
proper clique to a sink, or from a source to a sink. The sets So and Si may be void (one
or both), but the set C of proper cliques may not be empty, unless 4 = 0. We then obtain
the following corollary.

COROLLARY 2. Let A € N. Then the longest path in the contraction of G is of length
at most two.

A transitive graph consisting of a disjoint union of proper cliques, with sources or
sinks attached to some of the proper cliques, and possibly some isolated vertices, will
henceforth be termed an admissible graph.

Let G be an admissible graph. Order the cliques in ascending order: first the sinks,
then the proper cliques, and finally the sources. Now order the vertices of the proper
cliques lexicographically. This induces a numbering of the vertices of G which we shall
refer to as admissible numbering.

COROLLARY 3. Distinct proper cliques are completely disjoint.

4. Sufficiency. We now state Lemma 3.

LEMMA 3. Let G be an admissible graph. Then there exists a nonnegative, idem-
potent matrix A such that G(A) is its graph.

Proof. Let Cy, C, - -+, Cy be the proper cliques of G and let x;, x;, - - - , X, be an
admissible numbering of G. For each C; there exists a positive idempotent matrix A;.
Let A, be the direct sum of the A4;. Consider 4, as a principal submatrix of 4. Let x be
a sink in G adjacent to some of the cliques C;, C,, - - - . By Perron’s theorem [3] there
exists a positive eigenvector for each A4; in 4y. Let v, be an eigenvector of 4; and let its
entries correspond to the edges from C; to x. Consider the entry a;, of 4. We have the
following cases.

Case 1. (j, x) ¢ G. Then put g; = 0.

Case 2. (j, x) € G. We distinguish two subcases.

Subcase 2.1. j € C; for some i. Then let a; be an entry of the corresponding eigen-
vector v;, of A4;.

Subcase 2.2. The vertex j is a source. Then leave the value for a; open for the
time being.

After having dealt with all the sinks, let us turn to the sources. Let y denote such a
source. Repeat the same argument for the eigenvectors u’, of 4 and consider the cases
(v, k) ¢ G and (y, k) € G, with k belonging to some proper clique, leaving open the case
where k is a sink.

Case 1 and subcase 2.1 supply us with g-dimensional eigenvectors of Ay, where g is
the order of 4y. To each sink (source) there corresponds a vertical (horizontal) concate-
nation of eigenvectors of the 4; (4%), and maybe zeros.

We may now conclude subcase 2.2. Let (y, x) € G, y a source, x a sink. Let further
v, and u’, correspond to the appropriate eigenvectors of Ay (A46). Put a,, = (u},, v, ), the
standard inner product.

Finally, put a,; = a, = 0 for all x in Si, y in So, and all j and k. This yields a zero
block of order r X n above and a zero block of order #n X s on the right-hand side of 4
where r = |Si|, s = |So| (|S| meaning the number of elements of S). We thus obtain
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a matrix of the form

0 0 0
A=] Vx Ao O
v,y VvV, O

where V. is a ¢ X r block, whose columns are all eigenvectors of 4y and where V), is an
s X g block whose rows are all transposes of eigenvectors of 4j. The block-scheme of 4
is thus

rXr rXq rXs
gxXr gXq gXxs
sXr s§Xq §Xs§

It is quite clear that a matrix so described is idempotent.

This completes the proof of Lemma 3.

As an example we present a graph of order 10 by means of its contraction (Fig. 1)
and then a matrix which is nonnegative and idempotent. Note that all the parameters
are arbitrary and independent of each other.

FiG. 1

- 0 0O 00 0 O0 OO O 07
0 0O 00 O0OOOTUO OO
a b 3 3 3 o0 o000
a b 3 3 3 00 o0 00
A= a b 3 3 3 00 0 00
c 0 00O0 4+ 3} 0O00O
c 0O oo0o04${ 3} 0O00O
d e 0 0 O0OOOT1T OO
i ag X X x y y z 0 0
| @401 @02 0 0 0 u u w 0 O

withae, =3ax+2cy+dz
ayy, =3bx+ez
a1 =2cu+dw
A2 = ew
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Now put 4y = J, V= JT, V,, = SJ with arbitrary T and S. Considering that V, =
AoV = JT,V,=V,4, = ST we have V,V, = SJT. By interchanging the first and second
rows and columns of blocks we arrive at Flor’s matrix [2, Thm. 2]. (A fourth row and
column of blocks will appear if there are isolated vertices in G(A4).) V, is necessarily
composed of eigenvectors of J, so is V), (from the left). We thus obtain Flor’s result.

Since J is a direct sum of irreducible, idempotent blocks, the latter are all positive
and hence, once again by Perron’s theorem, each has a simple eigenvalue 1, so that the
rank of each positive block is 1.

Note that nonnegative in Flor’s result may be replaced by positive.

5. Conclusion. We are now in a position to state our Main Theorem.

THEOREM 1. A nonnegative square matrix is of idempotent pattern if and only if its
graph is admissible.

A matrix 4 = (ay) is of symmetric pattern if a; = 0 implies a;; = 0 for arbitrary 7,
J. We have the following corollary.

COROLLARY 3. A nonnegative matrix of symmetric pattern is of idempotent pattern
if and only if it is permutationally equivalent to a direct sum of positive (and possibly one
zero) blocks. (Compare with [1, (3.4)].)

Proof. A necessary condition for idempotency of a matrix A4 is that its graph be
admissible. But because of symmetricity, G has neither sources nor sinks, so that G is a
disjoint union of cliques and possibly isolated vertices. The converse is clear. This proves
the corollary.

Here is a characterization of positive, symmetric, idempotent matrices. Let a; = 1
and let ay, a3, * -+, a, be arbitrary positive numbers. We then have the following theorem.

THEOREM 2. A positive, symmetric matrix A = (ay) is idempotent if and only if it
has the form A = aB, B = (b;), b; = a;cj, and

a=(za)

Proof. Let A be as described. Put 42 = (¢;), with

n n n n
— — — 42 2_ 2 2 __ — —
Cij= 2 Ay = 2 Aiajx = a E ;g =atopa; 2 ak—aa,«a,—ab,j—a,j,
k=1 k=1 k=1 k=1

so that A4 is idempotent.

Now let 4 be positive and idempotent. Since A is positive, its rank equals 1. This
means that each row is a positive multiple of the first row. Let the ith row, r; = \;ry,
with A\; = 1. Then a; = \;\;ay,. Put a;; = u. We may normalize 4 by extracting a from
the matrix and writing A = aB. Then b; = M\, Since a = ¢;; = a®> 2/ N}, we geta =
(271 )L, This proves the theorem (see also [1, Cor. 3.5]).

Let 4 be nonnegative, stochastic, and idempotent. Then clearly G(A4) has no sinks.
A matrix A is of stochastic pattern if there exists a stochastic matrix having the same
zero-pattern as A. We have Corollary 4.

COROLLARY 4. A matrix is of stochastic and idempotent pattern if and only if its
graph is admissible and has no sinks.

Proof. Let A be of stochastic, idempotent pattern. Let A4, be the stochastic, idem-
potent representative. By what we just showed, G(A4,) is admissible and has no sinks.
Now let G be an admissible graph without sinks. For every clique of G we may introduce
stochasticity conditions. Every source contributes a row vector which is the transpose of
an eigenvector of Ay where A4, is constructed from the disjoint union of the cliques.
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Therefore every such row vector may be normalized by multiplying each element of that
row vector by its row sum. We thus get a stochastic matrix which is still idempotent.
This proves the corollary.

COROLLARY 5. A matrix A is of doubly stochastic and idempotent pattern if and
only if its graph is a disjoint union of proper cliques.

Proof. Clearly G(A) may have neither sinks nor sources.

COROLLARY 5'. A4 doubly stochastic matrix is of idempotent pattern if and only if
it is permutationally equivalent to a direct sum of positive square blocks.

Remark. It has already been mentioned in [1] that the only positive doubly stochastic
idempotent n-square matrix is the one whose entries are all n™".
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THE RESTRICTED SINGULAR VALUE DECOMPOSITION OF
MATRIX TRIPLETS*

HONGYUAN ZHA'

Abstract. In this paper the concept of restricted singular values of matrix triplets is intro-
duced. A decomposition theorem concerning the general matrix triplet (A, B, C), where A € C™*%,
B € C™XP, and C € C9*™, which is called the restricted singular value decomposition (RSVD), is
proposed. This result generalizes the well-known singular value decomposition, the generalized sin-
gular value decomposition, and the recently proposed product-induced singular value decomposition.
Connection of restricted singular values with the problem of determination of matrix rank under
restricted perturbation is also discussed.

Key words. matrix rank, singular values, generalized singular values, product-induced singular
values, restricted singular values, matrix decompositions

AMS(MOS) subject classifications. 15A09, 15A12, 15A23, 65F20

1. Introduction. Rank determination of matrices is an important problem in
numerical linear algebra [7]. In applications, the matrix Ag, the rank of which is to be
determined, is always contaminated with errors, i.e., instead of knowing A, exactly
we only have A = Ag + E, an approximation of Ay, where E represents the error or
perturbation matrix. The rank determination problem is how to estimate the rank of
Ap, if A and some information of E are available. Usually only an upper bound on
certain norms of E, e.g., 2-norm, is assumed to be known. In this case the singular
value decomposition (SVD) is a useful tool for solving the problem [4], [7].

In many situations, however, more information about the error matrix E than
the simple upper bound of its 2-norm is available, e.g., E has some special structure
or, in other words, is restricted to a special class of matrices. SVD-based methods in
these situations are likely to lead to conservative rank estimations.

In order to illustrate the situation, we give the following simple example. Consider

the matrix
_ 0 1
=8 1)

If we assume that Ay results from the second-order ordinary differential equation

d’z _ do
az

then only a; and a2 are subject to errors, and the “0” and “1” entries in Ag are exact.
Hence the error matrix E can only be of the following three forms:
(i) Only a3 is changeable:

E= ( o )= ( 0 )e21(1,0).

* Received by the editors November 6, 1987; accepted for publication (in revised form) November
28, 1989. This paper was finished while the author was a visitor at Konrad-Zuse-Zentrum fiir
Informationstechnik Berlin, Federal Republic of Germany ; Part of the work was done while the
author was a graduate student with the group of Professor Jiang at Institute of Mathematics, Fudan
University, Shanghai, People’s Republic of China

t Scientific Computing and Computational Mathematics, MJH 460, Stanford University, Stanford,
California 94305-2140 (zha@patience.stanford.edu).
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(ii) Only a; is changeable:

E= (8 6(2)2 ):((1))622(0,1).

(iii) Both a; and as are changeable:

0 0 0
E= ( €21 €22 ) = ( 1 )(621’622)'

Observe that any E of the form in (ii) cannot change the rank of the original
matrix Ay, while SVD-based methods cannot lead to such a conclusion.

In this paper we consider the error matrix E which is restricted to a special
class of matrices, i.e., E = BDC, where B and C are known matrices, and D is an
arbitrary matrix with an upper bound on its 2-norm. In §2 we introduce the concept
of restricted singular values (RSVs) for the restricted error matrix E = BDC and
discuss the problem of rank determination of matrices under the perturbation of this
special class of error matrices. In §3 we consider two special cases of RSVs, i.e.,
singular values (SVs) and generalized singular values (GSVs). In §4 we derive the
main result of this paper, which we call the restricted singular value decomposition
(RSVD) of matrix triplets concerning the simultaneous reduction of three matrices
into quasi-diagonal form. Section 5 summarizes the paper and gives some comments
concerning the further research on the subject of RSVD. Although only 2-norm is
used in this paper, we note that the results of this paper can be extended to the case
of unitarily invariant norms [5].

Notation. In this paper, only the complex matrices are considered, while the case
of real matrices can be similarly considered. Throughout the paper C"™*™ denotes the
set of all m x n complex matrices. The matrix A¥ is the complex conjugate transpose
of A, ||| and || - || are the 2-norm and Frobenius norm, respectively. I, represents
the identity matrix of order s; O with different subscripts and superscripts (e.g.,

0‘(41)) denotes zero matrices of different dimensions. Sometimes we just use I and
O to denote an identity matrix or a zero matrix of different dimensions when their
dimensions are clear from the context.

Note. Originally we used the name “Structured Singular Values” for the concept
introduced in this paper. Some people, especially B. De Moor, G. Golub, and S. Van
Huffel,! brought to our attention that the name had been used in control theory under
a different setting. Therefore we adopt here the name “Restricted Singular Values,”
which was suggested by B. De Moor and G. Golub.

2. Restricted singular values and rank determination of matrices. Let
A € C™*™ and the error matrix be of the form E = BDC, where B € C™*P, D € CP*9,
and C € C9*™.

DEFINITION 2.1. The restricted singular values (RSVs) of the matrix triplet (A4,
B, C) are defined as follows:

(2.1) ox(4,B,0C) Ierélglxq {lD|l2 | rank (A+ BDC)<k-1}, k=1,---,n.

D
Before we proceed, some remarks are in order concerning the above definition.

Remark 2.1. If for some k& (1 < k < n) there is no D € CP*9 such that rank (A+
BDC) < k — 1, then 0% (A4, B,C) is defined to be oo.

1 Private communications, March 1989,
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Remark 2.2. For notational convenience, we define ox(A,B,C) = 0, for k =
n — min(m,n),---,n.

Remark 2.3. 1t can be readily verified that the RSVs are arranged in nondecreasing
order, i.e.,

(2.2) ox(A,B,C) > ox+1(A, B,C), k=1,---,n—1.

Considering the example in the above section, we distinguish three cases corre-
spondingly. In the notation of the above definition we have

Q) A=(£2 all) B=<‘1’), C =(1,0),

0‘1(A, B, C) = 00, 0'2(A,B,C) = |a2|.

Ul(Aa B, C) = o0, 0'2(A7Ba0) = |a2l'

This is an example of matrices of low orders, and we can find the RSVs by direct
computation. For matrices of higher orders, we need a decomposition theorem, which
will be the subject of §4. We now briefly discuss the connection of RSVs and rank
determination of matrices. The problem is to estimate the rank of

Ao =A+ BDC

where (A, B, C) is known, and in addition || D ||z < e.
Assume further that the following inequalities for ¢ hold:

al(A)B)C) 22 ak(AaB)C) >e2> Uk+1(A)BaC) > 2 an(AaBaC);

then the best possible estimation of the rank of Ag is &, in the sense that there exists
a matrix Dy, satisfying || Dy ||2 < € such that

rank (A+ BDoC) =k
but there exists no D satisfying || D ||2 < € such that
rank (A+ BDC) < k.

Such strategy of estimation is also used in the determination of numerical rank [4],

[7].
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3. Singular values and generalized singular values. In this section we dis-
cuss two special cases of RSVs, i.e.,

(1) B=I, and C=1I,,
(2) B=1I, o C=I,.

We will show that the RSVs of the matrix triplet (A4, B, C) corresponding to these two
special cases are just the well-known singular values (SVs) and generalized singular
values (GSVs), respectively [4], [6].

3.1. Singular values of a complex matrix. We first cite the following result.
THEOREM 3.1 ([4], [5]). Let the SVs of A be

(3.1) 012 20,205

then

(3.2) ak=Enclin {l E|l2 | rank (A+E) <k -1}, k=1,---,n,
G mXxn

and there exists a matriz Ey, satisfying ||Ex||2 = o such that

rank (A+ Ex) =k —1, i=1,---,n.

We note that Remark 2.2 is also applicable here, i.e., we simply define o = 0
for k = n — min(m,n),---,n. Using the notation of Definition 2.1 we can rewrite
Theorem 3.1 as Corollary 3.1.

COROLLARY 3.1.

(3.3) k(A I, In) = ok, k=1,---,n.

It is also easy to establish the following inequalities.
COROLLARY 3.2. Assume that B # 0 and C # 0; then

(3.4) ok < || B 2]l C |l20%(A4, B, C), k=1,---,n.

Proof. Let Dy € CP*9 satisfy ||Dgll2 = ox(A, B,C,) (see Theorem 4.2) and
rank (A+ BD,C) =k — 1;
then from the above theorem, it follows that
ok < |BDkCll2 < || B |l2]l C ll20x(4, B, C)

which proves the corollary. O

3.2. Generalized singular values. We only consider the case B = I, and C
is a general complex matrix. The error matrix is now E = DC. The dual case that
B is a general matrix and C = I, can be discussed similarly.

The concept of GSVs of matrix pencils was introduced by Van Loan [8] (where he
used the term B-singular values). Paige and Saunders provided a slight generalization
of Van Loan’s result in order to treat all the possible cases [6]. Since GSVs have
many applications in numerical linear algebra problems and thus are of their own
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interests, here we give an alternative derivation of the so-called generalized singular
value decomposition (GSVD) of matrix pairs, in which the two matrices have the
same number of columns. Qur approach here is different from those in [6] and [8].

THEOREM 3.2 ([6], [8]). Let A € C™*™ and C € C%*™; then there exist unitary
matrices U and V and nonsingular matriz Q such that

k n—k k. n—k
(3.5) UAQ= (T4, O ), Ve = (Z¢, O ),
I, Oc
(3.6) Ya= Sa , Yo = Sc
OA Ik—'r—s

where

Sa = diag (@r1y s Qprts), Sc = diag (Br+1,°**, Br+s)
and
(37) 1>ar+12"‘2ar+s>0a 0<ﬁr+1$"'$ﬂr+s<1a

o+ 42 =1, t=r+1---,r+s.

The integer indices can be expressed as follows:

k=rank(é'>, r=rank(é)—rank(0),

and

s = rank (A) + rank (C) — rank ( é )

Proof. The proof is constructive and consists of four steps. The transformations
of each step are of the following form:

AGHD — gk AR k) olktD) = R k) (k)

where U®) and V(¥) are unitary matrices and Q®) nonsingular. In each step we only
specify the U®), V) and Q*) and the resulting matrices A®+D and C*+1), Set
AW = A and CY = C.

Step 1. Let the SVD of the matrix C be U;CV; = diag (O, Eg)), where Eg) =
diag (s81,+-+,8¢) and 81 >,---,> 84 > 0. Set

vW =1, v®=yy,
QW = Vi diag (I, £5%);

then
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Step 2. Let the SVD of the matrix A be 0,42V, = diag (£9,0), where
=@ = diag (t1,---,tr) and t >,--+,> t, > 0. Set

U® =y, v@=],
Q® = diag (V3,I) diag (Z§)~1, I);
then

r n—r—t t

I o AP
A® - T ( . 13 ), c® = 0@
m—r \O (0] Ag%)

Step 3. Let the SVD of the matrix A be UsADVs = diag (£,0), where
Zf) = diag (w1, -, w,) and wy >,--+,> ws > 0. Let a; = w;(1 + w?)~Y/2 and
Bi= 14wV i=r+1,---,r+s and Sy = diag (@rt1,"**,+s),Sc =

diag (Br+1,**,Or+s). It is easy to check that a;, 8; (i =r+1,---,7+3) satisfy (3.7).
Set

U® = diag (I,Us), V® = diag (I, V),
(3
Q® = ( é —*‘}13 ) diag (I, V3) diag (I, S¢, I);
then
r n—r—t s t-—s
r (I, (0] 0 o
AW = s| O o S4 O |,
m—-r—s \O o o O

n—t s t—s

n—k+r (0] (0] (0]
cW = s o S o |
o O Iy
Step 4. After suitable permutations P; and P, and set k =t + r we obtain

o),
o),

thus we have obtained the required quasi-diagonal form. It is easy to verify that

I,
A(s) = A(4)P1 = SA
Oa

Oc
Cc® = pcWp, = Sc
Iy—r—s

rank (4) =r+s, rank(C)=k-r, rank ( ¢ ) =k,

which complete the proof. O

According to [6], corresponding to each column in (3.5) is ascribed a generalized
singular pair (a;, 8;). Following (3.6) we take for the first k of those as

(3.8) a;i=1, (=0, i=1,---,m
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(3.9) ai,,@i a,SinSAa,ndS’B ’i=T+1,“-,1‘+s,
(3.10) a;=0, Bi=1 i=r+s+1,---k,
and call them the nontrivial generalized singular pairs of (4,C); «;/Bi, i =1,---,k,

are called the nontrivial generalized singular values of (A4, C). The other n — k pairs
corresponding to the zero columns in (3.5) are called trivial generalized singular pairs
of (A, C), and no particular numbers are assigned to them.

The following result gives a new characterization of the GSVs of a general matrix
pencil and states that GSV’s are a special case of RSVs.

THEOREM 3.3. Using the notation of Definition 2.1 and Theorem 3.4 we have
the following results:

(1)
(3.11) 0i(A, I, C) = %’. i=1,-- k
and
(8.12) 0i(A, I, C) =0, i=k+1,--,n.

(2) Let I = rank ( é ) — rank (C) and u = min (m, rank ( é ))rm ; then
for all D € C™*9
(3.13) < rank (A+DC)<u
and for all integers k satisfying l < k < n, there exists matriz Dy € C™*9 such that

rank (A + D,C) = k.

Proof. (1) Let the GSVD of (A, C) be as in Theorem 3.2. For arbitrary D € C™>4,
let UDVH = (D,‘j)?’j=1 be partitioned conformally with the partitionings of ¥ 4 and
Y.¢; then

rank (A + DO)
= rank (UAQ + UDVEVCQ)

I, Di35¢ D3 O
rank O S4+Dy2Sc Dy3 O
0 D335¢ D33

SaS5t O Di3 Das
T+ rank (( AOC O >+ ( D32 D33 )) .

The result follows from Theorem 3.1.
(2) As is proved in Theorem 3.4, we have

k = rank (é), r = rank (é)— rank (C).

The proof of this part can be easily derived from the above expressions and Theorem
3.1. O
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In the following we discuss the problem of uniqueness of GSVD. From the GSVD
in Theorem 3.2, let

UiAQi = (ZAa 0)7 ‘/;ICQi = (207 0)7 (1' = 1a2)
be two GSVDs of A and C; then

(3.14) (U2U{)(24,0) = (£4,0)(Q5'Qu),
(3.15) (V2V)(Z¢, 0) = (£¢,0)(Q7 Q).
Let

VU = (Uij)i e VaViE (Vi3 jon,
and
Q7'Q1 = (Qij)i j=1

be block matrices partitioned conformally with the partitions of ¥4 and X¥¢. Equation
(3.14) gives the following identity:

Uin UeSa O O Qu Q12 Q13 Qs
Uy UzSa O O | = SaQ21 SaQ22 SaQa2s SaQa |,
Us; Uz S4 O O (0] 0] (0] (0]
which yields
Usi =0, Us=0, Qu3=0, Quu=0, Qa3=0, Q2=0,
Ui = Qu1, Ui2S4a = Qi12, Uz = 854Q21, US4 = S4Q2.

From the fact that UpU# is unitary, it follows that Ujs = O, Uss = O. Similarly,
equation (3.15) results in the following identity:

O ViaSe Viz O 0] 0 o 0]
O VooSoc Vaz O | =| ScQa2 ScQ22 ScQ ScQa |,
O V3S¢ Vaz O Q31 Q32 Q33 Q34
which yields
Vie=0, Viz=0, Qa=0, Q:un=0, Q3=0,
VaoSc = ScQ22, Vaz = ScQ23, VizaSc = Q32, Q33 = V3.

From the fact that V,V;¥ is unitary, it follows that Vo; = O, Va; = O. Furthermore,
since U1 = S4Q21 = O, hence U2 = O and Q12 = O. Since V33 = Qszsgl = 0,
hence Va3 = O and Q23 = O. From Py = SZIU22$'A and Py = SEIVnSC, we obtain

(54551 Vaz = U (S4S51).

Let 0; = ®itr/Bitryi =1,-+-,8and T := SASEI = diag (04,15, -,0415), where
03, > -+ >0y and Zi=1 8¢ = s. Since a,, +B%,=1, i=1,---,s, hence S4 and
Sc have the same partitioning as that of X, i.e.,

SA = dla‘g (ailIsn' e aaixlsz)a SC = dla‘g (ﬂiy[sla T 7ﬂi1I8()'
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From X Va5 = Use X, we can verify
2Vpo = Vo B2, $2Up, = Uz ¥,
therefore
Uz = Vo = diag (Uy,- -+, 1),

where U;, (i =1,---,1) is unitary matrix of order s;.
Summarizing the above, we obtain

Un
Q=@ Ve 1O |, UF =UF disg (Un,Un,Uss)
Qu Qu Q3| Qu
and
(3.16) Vil = Vi diag (Vi1, Uaa, Vas)

where Ui, Uag, Uss, V11, Va3 are unitary; the matrix Q44 is nonsingular, and U2 =
dia'g (Ula ) Ul)

As pointed out in [6], the GSVs of (A,C) are just the SVs of AC™1, if C is
nonsingular. In the following we further discuss the case in which C is a general
matrix.

COROLLARY 3.3. We use the notation of Theorem 3.2 and let

o8
Ct= St ) V.
( °

If rank (A®,CH)H = n, then CJ is uniquely defined and the SVs of AC} contain
the finite GSVs of (A, C).

Proof. Since rank (A¥,CH)H = n, any two sets of transformations in Theorem
3.2 satisfy the following relations:

Q1 = Q2 diag (U11,Usp, Va3), U = UF diag (U1, Usz2,Uss),
and V= V# diag (V11, Uaa, Va3), hence

@1 S5 Wi
°
U (074 Vi
Q2 Usa sgt U Va
Vas I VH

(o]
Q2 Sgt ! V1.

Therefore we have proved that C is well defined. Furthermore, observe that

I

UACIVH = diag (0,5455",0)
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and only the infinite GSVs of (4, C) are changed to zero SVs of ACS; the other GSVs
are preserved in ACY. O

In the following we discuss some properties of C;'{. It is easy to check that CX
satisfies the following equations:

(3.17) ccic =c,
(3.18) ciccy =cy,
(3.19) (cchHE =ccy .

Therefore in the notations of [1], C} is a {1, 2, 3}-inverse of C. It will
be interesting to know how we can uniquely characterize CJ in the class of a
{1, 2, 3}-inverse of C. The following theorem answers this question under the as-
sumption that rank (A#,CH)H =n.

THEOREM 3.4. If (AH,CH)H s of full column rank, then CJ is the unique
solution of the following constrained minimization problem:

(3:20) min [ AX||p,
subject to

(3.21) CXC =C,
(3.22) XCX =X,
(3.23) (CX)H =CX.

The minimum value is \/ e (i) Bi)?
Proof. Let C have the decomposition as in (3.5):
k n-—k
VeQ= (Z¢, O ).
Since rank (A#,CH)H =n,s0k =nand C = VELcQ™1. Partition Q-1 XVH =
(Xij)3 ;=1 conformally with the partitionings of £4 and £o. We can verify that X
should be of the following form:

o X12 X3
X=Q|[ O SC (0] 1%
O O Ij,
in order to satisfy (3.21)—(3.23).
Since
IAX|%
= HUAQ QIXxVH|%

o X12 X13
0] S— 0]
0] 0 S

Il X12’X13)”F + "SASEIHF

154 S5 1%
r+8

> (G

t=r+1

2

I

F

\Y



182 HONGYUAN ZHA

The equality is satisfied if and only if X;2 = O and X33 =0, ie., X = C’I. O
Remark 3.1. Along the lines of the proof of Theorem 3.4 we can also verify that
C7 is the unique solution of the following constrained minimization problem:

min || AX||F,
Xecqxn
subject to
(1) CXC=C¢C,

(2) (Cx)H =CX.
Remark 3.2. Exchanging the rolls of A and C in (3.20) and (3.14), we can also

show that
Az :=Q ST U
c A 0 )

is the unique solution of the corresponding minimization problem. Another way of
uniquely characterizing C ﬂ is to generalize the Moore-Penrose conditions.

THEOREM 3.5. If (A", CH)H has full column rank, then C} 4 18 the unique solu-
tion of the following four equatzons

(3.24) CXC =C,

(3.25) XCX = X,

(3.26) (Cx) =cx,
(3.27) (AFAXC)H = AP AXC.

Proof. As in the proof of Theorem 3.4, X should be of the following form:

0 X2 Xis
X=Q| o0 szg* o |v
O O O
in order to satisfy (3.24)-(3.26). Since

I I
AFAXC = QX ( Sa ) 9 Oid ( Sa ) Q7'Q
0 0

0O X2 X3 o
o szt o VVT( S5t )Q‘l,
0O O I I

0O X2 X3
= Q" o 535 0 |Q@7,
o (0] O

therefore (AFAXC)E = AHAXC if and only if X2 = O and X33 = O, ie.,
X =Cj}. m]
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4. The restricted singular value decomposition. In this section, B and C
are assumed to be general matrices. The key observation is the following.

LEMMA 4.1. Let P € C™*™ and Q € C™*™ be nonsingular matrices, and let
U € CP*P gnd V € C?*? be unitary matrices; then

(4.1) ox(PAQ,PBU,VCQ) = ox(A, B,C), k=1,---,n.

This lemma specifies a class of transformations which preserves the RSVs of a matrix
triplet.

THEOREM 4.1. Let A € C™*™, B € C™*P, and C € C9*"; then there exist
nonsingular matrices P € C™*™ and @ € C™*", unitary matrices U € CP*P, and
V € C?*? such that

n— tl tl
_m—t1 [ Xa
(42) PaQ=""3 (%4 o),
Yp
4.3 PBU = ( 2 > )
(4.3) t \ 0@
n — t1 t1
(4.4) veQ= ( Zo, 092),

i (1
k I
(4.5) Ya=1 I )
T Sa
S2 01(41)
J pP—)—r—82 T 82
i (1 "
k+1 0
4.6 Yg = B ,
(46) B T SB
82 I82

j+ k1 r 81
g—l-r—s O(Cl)
l I
4.7 Yo = .
(47) o ! o
81 Isl
where Sy = diag (a;), Sp = diag (8;), Sc = diag (v;), and

(48) a3+ﬂ'z2+7z2=17 i=3+1,"‘,S+T



184 HONGYUAN ZHA

where we denote s = j + k + I; furthermore

(4.9) 1>0;2a;41>0, 0<B<Bi+1 <1, 1>%2>2%41>0
and
(4.10) Qi Qi+l i=s+1,-,8+7—1

Bivi = Bit1Yie1

Proof. The proof is constructive and consists of four steps. The transformations
of each step, according to Lemma 4.1, are of the following form:

(4.11) Alkt1) = plk) g(k) (k)
(4.12) Bl+1) — pk) gy #).
(4.13) O+ = YR o gk

where P*) and Q) are nonsingular matrices, U®) and V*) are unitary matrices.
In each step we only specify the P*), Q(*)  U/(¥) and V() and the resulted A*+1),
B&+1) and C*+1), Set

AV =4 BW =B cW=c.
Step 1. Using Theorem 3.4, let the GSVD of (A1), C(M) be

itk l+r s1
j+k (Lyxy O O O

U140Q, = I+r ( o sP o o),
m—j—k—1l—-r (0] O O O

j+k l+r 81 tl

ji+k({ O O 0 o
VicWQi=14r | 0 Ss® o o].

81 0 O Isl 0
Set
PO =1y, QW =Q, diag (I,(5§)74,1),
UM = I, v = Vi,
then
j+k l+r 51
J+k [ Ik 0 0 0
A®) = I+r | 0 SPEEt o o],
m—j—k-l-r\ O o o O

s _ j+k [ B?
B()— (332) ’
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j+k l4+r s1
Jj+k 0 O 0O O
CO=14+r | O Iy O O}
81 O O I31 0}
Step 2. Using Theorem 3.4 let the GSVD of the matrix pair

(g ).e0)

be of the following form:

l r
I (I, O
(1) o)y~ !
Pz(sA(%c)l>V2= r [0 s®),
so+ta \O O
p—7T— 82 T 89
l o) 9
@, =T o) Sy’ O
PBy e = o) o I,
ty o) 0O 0

where Sf) = diag (81, ", 8r), Sg) = diag (t1,--*,t,) and 82 +t? =1, 1 > s; >
o228, >0and 0<t; <.+ <t, <1. Set

P(z) = diag (I, Pz), Q(z) = dia'g (I’%’I)a
U = Uy, V@ = diag (I,VH, 1),

then
j+k‘ l T 81 tl
j+k[(Ly O O O O
(3 = l o I, 0O O O
A r{ o o 3s8P ool
m—j—k—-1l—-r O O O O O
p—T—3S82 T 82
j+k( B® BY BYP
0 0] o
B®= o sP o |
82 o (0] I,
ta o o 0
and
c® =c®,
Step 3. Set
I 0 -BPEP)-1 —B® o
@ | 01 o} 0 o
P =10 0 I 0 o |,
0O O 0] I 0
O O 0 o I
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I 0 -BP@P)-15® o
o®=|o0 I 0 o |,
0 0 I 0
0 0 0 I
and
U® =1 Ve =1,
then
A® = 4®)
B® o0 o
© 0O 0 O
BY = o s o |
o 0 I,
0O O
cé = o®,

Step 4. Let the SVD of B®) be

; 2
- (5 2)

where Eg) is nonsingular. Let s = j + k + [ and

A
Qsti = T vi7g
ot (1+ s2)1/2
ﬂs+i = (2 =1, ,’l").
v L
+i =
ore (14 s2)1/2

It is easy to verify that {as+i}, {Bs+i}, and {7vs+i} satisfy (4.8)—(4.11). Let S¢ =
diag (Yasi), Sa = S Sc, and Sp = S, in addition, set

PW = diag (@)1, 1) diag (Us, I),

QW = diag (I, Sc,I) diag (35))7%, 1) diag (UF', ),
U(4) = diag (V37 I)’

v@ — 7

After some manipulation, we obtain the results as stated in (4.2)—(4.4). The proof is
completed. O

Remark 4.1. We can also use D; and D; positive-definite diagonal matrices to
scale (Sa,SB,S:) to (D1S4D3,D,SB, ScD3). For example, we can choose D; and
Dy such that D1Sp and S¢ D, are identity matrices.

Similar to (3.8) we define

a; =1, /Bi=1a 'Yz=07 ’L:=1.7""j, .

a; =1, Bi =0, 7 =0, i=j+1,---,5+k,

a; =1, Bi =0, %=1, i=j+k+]-,"',3,

o, Bi,vi as in Sy, Sp, andSe, i=s+1,---,8+7

a; =0, Bi=1, v =1, i=s8+r+1,---,8+ 7+ min(sy, s2)
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to be the nontrivial RSV triplets of (4, B,C).

The following theorem relates Theorem 4.1 with the concept of RSVs and justifies
the above definition and calling Theorem 4.1 the RSVD theorem.

THEOREM 4.2. With the notation as in Theorem 4.1 and the above definition the
following statements are true:

(1)
(4.14) 0;(A,B,C) = % , 4=1,--+,8+ 7+ min(s1, s2),
Bivi
(4.15) 0;(A,B,C)=0, i=n-—(s+7r+min(sy,s2))+1,---,n.
(2) Let

l = rank (4, B) + rank (g)— rank (é g),

u = min (rank (A, B), rank ( é )) ;
then for all D € CP*4

(4.16) | < rank (A+ BDC) <u
and for all integers k satisfying | < k < n, there erists matriz Dy € CP*? such that
rank (A+ BD,C) =k .

Proof. (1) Let URDVH = (D;;)};_, be a block matrix partitioned conformally
with the partitionings of ¥p and X¢.

rank (A + BDC)
= rank (PAQ + PBUU¥DVEV(CQ)

d i o TR o

k

= rank 0O O I 0 o 0
= fan O O SpD3; Sa+SpDs33Sc SgDss O

O O D42 D44SC D44 0

0o O 0 0 0 o
. Sp'SaSzt O D33 Dss V),
= j+k+1+ rank (( BOAC 0>+(D43 Dus ;

using Theorem 3.1, the proof of this part is completed.
(2) For the upper bound, note that

A+ BDC = (A, B) ( oo ) = (I, BD) ( 4 )

hence

rank (A + BDC) < rank (4, B)
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and

rank (A + BDC) < rank ( a )

For the lower bound, we can verify that

rank (A4,B) = s+ 7+ s,
rank(é) = 8+71+851,
rank(é g) = 8+ 2r+ 81 + 33,
hence

s = rank (4, B) + rank (é)—-rank (é g)

The proof of the theorem is completed. 0O
Remark 4.2. From the following linear system

(rankEA))
111100 ' rank (B
100101 1 rank (C)
001110 1] rank(A,f)
111101 r | =

111110 81 rankC)
111211 89 4B

\rank 00))

we obtain the following expressions for the integer indices in Theorem 4.1:

j = rank(é)+rank(B)—rank(é g),

k = rank ( é g ) — rank (B) — rank (C),

!l = rank (4, B)+ rank (C) — rank ( g g ),

r o= rank(é g>+rank(A)—Jrank(A,B)—rank(é),
sy = rank ( é ) — rank (A),
s = rank (A4, B) — rank (A),

in addition, it is easy to see that

ty, = n—rank(é),

ta = m— rank (4, B).

If we use R,(A)(Rc(A)) and N,(A)(N¢(A)) to denote the subspace spanned by
the rows (or columns) of A and the row (column) null space of A, respectively, and
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furthermore, S\T denotes the complement subspace of T in S, such that S\T®T = S
and dim(S) is the dimension of the subspace S, then we can express the above integer
index using the following geometric terms:

am (ro (4 )ore(3)),
k - dim(Nc(O)\Nc( ¢ ))‘dim<RC( o )ORC( 5))

= dim(N,(B)\N,(4, B)) — dim(R, (A, B) N R.(C,0)),
! = dim(R.(4,B)NR.(C,0)),
r = dim(R,(4)NR.(C)) — dim(R.(4, B) N R.(C, 0))

— dim(Re(4) N Ro(B)) — dim (Rc ( a ) N Re ( B ))

o = dn(Ne\e (&),
s = dim(V(A\N:(4,B)),

o= dim(Nc<é)),

ty = dim(N,(4,B)).

I

J

The above expressions can serve as the basis of a geometrical derivation of RSVD.
Before we discuss another two special cases of RSVD, we consider the uniqueness
problem of the RSVD in Theorem 4.1.
THEOREM 4.3. Let the following:

n—t1 t1
PiAQi——-m—;;( Za 0542)>a

Yp
PBU; = 4 ( o ),

n— t1 t]_
veQ= (¢, 0¥)
be two RSVDs of (A4, B,C) in the form of Theorem 4.1. Furthermore, let
SEISASEI = diag (0, Ir,, -, 04y Ir, ),

w
Tiy 250032 Oiys E i =T;
J=1

then
j k l T 82 t2
j [Uun P2 Pi3 O O P
k 0] Pzg P23 0] 0] P26
-1 _ l O 0 V22 0] 0] P36
(4.17) PPRe= 10 0 0 Us 0 Pl
ss| O O O O Uy Ps
to 0] O O O O Pge
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j k l r 81 t1

Jj (Uu P P33 O O O

k O Py Pz O 0 (0]

an 1l o 0 v 0 0 o

(4.18) WA=, 10 0 0 vy 0 o

81 0] 0] 0] 0] V44 0]

t1 \Qe1 Qe2 Qo3 Qes Qo5 Qss
(4.19) Uj Uy = diag (U11,Usz, Uss, Uss),
(4.20) VoV = diag (Vi1, Va2, Uss, Vaa)

where Us; (i = 1,2,3,4) and Vi; (i = 1,2,4) are unitary; Usz = diag (Up,---

and U; € CTi%™ | (1=1,---,w

Proof. We have

); Pag, Psg, and Qee are nonsingular.

(Pszl)( 24 8) - (%‘ 8)(@;1621),

Let

T O

|4
be block matrices partitioned

Py
Py
Py
Py

Py,
Py

pX pX
s) = (8)wr,
)(Z0,0) = (20,0)(Q3'Q1).
i= PPt = (Py)$ i1
= Q7'Q1 = (Qi)$ j=1,
= Uy P = (Uij)1 j=1s
= V2V1H = (Vij)il,j=1

as in (4.17)—(4.20). The equation

Py Pz Pi14Sa
Py; P33 PyySa
P3; P33 P3S4
Py Py PySa
Ps; Ps3 PsySy
Py P13 Pi4Sa

QQQQAA0
QQQQAA0

Qu Q12 Q13 Q14 Q1s Q16

21

0] 0] 0] 0] 0] 0]
yields
Pij = Qij) (7' = 1a2a3)» (.7 =1, 2)3)a
P;=0, (i = 5.6), (j=1.2.3,4),
Qij = Oa (2 = 1)2a37 4)a (.7 = 5a6)a
PiySp = Qia, gz.‘_‘ 1, 2a3)a
P4j = SAQ4ja J=123),

PyySa = S4Qua.

22 Q23 Q24 Q25 Q26

31 32 33 Q34 35 36
SaQa1 SaQa2 SaQsz SaQas SaQss SaQue
0] 0] (0] 0] 0] 0]
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Similarly, the equation

Py O PuSp Pis Un Uiz Uis Uis
P,y O PyuSp Poy 0 0 0 0
P3; O P3Sy Pss _ 0 0 0 o
Py O PyuSp Pys | — | SgUsi SUsx SpUsz SpUss
Ps; O PsySp Pss Uy Uss Uss Uy
Psy O PsuSp Pes 0 0 0] 0
yields
P = 0, (1=2,3,6), (j =1,4,5),
Py, =Uy P14Sp = Uss, Py5 = Uy,
Py; = SpUs;, Py Sp = SpUsa, Py5 = SpUss,
P5; = Uy, P54 Sp = Uss, Pys = Uy,

and U2 = O,Usy = O,Uy2 = O. Because U is unitary, we must have Us; = O, Uz =
O, and Us4 = O. Likewise the equation

O O Via VisSc Vi
O O Vy Va3Sc Vau
O O Vi VazSc Vay
O O Vi Vibc Vi

o 0 0 0 0 o

_ Q31 Q32 Q33 Q34 Q35 Q36
T | ScQa1 ScQs2 ScQsz ScQas ScQss ScQue
QRs51 Qs2 QRs3 Qs4 Qss5 Qs6

SQCC

yields
Qij =0, (": =3,4, 5)7 (.7 = 1,2,6),
Va2 = Q33, Va3Sc = Qas, Vas = Q3s,
Vaz = Qs3, VizSc = Qsa, Vis = Qss,
Va2 = ScQus, Va3Sc = ScQua, Vag = ScQss,

and Vi3 = 0,Vi3 = 0,Vi4 = O. Because V is unitary, it follows that Vo; = O, V3, =
0, and V4 = 0.

Furthermore, because Uy; = Ps; = O,Uyy = O, and Uyz = Ps5ySp = O, we
conclude U4 = O and Usy = O; hence P;5 = O and Py5 = O. Similarly, because
Via = O,Voy = Q35 = O, and V34 = ScQ45 = O, we obtain Vi3 = O and Vy3 = O;
hence @53 = O and Q54 = O.

Moreover, Py; = S4Q41 = O,Ps3 = SaQ4 = O, hence Us; = P41,S’§1 = O,
and U3 = O. Therefore Piy = S5'Uia = O. Similarly, Q14 = P1aSa = 0,Q24 =
P3S4 = O and Q34 = P34S54 = O. Because V33 = Q34SC_,1 = 0, we must have V35 =
O; hence Q43 = 5’51V32 = 0, and Py3 = S4Q43 = O. Additionally, P3; = Q32 = O.

Finally, we have Pyy = SBU33$'§1, Qu = SEIV335’C and Py =S AQ44S;{1; hence

Uss(S5'SaSc") = (S5" 545" Vas,
which implies
Uss = Va3 = diag (U, -, Uy).
As in the proof of Theorem 4.2, we can choose {s;} and {t;} such that
1>8>,,> 8 >0,

iy |

0<s1 &0, <t <1,
s2+t2=1, (i=1,---,7),
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and
Qori = 87/(1+s)/?
Bs+i = t (7:=1a"'>7')
Yori = sif(1+s7)M2

It is then easy to check that

Sa = dia‘g (a3+i1 I7‘1 PR ¢ PR ITw)’
SB = dla‘g (/Bs+'i1 I1‘1 PR aﬂ8+im Irw )a
Sc = diag (YetirIrys s YotinIra ),

hence Pyy = Q44 = Usz. The whole proof is completed. O
COROLLARY 4.1. Let A be nonsingular and the nonzero SVs of CA™1B be
o1 220, >0,
then (A,B,C) has (n —r) infinite RSVs and the r finite RSVs are

l>...>_1_>().

Or o1

Proof. Using the decomposition of Theorem 4.2, we can show that
(0]
-1 (0]
V(CA™*B)U = 0
ScS;'Sp
The diagonal elements of ScS;'Sp are nonzero SVs of CA~!B. O

COROLLARY 4.2 (PSVD [3]). Let B € C™*? and C € CP*™; then there exist
unitary matrices U and V' and nonsingular matriz T such that

I;
(4.21) UBT = OB ,
Yp
Oc
(4.22) T-CV = I,
Y

where

Yp = diag (s1,"**, ), Yo = diag (t1,--+,t),

1>>->8 >0, 1>t> >t >0,

s2+t72=1, i=1,,r.

Proof. Using Theorem 4.1, let the RSVD of (I,, B¥,CH) be
PL,Q = diag (Ij, Ix, Ii; Sa),

PBHU = ( b @) )
- OB b
Ss

i oy
veHQ = ( Py )
Sc
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Set Q = Q diag (I, SZI); then
PQ = I,

PBEU = ( b Q) )
- OB )
SB

s oy
VeEQ = I NE
ScSy

The proof is finished if we set U = UH, V = VH, T = PH 0p = (OV)H, 0¢ =
(Og))H, Yp=S5p,and ¥¢ = SCSZI. O

Remark 4.3. Corollary 4.2 is a simplified version of the product-induced SVD
(PSVD) in [3]. We can also use the techniques established in proving Theorem 3.2
and Theorem 4.1 to give a direct proof of it.

In the following we give the relation between the RSVD of (4,B,C) and the
eigenstructure problem of

(4 3).(%6" ofe )

From Theorem 4.1, after suitable permutation II we obtain
P O 0O A BBH O PHE O T
(6 g0 )((4n 6)-2(%6" %)) (% §)n
o =X, I; O I o I
= diag {( Ijj s, )’(Ik 0 )’(It Y ),
—\52 Sa = 0
(5% S&) (78 )0
therefore the eigenstructure of the symmetric matrix pencil is the following:
(i) 2(j + 1) infinite eigenvalues corresponding to Jordan block of order
2 ((j +1) 2 x 2 Jordan blocks).
(ii) 2k infinite eigenvalues corresponding to Jordan block of order 1.
(iii) 2r nonzero finite eigenvalues o, /B;vi,t =s+1,---,8+ 7.

(iv) 81 + 83 zero eigenvalues.
(v) (m+mn)—2(j +1+k+s) — sy — s2 Kronecker blocks of order zero.

5. Concluding remarks. In this paper we introduce the concept of restricted
singular values of matrix triplets. A main theorem called restricted singular value
decomposition (RSVD) is proved for general matrix triplets. Three special cases of
restricted singular values, i.e., the well-known singular values, the generalized singular
values and the recently proposed product induced singular values are also discussed.
Numerical algorithms for computing the RSVD of a general matrix triplet and appli-
cations of RSVD to the total least squares problem and the regularization problem
of general Gauss—Markov linear model will appear in separate papers. Perturbation
analysis and further applications of RSVD will be the topics of future research. We
hope that RSVD will be important not only as a useful theoretical tool for analysing
problems in numerical linear algebra, statistics, and control and system theory, but
that its algorithmic aspects will also find applications in computer-based methods to
solve realworld problems.
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LINEAR OPERATORS PRESERVING CERTAIN EQUIVALENCE
RELATIONS ON MATRICES *

ROGER A. HORN t, CHI-KWONG LI {, AND NAM-KIU TSINGS§

Abstract. Using a uniform approach, characterizations are obtained of linear operators on
matrix spaces that preserve certain equivalence relations such as consimilarity, *-congruence, nonsin-
gular equivalence, and unitary equivalence.

Key words. linear operator, equivalence relation, consimilarity, congruence
AMS(MOS) subject classification. 15A04

1. Introduction. Let ~ be an equivalence relation on a matrix space M. We
are interested in studying the structure of a linear operator T : M — M that preserves
~, that is,

T(A) ~T(B) whenever A ~ B.

Such an operator T is often called a linear preserver. Hiai in [9] studied this problem
and obtained complete characterizations of T' in two important cases:

(i) M is the set of all n x n complex matrices and ~ is similarity;

(if) M is the set of all n x n Hermitian matrices and ~ is unitary similarity.
In this paper we extend Hiai’s techniques to treat three additional cases:

(iii) M is the set of all n x n complex matrices and ~ is consimilarity;

(iv) M is either the set of all n x n complex matrices or n x n Hermitian matrices
and ~ is x-congruence; and

(v) M is the set of all m x n complex or real matrices and ~ is equivalence or
unitary equivalence.

For each case, our general strategy is:

(a) Characterize the kernel of T

(b) Modify T to obtain a new operator T’ that is nonsingular and preserves a
certain subset S of M;

(c) Characterize the linear operators T on M that satisfy T/(S) = S ;

(d) Use (b) and (c) to characterize T

Our approach to (a) and (b) is to analyse the orbits under the equivalence re-
lation ~,

O(A;~) ={X e M: X ~ A},

and the corresponding tangent space 74 at A. When there is no ambiguity about ~,
we shall write O(A) instead of O(4;~). It is known (e.g., see [2]) that O(A) is a
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homogeneous differentiable manifold if ~ is any of the equivalence relations described
in the preceding cases (i)—(v).

In §§2, 3, and 4 we discuss the cases in which the equivalence relation ~ is,
respectively, consimilarity, *-congruence, and equivalence. In the final section we
describe some related results and problems.

We shall use the following notation throughout the paper:

IFruxn : the linear space of all m X n matrices over IF, where IF is the complex field
C or the real field IR.

‘Hr, : the real linear space of all n X n Hermitian matrices.

Un(IF) : the group of all n x n unitary or real orthogonal matrices according as IF = C
or IF = 1R.

{E11,"++, Emn} : the standard basis of Fmxn, i.e., Ei; has a one in the (3, j) position

and zeros elsewhere.

Xt : the transpose of X € IFy,xn.

X : the complex conjugate of X € Crxn.

tr X : the trace of X € IFp,xn.

Im(L) : the range (image) of the linear transformation L .

The following simple principle will be used to show that most of the linear pre-
servers we study are nonsingular.

LEMMA 1.1. Suppose the equivalence relation ~ on the matriz space M has the
property that A ~ 0 if and only if A = 0, and suppose a given linear operator T :
M — M preserves ~. Then

(a) span O(A) C ker(T) for every A € ker(T);

(b) if there is some A € ker(T) such that span O(A) = M, then T = 0;

(c) if ~ is such that span O(A) = M for every nonzero A € M and if T 1is
nonzero, then T is nonsingular.

The hypothesis that A ~ 0 if and only if A = 0 is clearly met for similarity,

consimilarity, *-congruence, and equivalence, which are the equivalence relations we
consider in this paper.

2. Consimilarity. In this section the matrix space M is Cpxn and ~ is con-
similarity, i.e., A ~ B if there exists a nonsingular S € Cpxn such that A = 5BS-1,
The main result is the following theorem.

THEOREM 2.1. A linear operator T : Crpxn — Cnxn Satisfies

T(A) is consimilar to T(B) whenever A is consimilar to B

if and only if there exist a nonsingular S € Cpxn and a real number oo > 0 such that
either

T(X)=aSXS-1 for all X € Cpxn,
or _
T(X)=aSXtS~1 forall X € Coxn.
We divide the proof of Theorem 2.1 into several lemmata.
LEMMA 2.2. (a) O(E1) = {zyt : z,y € C", y*z = 1}.
(b) O(E12) = {zyt : z,y € C", y*x =0}.
Proof. (a) Observe that if e; is the ith column of the n x n identity matrix, then
O(E11) = {SE115-1: S is invertible}
= {zyt : S is invertible, x = Sei, and yt = et S-1}
= {zyt : z,y € C", y*z = 1}.
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(b) The proof of (b) is similar to that of (a). 0

LEMMA 2.3. Span O(A) = Cpxn for every nonzero A € Cpxnp.

Proof. Let A € Cpxn be a given nonzero matrix. Since A is consimilar to a real
matrix [10, Thm. 4.9], to prove the lemma, we may assume that A is real. As A is
nonzero, there exists a nonsingular R € Rpxn such that the (1, 1) entry of RAR-1 €

O(A) is nonzero. Let Pi,---, P, with k = 27 be all the distinct diagonal matrices
with diagonal entries equal to 1 or —1. Then B = Z L PiAP7! € span O(A) is a
diagonal matrix with nonzero (1, 1) entry. It follows that for S = diag(1,4,--,%), B+
SBS-! = AE11 € span O(A) for some nonzero A. Thus, E11 € span O(A) and hence
O(E11) C span O(A4) . By Lemma 2 2(a), Eii, Eii + Ei; € span O(A) for all ¢,5. As
a result, span O(A) = Cpxn.

The following result now follows from Lemma 1.1(c).

LEMMA 2.4. Let T : Cpxn — Cnxn be a nonzero linear operator that preserves
consimilarity. Then T is nonsingular.

LEMMA 2.5. Let A € Rypxn be a nonzero matriz. Then the tangent space to
O(A) at A is

Ta={XA—-AX: X € Cnxn}.

Moreover, the real dimension of T4 equals:

(a) n? if A=Al

(b) 4n —3 if A= A\E11,

(C) dn — 4 ifA = /\Elz,

(d) p > n? ifrank(A—al) =1 for some nonzero o € C, and equality holds if and
only if A is consimilar to al or A is a 2x 2 matriz that is consimilar to |a|(E12 — E21),

(e) ¢ > 4n if rank(A —al) > 1 for alla € C.

Proof. The asserted form of 74 follows immediately from the power series expan-
sion of SAS—1 with § = esX =377 ((eX)?/p!, X € Cnxn.

Note that every rank one matrix is consimilar either to AEj1 or to AFj2 by
Lemma 2.2, so the five cases listed in the lemma are exhaustive. Let X = X1 + iX3
with X1, X2 € Rpuxn. Then

XA-AX = (X14 - AX1) — i(AX; + X2A)

and hence the real dimension of T4 equals rank(L1)+ rank(Lz2), where L; and L2 are
the linear operators on IRy xn defined by

Li(Y)=YA-AY and L(Y)=AY +YA.

Since A is real, the rank of L; over IR is the same as its rank over C.

If A= M, then it is clear that rank(L;) = 0 and rank(L2) = n2, so rank(L1) +

rank(L2) = n2.

Now suppose A is not a multiple of the identity matrix. By [9, Lem. 1.3], we have
rank(L1) = 2n — 2 if rank(A — al) = 1 for some o € €, and rank(L1) > 2n otherwise.
Next consider rank(Lz). If A = AE11, then Im(L2) = span{E;; : ¢ =1 or j = 1}, and
hence rank(Lz) = 2n — 1. If A = AE12, then Im(L2) = span({E11 + E22}U{Ei:i >
3}U{E1; : j > 2}), and hence rank(L2) = 2n—2. If rank(A—al) = 1 for some nonzero
o € C, then A = S(vE11 + pFE12 + az:;z E;;)S-1 for some nonsingular S € Crxn.
Notice that if A has eigenvalues Ay, -, An, then L has eigenvalues A;+ A; (1 < 4,5 <
n). It follows that if ¥ # —a and v # 0, then L2 has n2 nonzero eigenvalues, and
hence the rank of Lz is n2. If v = 0, then L2 has n? — 1 nonzero eigenvalues, so the
rank of Lo is at least n2 — 1. In both cases, we have rank(L;) + rank(L2) > n2.
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Now suppose v = —a. Since the complex eigenvalues of A occur in conjugate pairs,
we have either (i) » = —a € R; or (ii) n = 2 and v = @ are pure imaginary. If (i)
holds, then A is similar to a(I —2F11) (via a real matrix), which in turn is consimilar
to ol (via S = (¢ — 1)E11 — I), and hence A is consimilar to al. If (ii) holds, then
A is similar to |a|(E12 — E21) via a real matrix. In both cases, one can check that
rank(L1) + rank(Lz) = n2?. Finally, if rank(4 — aI) > 1 for all & € C, the same
arguments used in the proof of [9, Lem. 1.3] show that rank(L2) > 2n over C, and
hence rank(Lg) > 2n over R as well. Thus, rank(L1) + rank(Lz2) > 4n. 0

LEMMA 2.6. Suppose the linear operator T : Cpxn — Cnxn is nonsingular and
satisfies T(O(E11)) C O(E11). Then there exists a nonsingular S € Cpxn such that
either

T(X)=8XS8-1! for all X € Cpxn,

or

T(X)=S8XtS-1 forall X € Cpxn.-

Proof. Let e; be the ith column of the identity matrix. Set z1 = e1,z; = e1 +
ei fori=2,---,n. We may assume T'(z1z}) = z12%; otherwise consider 7" defined by
T/(X) = ST(X)S-1 for some suitable invertible S. For any a = (a2, -, a,)t € C*71,
let yo = (1,02, +,an)t. Then z1(puz1+ (1 —p)ys)t € O(E11) by Lemma 2.2. It follows
that pzizt + (1 — p)T(z1y%) € O(E11), and hence either

n n
T($1y3) € {Eu + ZbiElz' 1 b; € (D} or T(:L‘ly‘t,) € {Ell + Z b;E:; : b; € C} .

=2 =2

Choose any fixed nonzero ¢ € C*~'. We may assume T(z1yt) = E11 + 35, diFui
for some d; € C; otherwise consider 7" defined by T/(X) = T(X)* . Since T is
invertible and c¢ is nonzero, some of the d;’s must be nonzero. Now take any a €
€"~! and consider e = (a + ¢)/2. Since z1yt € O(E11), it follows that T(z1y4)/2 +
T(z1yt)/2 = T(z1t) is also in O(E11) and hence has rank one. It then follows that
T(z1ys) € {Ew1 + Y ;2 biE1i : b; € C}, also. Since T is invertible, the mapping
To: €1 — €™ ! defined by

n
To(a)=b if T(z1ya)t=Eu+ Y biEu

=2

is linear and invertible. Let R € C(,_1)x(n—1) be such that To(a) = Rta for
all a € €1, Consider T’ defined by T"(X) = ST(X)S-! with S = (1) @ R. Then
T'(z1xt) = z1at for 1 = 1,---,n. For notational convenience, we write T instead of
T’; we shall prove that T(X) = X. Now for any u,v > 0 and any i,j # 1,

z17} + v(z128) + pT (zix}) + woT (zizh) = T((z1 + pai) (21 + va;)t) € kO(B),

where k = (14 p)(1+ v) + pvé;;. Taking v = 0, we see that T(z;zt) = zizt € O(E11)
for some z; € C™ with 232 = 1 by Lemma 2.5. (Since T is one-to-one, it follows that
T(z;z}) cannot be in {E11 + Y i, biE1; : b € C}.) Thus

T((z1 + pxi) (21 +vz;)t) = (21 + p2i) (21 + va)t + po(T(zizt) — zixt)

always has rank one. It follows that T'(ziz%) = 2z} for all 4,5 > 2. As a result, if

4,J 2 2,1 # j, then 2z = 1 = zjz; and if ¢ = j > 2, then 2z = 2 = 7}z
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Consequently, we must have 2z = z; and hence T(z;z%) = ziz} for all i,j > 1.
Therefore, T'(X) = X for all X € Cnxn, as required. a

Proof of Theorem 2.1. (<) The sufficiency part of the theorem can be verified
readily.

(=) If T = 0, then the conclusion holds with a = 0. If T # 0, T is nonsingular
by Lemma 2.4. If n > 3, let A = T—1(E12). Since T(74) C 7g,, and T is nonsingular,
dim T4 < dim 7g,,. By Lemma 2.5 and the fact that O(AE12) = O(E12) if X # 0,
we have A € O(E12), and hence T(O(A)) = T(O(F12)) C O(Ei12). Next consider
B =T-1(E1). Since T(7g) C 7g,,, it follows that dim 7 < dim 7g,,. By Lemma
2.5, B € O(E12) or B € O(uFE11) for some p > 0. Since T(O(FE12)) C O(F12), we
must have B € O(uFE1:) for some g > 0. Thus uT(O(E11)) C O(E11), and the result
now follows from Lemma 2.6.

Suppose n = 3. Using arguments similar to those preceding, we have T(O(E12)) C
O(E12). Now set B = T—1(E11). Since dim 7 < dim 7g,,, by Lemma 2.5 we have
B € O(uFE11) or B € O(ul), for some p > 0. If B € O(uF11), then the result follows
as before. If B € O(puI), then Uu>oT (O(ul)) C Up>0O(pEr1). Thus, T—1(I) must be
of the form pFE11, and hence Up>oT(O(uE11)) C Uu>0O(ul). But then the matrices
Ci = T(I) and Cq = T(Eu — Egg — E33) are both in U“>00(/LE11) and have rank
one. Thus, 2T(F11) = C; + C2 must be singular, which contradicts the fact that
2T (E11) € Up>00(pI).

Suppose n = 2, and let Fi2 = Ei12 — E21. By comparing the dimensions of the
tangent spaces and using the fact that T is nonsingular, we can conclude that there
exist p, v > 0 such that T—1(Eq2), T-1(I), T—1(F12) are lying in the different orbits
O(MI), O(VFlz), O(Elz). It follows that

T(Up>00(uI)U[Uv>00(WFi2)]JUO(E12)) C Uu>00(pI)U[Uy>00(vF12)]UO(Er2).

Consequently, T—1(E11) € nO(FE11) for some n > 0, and the result follows. |

In Rpxn, consimilarity is the same as ordinary similarity. Although Hiai char-
acterized only the linear operators that preserve similarity on Cnxn, the proof in [9]
can be modified to yield the same result in the real case as in the complex case. We
summarize the results in the following theorem.

THEOREM 2.7. LetIF = IR or C. A linear operator T : Fpxn — IFpxn satisfies

T(A) is stimilar to T(B) whenever A is similar to B

if and only if one of the following happens :
(a) there exists Ao € Fpxn such that

T(X) = (tr X)Ao for all X € Fpxn;
(b) there exist a nonsingular S € Fpxyn and o, 8 € IF such that either
T(X)=aSXS-1+p(@r X)I  forall X € Fpxn,

or
T(X) = aSXtS-1 + B(tr X)I  for all X € Fpxn.

3. Congruence. In this section we take M = Cpxn or H, and let ~ be *-con-
gruence, i.e., A ~ B if there exists a nonsingular S in Cpx, such that A = SBS*.
Our main result is the following theorem.
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THEOREM 3.1. Let M be Cpxrn or Hyn. A linear operator T : M — M satisfies
T(A) is * -congruent to T(B) whenever A is * -congruent to B

if and only if there exist a nonsingular S € Cpxn and o € FF (where F = C or R
according as M = Cpxn or Hyn), with a =0 or |a| =1 such that either

T(X)=aSXS* forall X e M,

or
T(X)=aSXtS* forall X e M.

Again, we divide the proof into several lemmata.

LEMMA 3.2. Let M be Cpxn or Hn. If A € M is nonzero, then span O(A) = M.

Proof. Let A € M be a nonzero matrix. If A # Al and tr A # 0, then (e.g., see
[25] and the proof of Theorem 2.1 in [9]) span{UAU* : U € Up(C)} = M. If A=Al
or tr A = 0, there is a nonsingular S € Cpxn such that SAS* # Al and tr(SAS*) # 0.
Then span O(A) = span O(SAS*) = M. 0

One may also prove Lemma 3.2 by arguments similar to those in the proof of
Lemma 2.3.

The desired nonsingularity of T now follows from Lemma 1.1 (c).

LEMMA 3.3. Let M be Crxn or Hy. Suppose T : M — M is a nonzero linear
operator that preserves x-congruence. Then T is nonsingular.

LEMMA 3.4. Let M be Cpxn or Hn. Suppose A € M is nonzero. Then the
tangent space to O(A) at A is

Ta={XA+AX*: X € Cnxn}-

Moreover, the real dimension of T4 is at least 2n — 1, and it equals 2n — 1 if and only
if A= aSE1158* for some a € IF and some nonsingular S € Cpxn.

Proof. The asserted form for 74 follows immediately from the power series ex-
pansion of SAS* with § = esX = 3777 ((eX)?/p!, X € Cpxn-

To prove the second part of the lemma, we first consider the case of M = H,. If
A has r positive eigenvalues, s negative eigenvalues, and ¢ zero eigenvalues, then there
exists a nonsingular S such that SAS* = I, & —I; ® 0;. Since O(A) is a homogeneous
manifold, we may assume A = I, & —I; & 0; in order to compute the dimension of 74.
In this case, Ty is just the collection of Hermitian matrices whose (%, j) entries equal
0if ¢ > 7+ s and j > r + s. The real dimension of 74 is evidently n2 — ¢2, and the
minimum occurs when ¢t = n — 1. The result follows.

Now suppose M = Cpxn. Let A = A1 +1A2 with A1, A2 € H,. We may assume
A1 # 0; otherwise consider uA for some nonzero p € €. Then

Ty = {(XAI + A1 X*) +i(X A +AX*): X € (ann},

and hence
dim 74 > dim T4, > 2n - 1.

Moreover, if A is not a scalar multiple of a matrix of the form SFE;;5* with S € Cpxn,
we can find a nonsingular R € Cpxn and a nonzero v € C such that the matrix
B =vRAR* + TRA*R* has rank at least 2. It follows that

dim 74 > dim 7 > 2n — 1. 0



EQUIVALENCE RELATION PRESERVERS 201

The following result is in [12].

LEMMA 3.5. Suppose the linear operator T : H,, — Hyp is nonsingular and sat-
isfies T(O(E11)) C O(E11). Then there exists a nonsingular S € Cpxn such that
either

T(X)=SXS5* for all X € Hy,

or
T(X)=SXtS* for all X € Hy.

Proof of Theorem 3.1. (<=) The sufficiency part of the theorem can be verified
readily.

(=) If T = 0, then the conclusion holds with o = 0. If T # 0, then T is nonsingular
by Lemma, 3.3.

Suppose M = H, and A = T—1(E1,). Since T(T4) C Tg,, and T is nonsingular,
dim 74 < dim 7g,,. By Lemma 3.4, A € O(aE11), so T(O(aE11)) C O(E11). Notice
that O(aFE11) = O(E11) if a > 0, and O(aE11) = O(—En11) if a < 0. The result now
follows from Lemma 3.5.

Now suppose M = Cpxpn and A = T-1(Ej;). By the same arguments we have
already made, A € O(aE11) for some nonzero o € €. Thus, T'(O(E11)) C O(E11),
where T” = oT. Since Hy, is the real span of O(E11), it follows that 7" maps H,, into
Hn. Regarding T" as a real linear operator on H,, T/ satisfies the conclusion of the
theorem. Since Cpnxn is the complex span of Hy, the complex linear operator T, and
hence T, is of the required form. O

If S is unitary, x-congruence via S is unitary similarity. Hiai [9] characterized
the real linear operators T' : H, — H, that preserve unitary similarity. Using our
method in the proof of Theorem 3.1, one can extend the result of Hiai to Cpxn. We
summarize the result in the following theorem.

THEOREM 3.6. Let M be Cnxn or Hyn. A linear operator T : M — M satisfies

T(A) is unitarily similar to T(B) whenever A is unitarily similar to B

if and only if one of the following happens:
(a) there exists Ag € M such that

T(X) = (tr X)Ao for all X € M;

(b) there exist U € Up(C) and o,B € F, where F = C or R according as
M = Cpxn or Hy, such that either

T(X)=aUXU*+B(tr X)I  forall X € M,

or
T(X)=aUXtU* + B(tr X)I  for all X € M.

4. Equivalence. In this section we take M = IFp,x, with IF = R or C, and let
~ be (nonsingular) equivalence, i.e., A ~ B if there exist nonsingular M € IFy,xm and
N € Fp«n such that A = M BN. Our principal result is the following theorem.

THEOREM 4.1. A nonzero linear operator T : Fpyxn — IFpxn Satisfies

T(A) is equivalent to T(B) whenever A is equivalent to B
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if and only if there exist nonsingular M € Fryxm and N € Frxn such that either
T(X)=MXN  forall X € Fpxn,

orm=n and
T(X)=MXtN for all X € Frixn.

If M and N are unitary, then equivalence via M and N is unitary equivalence.
We have the following theorem in this important special case.
THEOREM 4.2. A nonzero linear operator T : Fpyxn — Frmxn satisfies

T(A) is unitarily equivalent to T(B) whenever A is unitarily equivalent to B
if and only if there exist & > 0, U € U (FF), and V € Uy (IF) such that either
T(X)=aUXV  for all X € Fmxn,

orm=mn and
T(X) =aUXtV forall X € Fruxn-

Since the proof of Theorem 4.1 is similar to those of Theorems 2.1 and 3.1, we
just list the lemmata required and omit their proofs.

LEMMA 4.3. Span O(A) = Fpyxn for every nonzero A € Fmxn.

LEMMA 4.4. Let T : Fyxn — Fmxn be a nonzero linear operator that preserves
equivalence. Then T is nonsingular.

LEMMA 4.5. Let A € Fpyxn be a nonzero matriz. Then the tangent space to
O(A) at A is

Ta={XA+AY : X € Fraxm and Y € Fpxn}.

Moreover, the dimension of T4 (over IF) is at least m +n — 1, and it equals m+n—1
if and only if A is a rank one matriz.

In the present case in which ~ is equivalence, O(FE11) is simply the set of all rank
one matrices. The following result is in [1] and [4].

LEMMA 4.6. If a linear operator T : Fpxpn — Fmxn s nonsingular and preserves
rank one matrices, then T 1is of the form described in Theorem 4.1.

Using these lemmata, we can prove Theorem 4.1. In the special case of unitary
equivalence, there are results similar to Lemmata 4.3 and 4.4. The analog of Lemma
4.5 is the following.

LEMMA 4.7. Let A € Fyxn be a nonzero matriz, and let ~ be unitary equiva-
lence.

(a) If IF = C, then the tangent space to O(A) at A is
Ta={i(XA+AY): X € Hm and Y € Hn}.
Moreover, the real dimension of Ty is at least 2(m+n) — 3, and it equals 2(m+n) —3
if and only if A is a rank one matriz.
(b) IfIF =R, then the tangent space to O(A) is
TA = {XA """AY . X = -'Xt € Rmxm and Y = —Yt € ]Rm,xn}.

Moreover, the real dimension of Ta is at least m + n — 2, and it equals m +n — 2 if
and only if A is a rank one matriz.
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Now we are ready to prove Theorem 4.2.

Proof of Theorem 4.2. (<) The sufficiency part of the theorem can be verified
readily.

(=) Suppose T is nonzero. Then T is nonsingular and 7-1(E11) must have rank
one by Lemma 4.7. Thus U,»oT(O(pFE11)) C Up>00O(pE11), and hence T preserves
rank one matrices. By Lemma 4.6, T has the form described in Theorem 4.1. Let
the matrices M and N have singular value decompositions X1D1X2 and Y1D,Y3, re-
spectively, where X1, X2 € Un(IF), Y1,Y2 € Un(IF), and Dy, D2 are positive diagonal
matrices with diagonal entries arranged in nonincreasing order. If T(X) = MXN,
let Ay = X3E11Yy and A2 = X3 EnmnYy*. Since A; and Az are unitarily equivalent,
so are T(A;) and T(Az2). It follows that all of the singular values of M (respectively,
N) are the same, so M and N are both multiples of unitary matrices and hence
T(X) = aUXV, as asserted by Theorem 4.2. If T(X) = MX*N, the same argument
shows that T(X) = aU XV, as asserted by Theorem 4.2. 0

5. Related results and questions. In this paper we have characterized those
linear operators T' satisfying

T(O(A)) CcO(T(A)) forevery AeM

for several choices of ~ and M. In [11], characterizations are given for the linear
operators on various matrix spaces that preserve t-congruence, i.e., A ~ Bif A = SBS?
for some nonsingular matrix S. One may also consider the problem of characterizing
linear operators T' such that

T(0(4)) = 0(4) or T(0O(4)) C O(4),

where A is a given fixed matrix. Even more generally, one might try to determine the
conditions on a pair of matrices A and B so that there is a linear operator with

T(0(4)) =0O(B) or T(O(4)) C O(B),

and then characterize T'. In fact, many authors have studied these linear preserver
problems under different settings, and many results have been obtained. We list only
a few references below indicating the source of some results on each of the indicated
problems (see also [6] and [20]).

For linear operators preserving an orbit of the consimilarity relation on Cpxn, see
our Lemma 2.6.

For linear operators preserving an orbit of the similarity relation on IF,xn, see
[22] .

For linear operators preserving an orbit of the x-congruence relation on H, (the
orbit is then an inertia class), see [8], [12], [18] .

For linear operators preserving an orbit of the unitary similarity relation on H,
or Crxn, see [13] .

For linear operators preserving an orbit of the (nonsingular) equivalence relation
on Frxn (the orbit is then a set of matrices with a fixed rank), see [1], (3], [4], [5],
(16], [17], [21], [24].

For linear operators preserving an orbit of the unitary equivalence relation on
Fmxn (the orbit is then a set of matrices with prescribed singular values), see [7],
(14], [19], [23].

For linear operators preserving an orbit of the ¢-congruence relation on various
matrix spaces, see [15].
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TWO SIMPLE RESIDUAL BOUNDS FOR
THE EIGENVALUES OF A HERMITIAN MATRIX*

G. W. STEWART

Abstract. Let A be Hermitian and let the orthonormal columns of X span an approximate
invariant subspace of X. Then the residual R = AX — XM (M = XHAX) will be small. The
theorems of this paper bound the distance of the spectrum of M from the spectrum of A in terms of
appropriate norms of R.

Key words. eigenvalue, invariant subspace, perturbation theory, residual bounds
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with orthonormal columns that spans an invariant subspace of A and

Let A be a Hermitian matrix with eigenvalues A; > -+ > A,. If X is a matrix

(1) M = XHAX,

then AX — XM =0.

Now suppose that the columns of X span an approzimate invariant subspace of
A. Then the matrix

R=AX-XM

will be small, say in the spectral norm || - || defined by ||R|| = max|z|=; ||Rz||, where
|lz|| is the Euclidean norm of z.! If the eigenvalues of M are py > --- > pg, then we
should expect the u; to be near &k of the A;. The problem treated in this note is to
derive a bound in terms of the matrix R.

An important result, due to Kahan [3] (see also [6, p. 219]), states that there are
eigenvalues Aj,,- -, Aj, of A such that

(2) |Mi_Aji| < ”R“’ i=1,---,k.

If nothing further is known about the spectrum of A, this bound is generally satis-
factory, although it can be improved somewhat [5]. However, it frequently happens
(e.g., in the Lanczos algorithm or simultaneous iteration [6, Chaps. 13,14]) that we
know that n — k of the eigenvalues of A are well separated from the eigenvalues of M:
specifically, if we know that

there is a number § > 0 such that exactly n — k of
3) the eigenvalues of A lie outside the interval [uy —
6a M1+ 6]7

then the bound in (2) can be replaced by a bound of order ||R||2. Bounds of this kind
have been given by Temple, Kato, and Lehman (see [6, Chap. 10] and [1, §6.5]). Early
bounds of this kind dealt only with a single eigenvalue and eigenvector. Lehman’s
bounds are in some sense optimal, but they are quite complicated.

* Received by the editors January 25, 1990; accepted for publication (in revised form) June 13,
1990.

t Department of Computer Science and Institute for Advanced Computer Studies, University of
Maryland, College Park, Maryland 20742. This work was supported in part by Air Force Office of
Scientific Research contract AFOSR-87-0188.

! In fact, the choice (1) of M minimizes ||R||, although we will not make use of this fact here.
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The purpose of this note is to give two other bounds derived from bounds on
the accuracy of the column space of X as an invariant subspace of A. They are very
simple to state and yet are asymptotically sharp. In addition, they can be established
by appealing to results readily available in the literature.

THEOREM 1. With the above definitions, assume that A and M satisfy (3). If

-:-‘l?—”<1,

then there is an index j such that Aj,- -+, Ajir—1 € (ux — 6, p1 + 6) and

1 ||R|? .
|/~"i‘/\j+.,;_1| < 1——-—piﬂ_g”—’ i=1,--+,k.

Proof. Let (X Y) be unitary. Then

(3n )aon=(5 %)
where ||S|| = || R||. By the “sin ©” theorem of Davis and Kahan [2], there is a matrix
P satisfying
(4) IP(I +PEP)/2| < p
such that the columns of
X =(X+YP)I + Pip)~1/2
(which are orthonormal) span an invariant subspace of A. From (4) it follows that

1P,
VIFIPP

and since p < 1

p
5 P| < ———.
(5) 1Pl < -

Let Y = (Y — XPH)(I + PP®)~/2, Then (X Y) is unitary. Since the columns
of X span an invariant subspace of A, we have YHAX = 0. Hence

<§§>A(XY)=(1‘3 ]‘\’i)

M = (I + PEP)Y2(M + SHP)(I + PEP)~Y/2,

In [7] it is shown that

The eigenvalues of M are eigenvalues of A. Since p < 1, it follows from (2) that
they lie in the interval (ux — 6, p1 + 6), and hence are Aj,- -+, A\j1x—1 for some index
j. By a result of Kahan [4] on non-Hermitian perturbations of Hermitian matrices,

lui = Ajrioa| S+ PPV + PEP)T2YSIIPY,  i=1, ke
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The theorem now follows on noting that ||(I+PHP)~1/2|| < 1 and inserting the bound
(5) for || P||. m|

There are two remarks to be made about this theorem. First, it extends to opera-
tors in Hilbert space, provided X (now itself an operator) has a finite-dimensional

domain. Second, the bound is asymptotically sharp, as may be seen by letting
X =(10)T and

(the eigenvalues of A are asymptotic to e? and 1 — €2).
The requirement (3) unfortunately does not allow the eigenvalues of M to be
scattered through the spectrum of A. If we pass to the Frobenius norm defined by

| X||3 = trace(X"X), then we can obtain a Hoffman-Wielandt type residual bound.
Specifically, if

(6) 6= mln{l’\t - /"’jl 1A € )‘(A)9 ki € ’\(M)} >0,
then a variant of the sin © theorem shows that there is a matrix P satisfying
|PU + PRP)2) < |[P(I + PRP) 2 < IEE
such that the columns of
X =(X+YP)I+ Pip)~1/2

span an invariant subspace of A. By a variant of Kahan’s theorem due to Sun [9], [8],

the eigenvalues \j,,- -, \;, of M may be ordered so that
k
> (s = 23,2 < (T + PRPYV2(I( + PP)=2||S |x | Pl
i=1

Hence we have the following theorem.
THEOREM 2. With the above definitions, assume that A and M satisfy (6). If

R
o= IRl
then there are eigenvalues Aj,,- -+, Aj, of A such that
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INERTIA-PRESERVING MATRICES*

ABRAHAM BERMANYt AND DAFNA SHASHAfY

Abstract. A real matrix A4 is inertia preserving if in AD = in D, for every invertible diagonal matrix D.
This class of matrices is a subset of the D-stable matrices and contains the diagonally stable matrices.

In order to study inertia-preserving matrices, matrices that have no imaginary eigenvalues are characterized.
This is used to characterize D-stability of stable matrices. It is also shown that irreducible, acyclic D-stable
matrices are inertia preserving.

Key words. inertia-preserving matrices, diagonally stable and semistable matrices, D-stable matrices, ir-
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1. Introduction. The inertia, in 4, of a square matrix A is a triple (i, (A4), ip(A4),
i_(A)), where i, (A) is the number of eigenvalues of 4 in the right open halfplane, ip(A4)
is the number of pure imaginary eigenvalues of 4, and i_(A) is the number of eigenvalues
in the left open halfplane.

A matrix A € R"*" is (positive) stable if i, (A) = n. A is D-stable if AD is stable for
every positive diagonal matrix (a diagonal matrix whose diagonal entries are positive)
D. A is (Lyapunov) diagonally (semi)stable if there exists a positive diagonal matrix D
such that AD + DAT is positive (semi)definite. It is known, e.g., [2], that diagonally
stable matrices are D-stable. Stable, D-stable, and diagonally stable matrices arise in
problems in ecology, chemistry, and economics, e.g., [2], [8], [7]. A real matrix A4 is
inertia preserving if for every invertible diagonal matrix D, in AD = in D. In this paper
we study these matrices. This is of interest because, clearly, inertia-preserving matrices
are D-stable. In § 3, which follows a section of notation and preliminaries, we compare
inertia-preserving matrices with special D-stable matrices and, in particular, show that
diagonally stable matrices are inertia preserving.

If A is inertia preserving then necessarily ip(A) = 0. In § 4 we characterize this
important condition. In § 5 we restrict our discussion to diagonally semistable matrices
and finally, in § 6, we prove that acyclic irreducible D-stable matrices are inertia preserving.

2. Notation and preliminaries. In this section we collect definitions and results
needed in the paper. Some notation and results are given only when needed, particularly,
in § 6.

The definitions and preliminaries are divided into four groups: general notation,
stability and inertia, cones and consistency, and graph theoretical notation.

2.1. General notation. For positive integers n, m, we denote by:
R[ C] the set of all real [complex ] numbers,

R"[C"] the set of all real [complex ] n-dimensional (column) vectors,
R™*™M[ C"*™] the set of all real [complex] n X m matrices,

{’, ) an inner product.
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In general, almost all the matrices in this paper are real, with the exception of
complex eigenvectors x of real matrices and the corresponding square matrices xx*,
where

AT is the transpose of a matrix 4, and,

A*is AT the complex conjugate of A7,

Let 4 be an n X n matrix, and let a be a nonempty subset of {1, ---, n}. We de-
note by:

Al ] the principal submatrix of 4 whose rows and columns are indexed by « in
their natural order,

A'is the ith column of 4,

A, is the ith row of 4,

tr A is the trace of 4.

The notation 4 > 0 [20] means that A4 is positive definite [positive semidefinite].

Denote by D = diag {d;, - -, d,} the diagonal matrix D whose diagonal entries
are (D),‘,' = d[.

A real diagonal matrix E = diag {e;, - - - , e,} is called a signature matrix if |e;| =
,i=1,---,n.

2.2. Stability and inertia. A scaling factor of a diagonally semistable matrix A4 is a
positive diagonal matrix D, such that the matrix AD + DA7 is positive semidefinite.

A property of a matrix A4 is an inherited property if every principal submatrix of 4
shares it. Diagonal stability and semistability, for example, are inherited properties but
D-stability is not.

We denote by P [ P,] the class of n X n real matrices all of whose principal minors
are positive [ nonnegative ], and by P, the subclass of P, of the matrices with at least one
positive principal minor of every order.

It is well known that a diagonally stable [diagonally semistable ] matrix must be in
P [P,], and that a D-stable matrix must be in Py .

A key tool in our study is the main inertia theorem due to Tausky [16] and (in-
dependently) Ostrowski and Schneider [15].

MAIN INERTIA THEOREM 2.1 [15], [16]. For a given matrix A, there exists a
Hermitian matrix H such that

AH+HA*>0

if and only if ig(A) = 0. If AH + HA* > 0, thenin A = in H.

We shall also need the following lemma from [6].

LEMMA 2.2 [6]. Suppose A€ C"*" iy(A) = 0 and H is a nonsingular Hermitian
matrix such that AH + HA* = 0. Then,in A = in H.

2.3. Positive-semidefinite matrices. We shall denote by PSD the cone of real pos-
itive-semidefinite matrices. The interior of PSD consists of positive-definite real matrices
and will be denoted by PD.

Two subcones of PSD, which are of interest, are
B_4(A)={BePSD|(BA);=0,i=1, -+ ,n}, and
By(A)={BePSD|(BA);=0,i=1, -+ ,n}.
Obviously, Bo(A) € B_o(A).

2.4. Graph-theoretical notation. With an n X »n matrix 4 we associate a directed
graph D(A) and a nondirected graph G(A4):

V(G(4))=V(D(A4)={1, -+~ ,n}.
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The edges of D(A) are
E(D(A))={(i,));i#];a;#0},
and the edges of G(A4) are
E(G(A))={(i,j);i#ja;#0o0ra;#0}.

A matrix is acyclic if its nondirected graph G(A4) contains no cycles.

It is well known that a matrix is irreducible if and only if D(A4) is connected. Let o
be a maximal connected subset of V' (D(A4)). Then A[ ] is called an irreducible component
of A.

3. Classes of D-stable matrices. As was pointed out in the introduction, inertia-
preserving matrices are D-stable. The converse is not true, as shown by the following

example.
1 0 =50
1 1 0
1 1 1

Example 3.1.
is D-stable [11]. Using Routh’s scheme [9, II, p. 180], we see that for D =

diag {—1, 3, —1} the matrix
-1 0 350
AD=| -1 3 0

-1 3 -1

A

is stable. Thus A is not inertia preserving.

A subclass of D-stable matrices is the class of Arrow-McManus D-stable matrices
[1]: matrices A4 such that AD is stable, where D is a diagonal matrix, if and only if D is
positive. Again, it is clear that inertia-preserving matrices are Arrow-McManus D-stable.

Example 3.1 is also an example of a D-stable matrix which is not Arrow—McManus
D-stable. Observe that it is not diagonally semistable [14]. In fact, we shall see in § 5
that for diagonally semistable matrices, D-stability and Arrow—McManus D-stability co-
incide.

We shall wait until § 5 to prove the following.

Example 3.2.
2 1 =2
A=|3 2 0
6 4 2

is Arrow—McManus D-stable but not inertia preserving.
A real matrix A is strongly inertia preserving if for every real diagonal (not necessarily
invertible) matrix D, in AD = in D.
Observe that A is strongly inertia preserving if and only if all its principal submatrices
are inertia preserving.
4= [ 0 1]
-1 1

Example 3.3. The matrix
is inertia preserving but not strongly inertia preserving.

An important class of inertia preserving (and even strongly inertia preserving) ma-
trices is the class of diagonally stable matrices.
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THEOREM 3.4. A diagonally stable matrix is strongly inertia preserving.

Proof. Diagonal stability is an inherited property. Thus it is enough to prove that
A is inertia preserving. Let F be a nonsingular diagonal matrix. Since A4 is diagonally
stable, it has a scaling factor D such that AD + DAT = (AF)F™'D + DF ' (FA") is
positive semidefinite. Since F~'D is invertible and Hermitian, it follows by the main
inertia theorem (Theorem 2.1), thatin AF = in F~!D = in F. O

QUESTION 3.5. Is the converse true? Is every strongly inertia-preserving matrix di-
agonally stable?

A final remark. Diagonal semistability and being a P matrix are also inherited
properties. In § 5 we shall strengthen Example 3.3 by giving an example (Example 5.5)
of an inertia-preserving matrix, which is a P-matrix and is diagonally semistable but not
strongly inertia preserving.

4. Matrices that have no imaginary eigenvalues. In the beginning of this section
we prove some useful properties of eigenvectors of a pure imaginary eigenvalue of a
matrix 4 € R"*",

THEOREM 4.1. (a) Let A € R"*" and suppose that x = ¢ + id is an eigenvector
of AT:

ATX = aix=ai(c+id), a€R, c,deR".
Denote B = cc” + dd”. Then
BA+ATB=0.

(b) Ifin addition, a # 0, then ¢ and d are linearly independent .
Proof. (a)

ATx = aix, a€R, X#0.
Multiplying by x* we get

(4.2) ATxx* = aixx*,
(4.3) Xx* A =— aixx*.
Adding (4.2) and (4.3) yields

(4.4) XxX*A+ATxx*=0.

Observe that
xx*=(c+id)(c"—idT)y=ccT"+dd"+i(cd"—dcT).

Denoting
B=ccT+dd",
we observe that
(4.5) l=rank B=2 (since x#0)
and that
BA+ATB=0

(since BA + A7 B is the real part of the expression in (4.4)).
(b) Suppose d = kc for some scalar k. Then

x=(1+ki)c
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is nonzero and ¢ = (1 + ki)' x is a real eigenvector of A7 corresponding to the same
eigenvalue ai. So,

ATc=aic,
which is impossible since 4 7¢ is a real vector. O

Clearly, if A4 is inertia preserving, then io(A4) = 0. The following theorem characterizes
the real square matrices 4 such that iy(A4) = 0. The theorem is followed by corollaries
which are of interest on their own.

THEOREM 4.6. The following properties of A € R"*" are equivalent:

(a) ip(A4) = 0.

(b) BEPSD,BA+ ATB=0< B=0.

(c) BEPSD,BA+ ATB=0,rank B<2 < B=0.

(d) Be By(A),BA+ATB=0< B =0.

(¢) BeBy(A),BA+ ATB=0,rank B2 < B=0.

Proof. a= 1. Let U be a unitary matrix such that A’ = UAU™ is upper triangular,
and let B € PSD be such that B4 + A7B = 0. Let B’ be the positive-semidefinite matrix
UBU*. Then B'A’ + A'*B = 0, and thus a = (B’'A’),, has to be imaginary. Since A’ is
upper triangular, it follows that « = Bj,4},, and since B’ € PSD and iy(A4) = 0 it follows
that Bj, = 0. Therefore the first row and column of B’ are zero. Applying the same
argument now to the second, third, and so on, rows and columns of B’, we obtain B' =
0, and thus, B = 0.

(c) = (a) follows directly from Theorem 4.1.

The implications (b) < (d), (b) = (c¢), and (c) <= (e) are obvious. O

For matrices which have no pure imaginary eigenvalues we have Theorem 4.7.

THEOREM 4.7. Suppose iy(A) = 0. Then

(a) in 4 = in AD for every positive diagonal matrix D if and only if

(b) iy(AD) = 0 for every positive diagonal matrix D.

Proof. The proof of (a) = (b) is trivial.

(b) = (a) Suppose there exists a positive diagonal matrix D such that in 4 #
in AD. Let

D,=(1—-0)I+1tD, A,=AD,, 0=r=1.

Then, Dy =1; D, = D, Ay = A, and A, = AD. By continuity considerations iy(A4,) # 0
for some ¢, which contradicts (b). O

In Theorem 5.3 of [14] it was proved that a real square matrix 4 is D-stable if and
only if for every B € B_y(A), and every positive diagonal matrix D,

—(BAD+DATB)e PSD <> B=0.

Given that a matrix A is stable, we obtain here a simpler characterization of D-stability
as a corollary of Theorems 4.6 and 4.7.

COROLLARY 4.8. Let A be a real stable matrix. Then A is D-stable if and only if
Jor every B € By(A), of rank less than or equal to two and for every positive diagonal
matrix D,

BAD+DA"B=0<B=0.

Example 4.9. The matrix
0 —1 1
A=|1 00
0 -1 4
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is stable. To show that it is D-stable we observe that B € By(A) if and only if it is of
the form

a 0 —4c
B=] 0 b 0 ]}, a,b,cz0, a=16¢.
—4c 0 c

In this case

0 (4c—a) (a—16¢)
BA=\|b 0 0

0 3¢ 0

and if BAD is skew symmetric for an invertible matrix D, then necessarily, ¢, a, and b
are equal to zero, and so BA = 0, which implies that B = 0.

A possible extension of Corollary 4.8 could have been: If A4 is stable and iy(AD) =
0 for every invertible diagonal matrix D, then, A is inertia preserving. This is unfortunately
not true. Let D = diag { —1, —1, 1} and let 4 be the matrix of Example 4.9. Then AD is
stable so A4 is not Arrow—McManus D-stable and therefore not inertia preserving.

5. Diagonally semistable matrices. Since inertia-preserving matrices are D-stable
and include the diagonally stable matrices, it is natural to ask whether D-stable diagonally
semistable matrices are inertia preserving.

Example 5.1 answers this question in the negative. However, we shall prove in the
next section that the two classes coincide for irreducible acyclic matrices.

Example 5.1. The matrix
21 =2
A=|3 2 0
6 4 2

of Example 3.2 is stable and diagonally semistable since 4 + 47 is positive semidefinite.
The cone By(A) consists of the matrices B of the form

3 —4 1
B=a] —4 6 2], az0;

1 -2 1

SO,

0 -1 -4
BA=al -2 0 4], az0.

2 1 0

By Corollary 4.8 A4 is D-stable since for B # 0 and for every positive diagonal matrix D,
BAD + DA B # 0. A is not inertia preserving since, for F = diag { —2, 4, —1}, BAF +
FATB = 0, so by Theorem 4.6 io(AF) # 0.

The following property of diagonally semistable matrices is of great importance.

THEOREM 5.2. Let A € R"*" be a diagonally semistable matrix and let F be an
invertible diagonal matrix. The following are equivalent:

(a) InAF =in F.

(b) iy(AF) = 0.

(c) BAF + FA™B # 0 for every nonzero B € By(A) subject to rank B < 2.

(d) BAF + FATB # 0 for every nonzero B € By(A).
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Proof. Conditions (b)-(d) are equivalent by Theorem 4.6.
(a) = (b) since F is invertible.
(b) = (a). Let D be a scaling factor of 4. Then,

AD+DAT=(AF)F~'D+ DF~'(FAT)ePSD.

By Lemma 2.2, in AF = in F~' D, and since D is a positive-definite diagonal matrix, (a)
follows. O

Observe that the implication (b), (¢), (d) = (a), in Theorem 5.2 does not hold in
general as shown by Example 3.1:

The matrix 4 of Example 3.1 is a D-stable matrix which is not Lyapunov diagonally
semistable (see the remark following Corollary 5.11 of [14]). In that example,
io(AD) = 0 since AD is stable, but in AD # in D, as D — diag { —1, 3, —1} is not stable.

Example 5.3. For the matrix 4 of Example 5.1, in AS = in § for every signature
matrix S. This follows from the fact that for every nonzero B € By(A), BAS is not skew
symmetric.

COROLLARY 5.4. Let A be a diagonally semistable matrix. The following are
equivalent:

(a) A isinertia preserving.

(b) iy(AF) = 0 for every real invertible diagonal matrix F.

(c) BAF + FATB # 0 for every nonzero B € By(A) such that rank B = 2, and for
every real diagonal invertible matrix F.

(d) BAF + FATB # 0 for every nonzero B € By(A), and for every real diagonal
invertible matrix F.

Example 5.5. Let

1 2 0 2
10 1 2 0
0 2 0 d
The cone By(A) consists of matrices B of the form
2 -1 -1 0
-1 2 -1 0
= =
B=« 1 - > ol az0.
0O 0 00

A simple computation shows that A is inertia preserving. A is not strongly inertia pre-
serving, since its principal submatrix

1 20

01 2

2 0 1
is not stable.

Another corollary of Theorem 5.2 is that in the case of diagonally semistable matrices
there is no difference between D-stability and Arrow—McManus D-stability.

COROLLARY 5.6. Let A be a diagonally semistable matrix. Then A is Arrow-
McManus D-stable if and only if A is D-stable.

Proof. Obviously, if 4 is Arrow-McManus D-stable, it is D-stable. Suppose that AF
is stable, where F is a real invertible diagonal matrix. We want to show that F is positive.
Since AF is stable, io(AF) = 0, so by Theorem 5.2 in AF = in F and F is positive. a
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Observe that Corollary 5.6 justifies the claim we made in Example 3.2 (Exam-
ple 5.1).

The following question is analogous to Question 3.5.

QUESTION 5.7. Isevery irreducible inertia-preserving matrix diagonally semistable?

We conclude the section by remarking that a matrix is D-stable if and only if its
irreducible components are D-stable and is inertia preserving if and only if its irreducible
components are inertia preserving. Thus, the results which were proved for diagonally
semistable matrices hold for matrices whose irreducible components are diagonally semi-
stable.

6. Acyclic matrices. Example 5.1 is a diagonally semistable matrix which is D-
stable but not inertia preserving. In this section it will be proved that irreducible, acyclic
D-stable matrices are inertia preserving. This is done by using results and methods
of [4].

Let A be an n X n matrix. Then A4 is combinatorially symmetric if

a,»j#0<=>aj,~#0.

Observe that if 4 is combinatorially symmetric and F is an invertible diagonal matrix,
then AF is also combinatorially symmetric. 4 is symmetric in modulus if |a;| = |a;|
for every i and j. 4 is symmetric in signs if a;a; = 0 for every i and j.

The following proposition is well known.

PROPOSITION 6.1 [3], [12], [14]. Let A be an acyclic irreducible matrix. Then A
is diagonally semistable if and only if A € Py. In this case, there exists a positive diagonal
matrix D such that AD is symmetric in modulus.

The characterization of irreducible diagonally semistable acyclic matrices can be
found in Theorem 3 of [12]. The existence of the matrix D is asserted in [3] and stated
explicitly as Lemma 3.1 in [14].

For the sake of convenience, we now state some of the definitions and notation
of [4].

For a nondirected graph G, Q(G) denotes the collection of the following sets:

QG)={wcV(G);VieV(G)|{i} UN(i)\w| #1}.
The above sets w are called Q-sets of G.
For a matrix A, the set of edges E(G (A)) can be partitioned into two sets:
H(A)={(i,j)eE(G(A)):a;a;20}.
S(A)={(i,j))eE(G(A)):a;a;<0}.

Vertices k and / are H-connected [ S-connected ] if there is a path of edges in H(A) [S(4)]
leading from k to /. Denote by (i)y[(i)s] the set of vertices which includes i and all
vertices which are H-connected [S-connected] to i. Also, let Gy(A4) [ Gs(A)] be the graph
obtained from G(A) by deleting the edges in S(A4) [H(A4)].

An Q-set of A is an Q-set w € Q(Gs(A)) such that

iew, (i,j)eH(A)=jew.

The class of all 2-sets of 4 is denoted by Q(A4).
Observe that if i belongs to an Q-set of 4, then (i) is contained in that set. Let «

be a set of vertices of G(A). The closure of a, cl a, is defined as the smallest Q-set of A
which contains «.
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In the proof of the main theorem of this section, we use the following results from
[4], which we state here.

PROPOSITION 6.2 [4]. Let H € Py be an n X n irreducible, acyclic, symmetric-in-
signs matrix. Then all its principal minors of order less than n are positive.

THEOREM 6.3 [4]. Let A € Py be an n X n irreducible acyclic matrix. Denote

P(A)={i:det A[(I)]>0}.

Then A is D-stable if and only if ¢l P(A) = {1, ---, n}.

We also need the following definition and propositions.

For an n X n matrix C denote W (C) = {i; C; = 0and C' = 0}.

PROPOSITION 6.4. Let S and B be n X n combinatorially symmetric matrices such
that s; = 0 for every i, and such that

(6.5) BS is combinatorially symmetric,and W( B)= W ( BS).
Then
W(B)eQ(G(S)).
Proof. Suppose that
{i}UN(O\W(B)={/}
for some i, j € G(S). Then,

(6.6) (BS)i= 2 bkrsri=bkjsjia k=12, ,n.

r=1
Ifi#j,thenie W(B)so
(6.7) (BS)i=0, k=12, ,n.
But, as j ¢ W(B), j € N(i), and since B and S are combinatorially symmetric, there
exists k, such that by;s; # 0, which contradicts (6.6) and (6.7).

Suppose i = j, theni¢ W(B),and by (6.5),i¢ W (BS). Since BS'is combinatorially
symmetric, there exists k such that, (BS),; # 0, but, observing that (BS); = by;s; and
that s; = 0, we again have a contradiction.

We proved that for every i, |{i} UN(i)\W(B)| # 1, s0 W(B) € Q(G(S)). O

PROPOSITION 6.8. Let A, F € R"™*", and suppose that F is an invertible diagonal
matrix such that io(AF) is nonzero. Let x = ¢ + id be an eigenvector of FA™:

(6.9) FA"x= aix,
where a € R, ¢, d € R". Denote
B=ccT+dd".
Then,
(a) BA is combinatorially symmetric.

If a is nonzero, then,
(b) re W(B) if and only if

x,=(c+id),=0.

(c) W(B) = W(BA).
Proof. (a) By Theorem 4.1, BAF + FATB = 0, so, BAF is skew symmetric and
therefore BA is combinatorially symmetric.
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(b) Observe that B is a nonzero positive-semidefinite matrix, so, r € W ( B) if and
only if b,, = 0.
by =(c,)? +(d)* =

(6.10) b,=0=x,=(ctid),=0=c¢=d,=0.

(c) W(B)CW (BA), since BA is combinatorially symmetric. Suppose there exists
re [W(BA)\W(B)]. In that case

(BA)"'=0 and (BA),=0.

(B4) =0=
(BA)=[(ccT+dd"Al=0;k=1, --- ,n,
or in other words
(AT +d(ATd),=0, k=1, - ,n.
Denote
y=(4"c),, bs=(4"d),.
Then

yc+d6d=0.

By Theorem 4.1, ¥ = 6 = 0, since ¢ and d are linearly independent.
Observe that by (6.9),
y+id=(ATc+idTd), = (F 'aix),,

which, by (6.10), is not zero since r ¢ W ( B). So, v and § are not simultaneously equal
to zero. O

THEOREM 6.11. Let A be an acyclic irreducible matrix. Then A is D-stable if and
only if A is inertia preserving.

Proof. We have to show that if 4 is D-stable, then A is inertia preserving. Let 4 be
a D-stable irreducible acyclic matrix. By Proposition 6.1, A is Lyapunov diagonally semi-

stable, and there exists a positive diagonal matrix D, such that AD is symmetric in
modulus, and

H=(1/2)(AD+DA")=0.
Denote
S=(1/2)(AD—DA™).
Observe that, since AD is symmetric in modulus, and D is a positive diagonal matrix,
det A[(i)y]>0<>det AD[(i)y]>0<=det H[(i)x]>0,
and so,
(6.12) P(A)=P(AD)=P(H).

Moreover, G(S) = Gs(A).

We have to show that iy(AF) = 0 for every invertible diagonal matrix F. Assume
that there exists a real number k such that ki is an eigenvalue of AF. Let x = ¢ + id be
an eigenvector of FA”

FATx= kix,
where ¢, d € R". Denote
B=cc"+dd".
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Clearly, B # 0. Since A4 is D-stable A is nonsingular, and hence k # 0. By Proposition
6.8, W(B) = W(BA); BA is combinatorially symmetric. By Theorem 4.1, B € By(A),
and by Theorem 3.9 of [17],

(6.13) BH=0.

Observe that by (6.13), B4 = B(H + S)D™! = BSD™!. So, W(B) = W(BA) =
W(BSD™"), or W(B) = W(BS), where B, S, BS are combinatorially symmetric, and
si = 0. By Proposition 6.4 W (B) € Q(G(S)) = Q(Gs(A)).

By (6.12) and (6.13),

(6.14) P(A)cs W(B).

Letie W(B),and let (i,j)€ H(A). The submatrix H[(i)g] is a principal submatrix of
AD and as such belongs to Py. By Proposition 6.2, det H[(i)g-{i}] > 0, and since i €
W (B), it follows from (6.13) that (i) = W(B). Thus, W(B) € Q(A). Since 4 is D-
stable it follows that cl P(4) = {1, ---, n}, and it follows from (6.14) that W (B) =
{1, .-+, n}, so B=0, which is a contradiction. Therefore, io(AF) = 0. O

COROLLARY 6.15. If the irreducible components of A are acyclic, then A is inertia
preserving if and only if it is D-stable.
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TRIDIAGONAL APPROACH TO THE ALGEBRAIC ENVIRONMENT
OF TOEPLITZ MATRICES, PART I: BASIC RESULTS*

P. DELSARTE} AND Y. GENINt

Abstract. This paper contains a thorough investigation of a family of symmetric “predictor polynomials”
associated with a nonnegative-definite Toeplitz matrix. These polynomials are constructed from the classical
predictors and from the values assumed by some dual predictors in a fixed point of unit modulus; the appropriate
duality is induced by changing the sequence of reflection coefficients into its conjugate mirror image, within a
unit modulus factor. The central theme of the paper is a well-defined three-term recurrence relation satisfied
by these symmetric polynomials; it motivates the “tridiagonal” terminology. The properties of the recurrence
are studied in detail; special attention is paid to the important issue of computing the recurrence coefficients
from the reflection coefficients. It is shown how this three-term recurrence formula produces an efficient solution
method, called the split Levinson algorithm, for the linear prediction problem.

Key words. nonnegative-definite Toeplitz matrices, three-term recurrence, symmetric predictor polynomials,
split Levinson algorithm
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1. Introduction. Nonnegative-definite Toeplitz matrices play a prominent role in
various areas of applied mathematics. From a theoretical viewpoint, they can be defined
as covariance matrices of stationary stochastic processes [17]. In digital signal processing
applications and the like, they are generally obtained, within a constant diagonal shift,
as autocorrelation matrices of sampled signal records.

The simplest and most central problem relative to a positive-definite Toeplitz matrix
is the linear prediction problem [20]; it amounts to computing the first column of the
inverse of that matrix. (There is a natural generalization to the nonnegative definite case.)
This problem is classically solved by means of the Levinson algorithm [16], which is
based on a recurrence relation first discovered in the framework of Szegd’s theory of
polynomials orthogonal on the unit circle [17], [23]. The same recurrence relation, used
in reverse order, underlies the Schur-Cohn polynomial stability test [21]. It is worth
mentioning that the algebraic results alluded to above have far-reaching applications in
the field of positive (Carathéodory) and of bounded (Schur) functions [1], which them-
selves are relevant to some important modelling problems in digital signal processing
(among other areas). In particular, the Schur algorithm, which is a possible substitute
for the Levinson algorithm to compute reflection coefficients [19], can be viewed as an
implementation of Schur’s recursion for bounded functions [1].

Within the last few years, a novel approach to the whole mathematical environment
of nonnegative-definite Toeplitz matrices has been introduced and examined in some
detail; it is called either the split approach [8], [10], [11] or, equivalently, the tridiagonal
approach [7]. Roughly speaking, the first terminology refers to a “splitting” of the classical
predictor into symmetric and antisymmetric parts, while the second one refers to the
tridiagonal matrix representation of the recursive structure of the new theory. In fact,
the basic idea of such an approach is to replace the one-step recurrence relation underlying
the Levinson algorithm, which involves predictor polynomials and their reciprocals, by
an appropriate two-step recurrence relation, of the Frobenius type [15], which involves
“symmetric predictor polynomials.” This approach provides new efficient numerical

* Received by the editors March 24, 1989; accepted for publication (in revised form) December 13, 1989.
t Philips Research Laboratory, Av. Albert Einstein 4, B-1348 Louvain-la-Neuve, Belgium
(phd@prlb.philips.be and yg@prlb.philips.be).
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methods to solve the standard linear prediction problem and various related problems.
In addition, it is of noticeable interest from a theoretical viewpoint due to its connections
with the theory of orthogonal polynomials on the real line and with the theory of positive
and bounded functions. Among the contributions in the field, papers by Bube and Burridge
[4], Bistritz [2], and Delsarte and Genin [5] deserve a special mention. A comprehensive
survey of recent results, with an extensive bibliography, is given in [8].

The present paper and its companions [7], [12] aim at providing a thorough in-
vestigation of a natural and general setting of the tridiagonal approach to the Toeplitz
environment. While [7] is mainly devoted to function theoretic aspects, this paper and
[12] are almost exclusively concerned with the algebraic components of the subject. More
precisely, they deal with nonnegative-definite Hermitian Toeplitz matrices of nullity one
or, equivalently, with sequences of reflection coefficients having modulus smaller than
unity, except the last of them, which has modulus equal to unity. As for the distinction
between both “algebraic parts,” it can be explained roughly as follows. This paper is
concerned with rational problems only, while its companion (and successor) [12] is
concerned with algebraic problems involving zeros (of symmetric predictor polynomials)
and eigenvalues (of unitary Hessenberg matrices).

Most results given in this paper are stated in the form of polynomial identities.
However, it should be emphasized that our study is essentially concerned with matrix
theory problems. In that respect, let us recall that the classical inversion methods for
Toeplitz matrices, such as the celebrated Trench formula, can be derived and interpreted
in a transparent manner in a polynomial framework (see especially [18]). A similar
observation can be made regarding the results of the present contribution, in the sense
that they provide new efficient algorithms to compute the ingredients involved in the
classical Toeplitz inversion formulas (for example). It is worth mentioning here that the
symmetric predictor polynomials provide a reduction of a Toeplitz matrix to a tridiagonal
form, in contrast to the usual predictors, which yield a diagonal form reduction. Fur-
thermore, it should be stressed that the material of this paper serves, for a good deal, as
a preparation for the companion paper [12], which pertains to matrix theory in a more
obvious manner.

In § 2 we introduce the p,-symmetric predictor polynomials bi(z), for 0 = k = n,
relative to a sequence (p;)/-, of complex reflection coefficients p;, with |p,| = 1 and
|pjl <lforj=1,---,n— 1, and relative to a given complex number {, referred to
as the circle parameter, with | {,| = 1. In particular, b,(z) is equal to the last predictor
polynomial generated by the reflection coefficients p; (in the classical sense).

In § 3 we derive a simple one-parameter three-term recurrence formula for nor-
malized versions, pi(z) = gwbi(z), of the p,~symmetric polynomials bi(z). These poly-
nomials p,(z) are symmetric; they are the main objects considered in the sequel. We
explain how the coeflicients of the recurrence can be computed either from the reflection
coefficients, or from the entries of the associated Toeplitz matrix; the latter method is a
general version of the split Levinson algorithm .

In § 4 we investigate the singular case of the theory, characterized by the fact that
the circle parameter {, is a zero of p,(z). In this case, pi({o) vanishes for all k£, and we
show that suitably normalized versions of the polynomials px(z)/({o — z) belong exactly
to our theory of “symmetric predictors” (with respect to a certain Toeplitz matrix which
can be constructed explicitly from the original one).

In § 5 we examine the duality induced by changing the reflection coefficient p; into
puP n— j, forj=1, - - -, n. This preserves the last classical predictor polynomial (of degree
n). In this context we explain how the regular case (i.e., p,({) # 0) can be extended to
the singular case, in some sense, and we show how the split Levinson algorithm can be
extended so as to produce the p,-symmetric predictor b,(z).
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2. Symmetrization of predictor polynomials. For a positive integer #, let there be
given a sequence of n complex numbers p;, - - - , p, subject to the constraints

(2.1) lpxl <1 fork=1,---,n—1, |pn| = 1.

From this sequence we construct the family of polynomials a(z) of formal degree k, for
k=0, ---, n, via the Szego-Levinson recurrence formula

(2.2) a(2) = ak-1(2) + puzdy - 1(2),

with the initialization a¢(z) = 1. Here and in the sequel, the notation 9,(z) stands for
the reciprocal (conjugate mirror image) of a complex polynomial vi(z) of formal degree
k; it is defined by Dx(z) = z*D,(1/Z). Note that the polynomial a,(z) is comonic, in the
sense that it satisfies @,(0) = 1. Equivalently, its reciprocal d,(z) is monic (the leading
coeflicient equals unity).

In view of the property |p,| = 1, it follows from (2.2) that a,(z) is p,-symmetric,
in the sense that it satisfies

(2.3) Gn(2) = pnn(2).

The polynomials a,(z) with 0 < k < n are quite different from a,(z) in that respect.
Note that the coefficient of z* in a,(z) is equal to px. The monic polynomials d.(z) are
often called Szegd polynomials; this refers to the fact that they are pairwise orthogonal
on the unit circle with respect to a certain positive measure (details are given in [12]).

Given any positive real number ¢y, let us denote by C, the Hermitian Toeplitz
matrix of order k + 1 (with 0 = k = n) having ¢ as its diagonal element and admitting
(p1, **+ , px) as the sequence of its Schur-Szego parameters (or reflection coefficients).
As explained below, this well-known relationship between Toeplitz matrices and reflection
coeflicient sequences can be made explicit by use of some “second-kind predictors.” By
definition, C has the form

Co Cy Ck
_|a C """ Ci—k
(24) Ck_ : : : 5
Ck Ck—1""" Co

ie,, Cy = [¢;i—;:0 = i, j = k], with the Hermitian property ¢; = c; for all i. As a
consequence of the assumption (2.1), the Toeplitz matrix Cy, is positive definite for 0 =
k = n — 1, whereas C,, is nonnegative definite and singular (of nullity one). Let us stress
that Cj —; is obtained from Cj, by deleting its first (or last) row and column.

In the context of linear prediction for stationary stochastic processes, a,(z) is usually
referred to as the (first-kind) predictor polynomial relative to Ci. This means that the

coefficient vector a; = [aro, * -+ , @xx]” of ax(z) = 2 ¥_ o axz’ satisfies the system of lin-
ear equations

(2.5) Cac=[0:,0,--+,0]7,

where o is a nonnegative real number, called prediction error squared norm, which is
uniquely determined from the data ¢, p,, - - - , p«x. In fact, we have

(2.6) d0=¢ and =0 (1— |pcl?),

fork =1, -+, n. Thus, oy is positive for 0 = k = n — 1 while o, equals zero. Note the

property o, = det Cy/det Cix_,. In particular, it follows from (2.5) that a,(z) is the
unique comonic polynomial satisfying the singular homogeneous system

(2.7) Coa,=0.
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Let us now explain how the entries ¢, - - - , ¢, of C, can actually be computed from

co and py, -+, p,. To that end, we introduce the second-kind predictor polynomials
r.(z), for 0 = k = n, by means of the recurrence formula
(2.8) r(z)=r1(z)— przfi—1(2),

which is the same as (2.2) except that the reflection coefficient p; is replaced by —py.
The initial value is 74(z) = co; this implies r,(0) = ¢, for all k. Define the rational function

(2.9) S(2)=ra(2)/an(2).

It is a Carathéodory function [1], which means that it is analytic and that its real part is
nonnegative in the unit disc |z| < 1. More precisely, f(z) is a lossless function, i.e., a
Carathéodory function having imaginary values almost everywhere on the unit circle
(see details in [12]). Note that f(z) has degree » exactly.

Now consider the Maclaurin expansion

(2.10) f(z)=cy+2 % cz®.

k=1

It turns out that the numbers ¢y, ¢;, - - - , ¢, thus defined are precisely the entries of the
Toeplitz matrix C, mentioned above. (Furthermore, the coeflicients ¢, with n + 1 =
k = min (2.10) yield the unique nonnegative-definite Toeplitz extension C,, of C,, for
every m > n.) Recall the property

(2.11) n(z)=f(2)a(2)+O(z* 1),

for 0 = k = n. This can be used as an explicit definition of the second-kind predictor
r¢(z) in terms of the first-kind predictor ax(z) and the Toeplitz matrix Cj.

After this standard material, let us introduce some ingredients that are somewhat
less classical (see [10], [13]). The basic idea is to consider the dual Schur-Szegd sequence
(p¥)7-1; it is defined from the original sequence (px)% - by

(2.12) pk=pubn-r fork=1,--- n,

with the natural convention py = 1, yielding p}, = p,. Then we define the corresponding
family of comonic polynomials s,(z) = af(z), dual of the predictors a,(z), by means
of the recurrence formula

(2.13) sk(2) = sk 1(2) + pkzi—1(2).

Combining the Szego—Levinson recurrences (2.2) and (2.13) we obtain a result that
plays an important role in the theory.

PROPOSITION 1. The comonic polynomials a;(z) and s;({), in the independent vari-
ables z and ¢, satisfy the duality relation

(2.14) sy i()ar—1(2)+ pnSn - 1($) 24k - 1(2) = Sp— 1~ 1 (D) AW (2) + pu&Sp— 1 1($)dk(2).
If { = z, then both sides of (2.14) are necessarily independent of k. Hence, setting

k = n — 1 in the right-hand side and using (2.2), we obtain the identity

(2.15) Sn—1(2) A~ 1(2) + pnz8p - 1(2) dic - 1(2) = an(2),

for k=1, ---, n. In the case k = 1, this yields s,(z) = a,(z). It is also interesting to

mention the two-variable expansion

k-1
(2.16)  sp- () 1(2) + puSp - () 21~ 1(2) = An(§) + pu(z2— §) 2 $n—j—1($)di(2).

Jj=0
This follows from (2.14) by summation.
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It is easily checked that formulas (2.14)—(2.16) remain valid when the second-kind
predictors r¢( z) are substituted for the first-kind predictors ax(z), provided p, is replaced

by —p,. Thus it is seen from (2.15) that the lossless function (2.9) can be represented
in the form

(2.17) J(2)=re-1(2) = 2(2) P 1(2) 1/ [ak - 1(2) + 2 (2) e - 1 (2)],

for k=1, - -+, n, where Y,(z) is a rational Schur function, of the inner type, of degree
n — k, given by
(2.18) Vi(2) = pnSp—1(2) [ Sn—1(2).

Without going into detail, let us point out that representations such as (2.17) occur
classically in the framework of the Carathéodory-Fejér interpolation problem [14], [24].
From (2.13) we deduce the Schur-type recurrence relation [1]

(2.19) Yi(2) = [pe+ 2%+ 1(2)1/[1 + przdic+ 1(2)].

We now introduce the concept of “symmetric Szegé polynomials,” which is the
main theme of this paper. Let { be any complex number of unit modulus; it will be
referred to in the sequel as the circle parameter. For k= 1, - - - | n, define the polynomial

(2.20) bi(2) = £8P Lsn— i §0) a1 (2) F puu— i §0) 2k~ 1(2)],

in terms of the predictors and their duals. Throughout this paper, {}/? denotes either of
the square roots of {,, and {§"/? stands for the mth power of {{/?. (Note that replacing
£4/2 by — ¢4/? amounts to multiplying b,(z) by (—1)"~*.) It is clear that b, (z) has degree
k exactly. (Indeed, we have s, _({o) # O, for k 2 1, in view of the Schur-Cohn criterion.)
Using (2.14) we obtain an alternative expression for b,(z), involving a,(z) instead of
ay—1(z). This leads us to define the constant by(z) to be

(2.21) bo(2) = §5"25,($0) = §5""* an( o).

It is seen from (2.20) and (2.21) that the polynomials b (z) are p,-symmetric: they
enjoy the same property bi(z) = p.bi(z), for every degree k, as the classical predictor
a,(z) of degree n. By lack of a better terminology we shall say that the polynomials b, (z)
constitute a family of (nonnormalized) p,-symmetric predictor polynomials, for k = 0,
1, - -+, n. Recall that this family is defined from the Schur-Szeg6é parameters p;, - - -,
p» and the (square root of) the circle parameter {,. It can be viewed as an embedding of
the predictor a,(z); indeed, as a direct consequence of (2.20) and (2.2), we have

(2.22) bu(2) = an(z) = sn(2).

Let us write down the value of b,(z) for the two distinguished points, z = 0 and
z = {o;in view of (2.20) and (2.15) we have

(2.23) Bi(0)= ¢ 5, 1(50),

(2.24) bi(§0) = ¢85 an($o).

In certain parts of the theory it is interesting (or necessary) to separate the singular case
a,($) = 0 from the regular case a,($y) # 0 (see [10]). It follows from (2.15) that b, ()
equals zero for all k£ (including k = 0) in the singular case, and differs from zero for all
k in the regular case. A detailed discussion of the singular case is given in § 4.

The classical predictor a;(z) can be recovered from the p,-symmetric predictors
bi(z) and by, (z) in an easy manner (for 0 £ k = n — 1). In fact, simple algebraic
manipulations using (2.14), (2.20), and (2.23) yield the formula

(2.25) b 1 (0)(1 = §5" 2)a(2) = by+ 1(2) = §5'* 2bi(2).
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As a consequence, the Schur-Szeg6 parameters px = axx With 1 = k = n — 1 can be

computed from the numbers b;(0), by (0), and p, (=b,,). Indeed, equating the leading
coefficients in both sides of (2.25) and using p,-symmetry, we obtain

(2.26) bic+ 1(0) o= §8/% pal Bi(0) — £/ bic+ 1(0)].

Of course it is tacitly assumed here (as everywhere in the paper) that the circle parameter
o 1s given.

Note that both families of polynomials ax(z) and b,(z) are determined uniquely
from the n complex numbers 5;( ), -, $»( o). In view of the results above, to prove
this property, we have only to check that p, can be computed from these data. Appropriate
expressions, resulting from (2.13), are p, = $,($0)/$,({o) in the regular case (s,({) #
0) and p,, = —s,—1($0)/ 05, - 1($o) in the singular case.

For future use let us introduce the pseudoreflection coefficient w; involved in formula
(2.20); it is defined by

(2.27) @k = Yi(§0) = puSn - k($0)/ $n—k(£0),

for k = 1, - -+, n, where {i(z) is the rational inner function (2.18). Note that w; has
unit modulus. In particular, we have w, = p,. From (2.23) it follows that w; equals
pabi(0)/b,(0). As a consequence of this identity, together with relations (2.19), (2.20),
and (2.27), we obtain the following result.

PROPOSITION 2. The p,-symmetric predictor by (z) can be written in the form

(2.28) bi(z) = bi(0)[ar - 1 (2) + wizdy - 1(2)].

The sequence of pseudoreflection coefficients (w,, -+, w,) can be computed from the
sequence (p,, -+ , p1) by means of the formula

(2.29) wie=(pr+ Sowr+ 1)/ (1 + $owr + 10k),

fork=n—1,---, 1, with the initial value w, = p,.

The name “pseudoreflection coefficient” is suggested by a comparison between the
roles of w; and py in the relations (2.28) and (2.2), respectively.

It is interesting to associate a family of second-kind polynomials, denoted here by
t(z), with the “first-kind polynomials” b,(z). The definition is formally the same as
above (within a factor ¢p) except that the Schur-Szegd parameters p, are replaced by
— px- More precisely, #(z) can be defined by

(2.30) 4(2) = bi(0)[rie—1(2) — wizfi—1(2)],

fork =1, ---, n, where r;(z) is the second-kind predictor associated with a,(z). For
k = 0, the natural definition is 7o(z) = {5"/2r.({o). The second-kind predictor #(z) can
be determined from its first-kind associate b, (z), for 1 = k = n, by means of the relation

(2.31) 1(2)=1(2)bi(z) + O(z"),

supplemented with the identity ;. x = — pti0 = — Cobr k. Note that (2.31) is slightly weaker
than its classical counterpart (2.11).

It is clear that #,(z) enjoys the p,-antisymmetry property #(z) = —putx(z), for 0 <
k = n. Next we observe that {57/?t.({,) is independent of k, as in (2.24). Furthermore,
since w, equals p,, we deduce from (2.30) and (2.8) the embedding property t,(z) =
r.(z). Therefore, the ratio ¢,(z)/b,(z) equals the lossless function f(z) in (2.9). More
generally, it is easily seen that #,(z)/b(z) is a lossless rational function of degree k, for
0 = k = n. Note that this function equals the right-hand side of (2.17), where Y, (z) is
replaced by the constant ¥, ().
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Remark. 1t is interesting to note that the circle parameter {, can be normalized to
the value ¢, = 1 at the cost of the simple data transformation p; = p% = {§px for k =
1, - -+, n. It is easily seen that this transformation produces the polynomials aj(z) =
a;($oz) and 5% (z) = s $oz) instead of a,(z) and sx(z), whence the p,-symmetric predictor

Wz)y=1¢ (()"_k) 2bk( $oz) instead of by(z). Similar observations could be made at many
places in the paper.

3. Recurrence relations and Toeplitz systems. One of the most significant properties
of the p,-symmetric polynomials b,(z) lies in the fact that they are linked by a three-
term recurrence relation (of the Frobenius type [15]). This result can be derived either
from the Szegd-Levinson formula (2.2) or from the Toeplitz linear system (2.5). Let us
now explain the first method. For k =0, 1, - -+ , n — 1, define the complex number

(3.1) Bi=br+1(0)/bi(0) = §0"* 55— ik~ 1($0) /8- 1($0),

with the convention 8y = oo in the singular case s,({) = 0. Let us rewrite (2.2) in terms
of the b, (z) polynomials, with the help of (2.25); owing to the p,-symmetry property,
we obtain the identity

bics1(2) = { Bt bi (0)[§5"2br(0) = §5 ' Brorbic+ 1(0)]2 } bi(2)
= 1Bl?D 4 1(0) [Broibi(0) = bi(0) ] zbx - 1 (2).

Using (2.26) to simplify the expressions between square brackets in (3.2), we deduce
the three-term recurrence relation

(3.3) b+ 1(2) = (Be+ Bez) bi(z) — (1 = | picl *) | Bic| *zbic - 1 (2).

Note that (3.3) remains valid for k = 0, in the regular case a,({,) # 0, with the convention
po = 1.

This allows us to compute the whole family of polynomials b, (z) from the sequence
of recurrence coefficients 3, - - - , 8,— and the initial conditions by(z) and b,(z). Indeed,
the cofactor of zb,_;(z) in (3.3) can be expressed in terms of 3y as follows:

(3.4) (1= 1pel®) B> = $0* B+ §6/* B — 1.

This follows readily from (3.1) and (2.13). Alternatively, (3.4) can be viewed as a con-
sequence of (2.26), written in the interesting form

(3.5) pr= Sowr+1($0'*Bx" — 1).

Next, let us introduce a natural normalization in the theory; the idea is to get rid
of the factor (3.4) in the recurrence (3.3). The normalized symmetric predictor polynomial
of degree k, denoted by pi(z), is defined by

(3.6) pi(z) = gibi(2),

fork =0, - -, n, where the normalizing factor g, is a nonzero complex number chosen
in such a way that the three-term recurrence relation assumes the simple form

(3.2)

(3.7) D+ 1(2) = (o + arz) pr(z) — zpic— 1(2).

To deal with the normalization problem it is useful to introduce the so-called Jacobi
parameters Ay, - -+, N\, (see [7], [10]); they are given by

(3.8) Ae=8r/8k—1.
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Comparing (3.3) and (3.7) shows that A\, is real; this implies that g,/ g is independent
of k. The normalized recurrence coefficient oy in (3.7) is related to the coefficient 8 in
(3.3) by

(3.9) o= Bide+1 with (1= ol *) Bl *Adees 1 = 1.

This implies that all Jacobi parameters A\, have the same sign. As a conclusion, it is seen
that the normalization process involves two nonzero constants g, and g; subject only to
the condition that their ratio be real.

It is easy to show that the Jacobi parameters can be expressed in the form

(3.10) MNe=doi_ 1| pi(0)]?,

with the real constant d = \,c5! | p1(0)| 2. Indeed, since px 4+ 1(0) = aypi(0) by (3.7),
the identity (3.10) is equivalent to Ax' Aes 1 = (1 — | pxl?)| ax|?, which itself is a direct
consequence of (3.9). Alternatively, the Jacobi parameters can be expressed in terms
of the coefficients o, by means of a simple continued fraction, i.e., by means of the recur-
rence relation

(3.11) Mev1= 80" P+ 6 2@ — N

which results readily from (3.4) and (3.9). Furthermore, in the regular case, A\, can be
written explicitly as the ratio

(3.12) A= §6" 2 pe($0)/ P-1($0)-

Equivalently, g is proportional to {5*/2p.({). This follows from (2.24) and (3.6). Note
that, in the regular case, we can deduce (3.11) from (3.12) by setting z = {yin (3.7).

Next, let us explain how the coeflicients ay occurring in the normalized three-term
recurrence relation (3.7) can be determined from the reflection coefficients p, occurring
in the classical Szegd-Levinson formula (2.2). By use of (3.1) and (3.9) we obtain

sn—k(g‘o)fn—k(fo)
Sn—k+1($0)8n—k-1($0)

Both denominator factors in the right-hand side of (3.13) can be expressed in terms of
the numerator factors with the help of the ascending and descending versions of (2.13).
This produces the remarkable identity

(3.14) - 105= §o( 1+ Sowrbr— 1) (1 —@rpr) ",

where wy is the pseudoreflection coefficient (2.27). A way of using this result is explained
in Proposition 3 below.

Let us now consider the question of the choice of the normalizing factors g, and
g:. Interesting simplifications occur in the theory if we set the constraints

(3.15) M=1 pi(0)=wi'?,

1/2
1

(3.13) (1= | pl*) o — 10 =

with w{’* either of the square roots of w; = p,$,_1($o0)/ $n-1($o). However, it should be
stressed that all acceptable choices for g, and g, are essentially equivalent. (Indeed, the
structure of (3.7) is invariant under the transformation p,(z) = wopi(z) for even k and
DPi(z) = uipi(z) for odd k, provided u, / uy is real.) In view of (2.21), (2.28), and (3.6),
the choice (3.15) amounts to

(3.16) go=g=wr"¢" " 5,1 ()17,

(3.17) po(2)= w25+ wi266%, pi(2) =i Pt wl?z.
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This implies that g, = p, gy, whence g, = p,gx for all k. Therefore, since by(z) is p,-
symmetric, it follows from (3.6) that p,(z) enjoys the simple symmetry property

(3.18) P(z)=pi(z).

In view of (3.15), the coefficient din (3.10) equals cg'. Therefore, the Jacobi parameters
are positive. More precisely, the sequence («, * - , a,— ) that generates the symmetric
polynomials py(z), via (3.7), corresponds to a sequence (p;, ***, p,—) satisfying
|px| < 1fork=1, -+ n—1ifand only if the Jacobi parameters \,, - - - , A\, determined
from the recurrence relation (3.11), with A\; = 1, are all positive.

It is clear that the singular case a,({) = 0 is characterized by w,;{ = —1. In the
regular case, the recurrences (3.7) and (3.11) can be initialized at k = 0, with the con-
ventions p_,(z) = 0, Ay = 00, and

(3.19) ap=(§o'"?+ w87

This allows us to use (3.14) with k = 1 by setting po = 1 as before. Indeed, it produces
the correct value oy = {§/%(1 — @p;)~", as computed with the help of (2.13), (3.1),
and (3.9). In the singular case, we have to initialize (3.14) at k = 2, with the value of
a; just mentioned. Summarizing the results above, we obtain the following proposition,
which plays a major role, especially in the companion paper [12].

PROPOSITION 3. The numbers oy involved in (3.7) can be determined from the
reflection coefficients p; by means of the recurrence relations (2.29) and (3.14). The initial
condition for (3.14) is given by (3.19) in the regular case and by a; = {§/*(1 — @py) "
in the singular case.

Let us say a few words concerning the normalized versions, denoted by gi(z), of
the second-kind polynomials #;(z) in (2.30). The definition is

(3.20) ai(z) = giti(z),

with the same normalizing factors g, as above. It is easily seen that g;(z) enjoys the
antisymmetry property §i(z) = —qi(z), instead of (3.18). In view of this and of (2.31),
it is clear that the gx( z) polynomials are linked by the same three-term recurrence relation
as the pi(z) polynomials, that is,

(3.21) Qr+1(2) = (et arz) qu(z) — zqi - 1(2).
The difference arises from the initial conditions; instead of (3.17), we have
(322)  qo(2)=co(wi'?§0" P —wi258?),  qi(z)=colwi'?—w]/z).

It is interesting to note that (3.12) remains valid when p, and p; -, are replaced by
qr and g, , even in the singular case w,{, = —1. Indeed, in the context of second-kind
polynomials, the “critical situation” corresponds to w;{, = 1 (instead of —1). Thus,
(3.11) can be deduced immediately from (3.21) provided w, {, differs from one.

In certain applications it is useful to introduce some shiffed second-kind polynomials
q%(z), having the property that they vanish at the point z = {, (see [12]). This is actually
possible only in the regular case w,{, # —1. The definition is

(3.23) qi(2) = qi(2) + ivpi(2),

with the real constant v = igy/p,. This implies that ¢'({) = 0 by (3.17) and (3.22). It
is clear that the shifted polynomials ¢} ( z) satisfy the three-term recurrence relation (3.7),

(3.21). Therefore, we have g ({,) = O for all k, by induction. Note that g} (z) is anti-
symmetric.
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In the second part of this section we examine the system of linear equations, with
the Toeplitz matrix C, having the coefficient vector py = [pro, * -+ , Prx]” of the symmetric

polynomial p,(z) = 2% prz’ as its solution. By use of (2.5), (2.14), (2.20), and (3.6),
we obtain the system

(3'24) Ckpk=[7_'ka0>”. ’O,Tk]T,
fork =1, ---, n, where 7 is given by
(3.25) 7= PngioisS 2 Sn k= 1(50).

Let us now explain how the three-term recurrence formula (3.7) can be interpreted
(and could even be established from scratch) on the basis of (3.24). Consider the ma-
trix identity

Trk+1 Tk Vi Vi-i
0 0 7x Ti—1
(3.26) Cre+1[Pr+ 1, Pk, ZPrs 2Pk - 1] = 0 0o 0 0
0 Tk 0 Tk-1
Tk+1 Ve Tk Vk-i

deduced directly from (3.24), for some well-defined numbers »; (playing no special role
in the sequel). In the left-hand side of (3.26) we make an abuse of notation that amounts
to identifying a polynomial with its coefficient vector. Formula (3.7) induces a linear
dependence relation between the columns of the right-hand side of (3.26). In particular,
the penultimate component yields the important identity

(3.27) YT =Tk—1.

Let us stress the fact that the recurrence formula (3.7) can be derived from the linear
relations (3.26) by using the argument above in the opposite direction. We shall not go
into detail about this question.

Comparing (3.27) with the identity p, . ;(0) = axpr(0) obtained by setting z = 0
in (3.7), we conclude that the product 7 _ 1 pi(0) is independent of k. With the help of
(2.23), (3.6), and (3.25), we obtain an explicit formula for 7,_;px(0), involving the
normalizing factors g, -, and g,. This formula makes sense in the case kK = 1, where it

gives the value ¢,{}/? as a consequence of the choice (3.16). Hence we deduce the re-
markable relation

(3.28) Ti—10:(0) = co$o'%,

fork=1,2, ---,n,if we set 7o = cow'/?{d/? to agree with (3.17). This value of 7 is
easily seen to satisfy (3.27) with k = 1. Note that (3.26) is not valid as such in the case
k = 1, since C, has only three rows; here the requirement (3.7) yields copo(z) = 79 +
7o, with 79 = a7, and this is correct in view of (3.17). Note that (3.25) produces an
interesting expression for the pseudoreflection coefficient (2.27), namely,

(3.29) W =Tr—1/$oTk—1-

In view of (3.28), this is equivalent to w; = pr(0)/pi(0), which itself amounts to the
characterization of w, expressed by (2.27).

The results above give rise to a recursive method for computing the symmetric
polynomials p,(z), for k =0, 1, - -+, n, from a given positive-definite Toeplitz matrix
C,— of order n. This method is a generalized version of the split Levinson algorithm
[5]. Let us select two complex numbers {, and w; of unit modulus, in an arbitrary
manner. (More precisely, we choose the square roots {3/> and w!/2.) For a given {, (the
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circle parameter), the choice of w; yields a unique value for the reflection coefficient p,,;
hence it corresponds to a well-defined singular extension C,, of C,,_ ;. (Details about that
question can be found in [10].)

The main ingredients are the relations (3.7) and (3.27), together with the inner
product formula

k
(3.30) = 2 CiDki>

i=0

which results directly from (3.24). We are now in a position to give a complete description
of the general split Levinson algorithm [10].

PROPOSITION 4. The sequence (pi(z))i-o of symmetric polynomials relative to a
positive-definite Toeplitz matrix C,_ | can be computed by means of the three-term formula
(3.7); the coefficient oy is obtainable via (3.27) from the numbers 7 _ | and 1 given by
(3.30). The initial conditions are given by (3.17), together with T¢ = cow'’?{8/?, where
wi’? and {4/ denote any two elements of the unit circle.

We shall comment neither on the computational complexity nor on the numerical
stability of this split Levinson algorithm. Let us mention the possibility of defining a split
Schur and a split lattice algorithm in close connection with the split Levinson algorithm
[61,[7], [8], [11].

Note that the appropriate reflection coefficient p, (corresponding to the choice of
w,) is available at the end of the procedure, in the form p, = p,(0)/p,(0). As for the

reflection coefficients p;, - - - , p,— relative to the given Toeplitz matrix C, - |, they can
be computed with the help of (3.5), which can be written as

Tif M+
(3.31) pk=_—(—‘:“1),

Ti\ $0 2a

in view of (3.9) and (3.29). The Jacobi parameters A, involved in (3.31) are obtainable
in a recursive manner by means of (3.11), with \; = 1. In the regular case w;{ # —1,
they can alternatively be computed from (3.12). The predictor polynomial a,,— ; (z) relative
to C,,_ is available from p,(z) and p,_ 1(z) in the form

pn(z)_ fSl/ZXnZPn— I(Z)
pn(0)(1={5'2)

This follows from (2.25), by use of (3.6) and (3.8). As for the corresponding prediction
error squared norm o,_ , it can be obtained as o, _; = coh,| P»(0)| 2, in view of (3.10).

Remark. To help in making comparisons with previous publications devoted to
the split Levinson algorithm, let us make the following comments. In the (first-kind)
singular case w;{ = —1 we have bi({) = 0, for all k, whence

(3.33) wie=—ak-1($0)/ Sodik—1($0),

in view of (2.28). (In fact, s,_ x({o) is proportional to o’ ;a@,_ ({o); see details in § 4.)
Similarly, in the “second-kind singular case” w;{y = 1, we have #({) = 0, for all
k, whence

(3.34) wi=ric—1($0)/ §of i 1($0),

in view of (2.30). Within normalization, the polynomials b, (z) that admit the pseudore-
flection coeflicients (3.33) and (3.34) are natural generalizations of the so-called “singular
predictors” processed by the antisymmetric version and by the symmetric version of the
split Levinson algorithm, respectively (see especially [5] and [9]).

(3.32) an-1(2)=
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It is interesting to see how the symmetric polynomials py(z) provide a reduction of
the Toeplitz matrix C,,_; to a tridiagonal form, by a triangular type congruence trans-
formation. Here we consider only the regular case. From p,(z) let us construct the Lau-
rent polynomial

(3.35) wi(2) = 5 2 (—1)kal (foz) 2 pu(2),
with ag(k) = qy or a, depending on whether k is even or odd. For 0 = k = n — 1, define
the tridiagonal matrix J; (playing a major role in [12]) as follows:

2 Re (o) —§o'/?
172 ~ 51/2
(3.36) Jk= §_0 2Re(fvl§‘0 )

' —$o'?
—{/* 2 Re (a0’

Let W) be the square matrix of order k + 1 whose successive columns are the coeflicient
vectors of the Laurent polynomials wy(z), w;(2), - -+, wi(z). Note that W, is equivalent
to an upper triangular matrix under row permutation. By use of (3.24), (3.27), and
(3.28) we can derive the remarkable identity

(3.37) WiECWi= Ji,

which generalizes a result given in [7]. (Here and in the sequel, the star symbol stands
for the conjugate transpose.) This shows that J; is positive definite together with Cj. Let
us emphasize the analogy between (3.37) and the Cholesky factorization of C; ' provided
by the classical predictors a;(z) (e.g., see [18]) instead of the symmetric polynomi-
als p,(z).

Finally consider the problem of computing the predictor a,(z) relative to a given
nonnegative-definite Toeplitz matrix C,, (of nullity one). This can be solved by use of
the split Levinson algorithm explained above, where an arbitrary value ¢ (with |e| = 1)
is assigned to the parameter w,. If, by accident, ¢ equals the pseudoreflection coefficient
w; that corresponds to the given p,, then p,(z) is proportional to a,(z). In the other
cases this property does not hold, but the method can be continued one step further so
as to produce a symmetric polynomial p, . ;(z) that is proportional to ({, — z)a,(z).
This result will be proved at the end of § 5. At least from a theoretical viewpoint, the
most interesting choice for the ¢ parameter is the value ¢ = — (5.

4. Discussion of the singular case. Although it does not give rise to any difficulty
in the general theory, the singular case (often mentioned above) deserves special attention
for several reasons. We now examine that subject in a detailed manner. Thus, throughout
the present section, we assume that the circle parameter {, obeys the singularity condition

(4.1) a,($)=0, i.e.,equivalently, w;{=—1,

with respect to the given Schur-Szeg6 parameters p,, * - - , p,.
In view of (2.24) and (3.6), all symmetric (normalized) polynomials p,(z) are
divisible by {, — z. Thus it is quite natural to consider the family of reduced polynomials

(4.2) Di(z) = pDic+1(2)/p1(2),

fork=0,1, ---, n— 1. Here w, is a positive normalizing factor that is introduced for a
technical (or aesthetic) reason of relatively small importance. Note that pi(z) enjoys the
symmetry property (3.18). The crucial requirement is that u, depends only on the parity
of k. In other words, we have u; = u - for all k. This implies that the polynomials py(z)
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satisfy the normalized three-term recurrence relation (3.7) where the coefficient «y is
replaced by

(4.3) Q= (ks 1/ i) Ok 4 1«

The parameters uo and u, are now chosen in such a way that the reduced polynomials
Po(z) and p,(z) have the appropriate form (3.17). First, since p,(z) = u;(a; + &,2), by
(4.2) and (3.7), we must have

(44) @ =a/a,

with a; = ¢8/2(1 + {op1)~". Then, choosing the square root ®}/? = &,/|a, |, we readily
obtain the following values for the normalizing factors:

lay| 7' ($0" o+ §6/% 1) evenk,

(4.5) M=
‘ {Iall“‘ odd k.

Let us examine the explicit definition (2.20) of b,(z) under our assumption (4.1).
Set 8 = 0,_1/a,-1(%). Using (2.2), we obtain 8/8 = —p,{8. It is easily seen that
Sn—k—1($o) equals Bo ' a@r(§o). This is true by definition for kK = n — 1 and is proved for
all k£ with the help of the Szego-Levinson recurrences (2.2) and (2.13). As a result, we
can write

(4.6) bicr1(2)=Boic' §o* " D2 Sodi(So)ar(z) — ar($o) zdx(2)].

The reader who is familiar with the theory of orthogonal polynomials on the unit circle
will recognize the presence of Szegd’s “‘kernel polynomial” in the right-hand side of
(4.6). Let us now provide the required information about this classical subject (see [18],
[22], [23]).

The inner product of two complex polynomials x(z) and y(z), of degree less than
or equal to n, relative to the positive measure associated with the Toeplitz matrix C,,
can be expressed in the form

(4.7) (x(2),y(2)) =x*Cyy,

where x and y denote the coefficient vectors of x(z) and y(z). For an integerk =10, - -+,
n — 1, a polynomial ®,(¢{, z), of degree k in each variable { and z, is called a kernel
polynomial with respect to the inner product (4.7) if it enjoys the reproducing property

(4.8) (Br($,2),x(2)) =x(%)
for every polynomial x(z) of degree less than or equal to k in z. Applying (4.8) to the
monomials x(z) = z!, witht =0, - - - , k, we see that the kernel polynomial is determined

uniquely and that its {*z‘ coefficient equals the (¢, s) entry of the inverse of the Toeplitz
matrix C. Thus we have the expression

(4.9) ($2) =1Lz, ZKIC L §, -+ 85T

Next, consider any orthonormal basis (ug(z), ui(z), -+, u(z)) of the vector
space of complex polynomials of degree less than or equal to k in z. Here, orthonormal

means { u,(z), u,(z)) = 6, for all s and 7. A simple computation, based on (4.8), yields
the expansion

k
(4.10) Pu($,2)= 2 u(Hu(z).
t=0



TRIDIAGONAL APPROACH 1 233

Let us apply this to the degree-graded basis, consisting of the normalized Szegd poly-
nomials #,(z) = ¢;'/24,(z), and to the delay-graded basis, consisting of the shifted
normalized predictor polynomials u,(z) = o;'/2z*"'a,(z). In both cases, the orthonor-
mality relations follow directly from the Toeplitz linear systems (2.5). Substituting these
bases into (4.10), we deduce both identities

(4.11) ®(§,2) = B 1(§,2) + ok dr( ) din(2),
(4.12) ®(§,2)=§zPi—1(§, 2) F ok @n($aw(z).

By elimination of &, _ (¢, z) between (4.11) and (4.12) we obtain the Christoffel-Darboux
formula, which leads to the Trench inversion formula for Toeplitz matrices, via (4.9)
[18]. For a point { = {, on the unit circle (| {o| = 1), the Christoffel-Darboux formula
reads as follows:

(4.13) (S0 2)@x($0,2) = o' §5*[ odi($0)ar(z) — ar($0) 2du(2)].

Thus we have identified the polynomial (4.6). With w1/?{{/? = i, we have p,(z) =
—it5"%(§ — z). Using this expression together with the results above, we can write the
reduced polynomial (4.2) in the remarkable form

(4.14) Pr(2) = vl 6 ®a( 0, 2),

with v, = comrgo ' gk +1 (a positive number). Hence, in view of (4.9), we can interpret
the coeflicient vector py of pi(z) as the solution of the Toeplitz linear system

(4.15) Cubr=wiS 6211, 65", - -+, §k17.

Systems of that type have been investigated recently by Bruckstein and Kailath [3]. In
the special case where the circle parameter {, equals one and the reflection coefficients
px are real, (4.15) is sometimes referred to as the discrete Gopinath-Sondhi equation.
An efficient solution algorithm for this equation has been discovered by Bube and Burridge
[4]; it is based on a recurrence relation essentially equivalent to the appropriate special
case of (3.7); it is closely related to the split Levinson algorithm.

As indicated in the beginning of this section, the family of reduced polynomials
Dr(z) fits exactly into the general theory developed in §§ 2 and 3. Recall that we have
identified the relevant recurrence coefficients &, in (4.3), via (4.5). In principle, this
allows us to determine all other parameters, within an arbitrary choice for the positive
number ¢&. We shall now identify the nonnegative-definite Toeplitz matrix C,_, (of
order # and rank n — 1) that produces the symmetric polynomials p;(z) in the sense of
our general theory. It is important to note that the reduced polynomials belong to the
regular case (with respect to the given circle parameter ;). Indeed, p,_,({,) does not
vanish, since the zeros of a,(z) are simple; equivalently, we have &,{ # —1, in view
of (4.4).

For 1 = k = n — 1, define Z, to be the k X (k + 1) bidiagonal Toeplitz matrix
having the coefficient vector of p;(z) as its first column, that is,

1
- 1
(4.16) Zie=—igy? K
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We shall see that the k X k Toeplitz section of C,_, can be written in the form C,_, =
Z i CiZy. In explicit terms, this means that the entries ¢, of C,_; are given by

(4.17) G=2¢—$oCk+1— S0 Ch—1,

for ] —n =k =n— 1.Itis clear that (4.2) amounts to the vector identity Z;p,_, =
ui—1px (with k replaced by k+ 1). Hence, setting the Toeplitz matrix Ceor =
Z i CiZy, and multiplying the linear system (3.24) by Z;, we obtain a system of exactly
the same form, with Cy, px, and 74 replaced by Ci_ 1, px—1, and

(4.18) Fro1= =056 17k

Note that the discussion should be slightly different when k = 1; however, the conclusion
(4.18) remains valid in that case. In view of the uniqueness of the Toeplitz matrix C,_
underlying the family of symmetric polynomials j;(z), for a given {,, this argument
proves the claim (4.17). The consistency of the results can be checked by examining the
identities (3.27) and (3.28) for the reduced polynomials. In summary, we have the fol-
lowing result.

PROPOSITION 5. The reduced polynomial pi(z) is proportional to the kernel poly-
nomial ®,( ¢, z) with § = {o (the circle parameter); its coefficient vector obeys the equation
(4.15). Furthermore, pi(z) coincides with the degree k symmetric polynomial that is
canonically associated with the Toeplitz matrix C,_, whose entries are given by (4.17).

The corresponding pseudoreflection coefficients &, can be determined with the help
of (3.29) and (4.18); the result is

(4.19) Or = = $oWk +1-

The case k = n — 1 reads p,,—; = — {op,. Alternatively, this follows from the very definition
of the reduced predictor, i.e.,

(4.20) dn—1(2)=an(2)/(1={5'2).

As for the remaining reflection coefficients p relative to C,_,, they can be determined
by means of formula (3.31). In view of (4.2), this involves the Jacobi parameter A\, =
(wic/ - 1)+ 1, where

(4.21) Livi=¢5"? lim pk+1(Z)’
z=> 4o pk(z)

by (3.12). From (3.31) we readily obtain
(4.22) Pr—1=—Sopi(lk+1— $6"%21) | (N1 — §6/ 7).

Note that the sequences (M) % - and (/;)% -, satisfy the same recurrence relation (3.11),
with the initial values A\; = 1 and /; = oo. By subtraction, this implies

(4.23) hesr =N =N =1

With the family of “first-kind” symmetric polynomials pi(z), we can associate a
family of “second-kind” antisymmetric polynomials G;(z). They satisfy the same three-
term recurrence relation as the first-kind polynomials (with the same coefficients &).
The initial conditions go(z) and §,(z) are given by (3.22), where ¢, and w }/? are replaced
by & = comom; and &1}/ = u ;. We could also consider shifted second-kind polynomials
Gx(z) + i4Pr(2), vanishing at the point z = {, as in (3.23).

5. On duality and its interpretation. Replacing the Schur-Szeg6 sequence
(pr)7 -1 byitsdual (p})7 -, with p§ = p,p,—x (Where py = 1) asin (2.12), and preserving
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the circle parameter {,, we obtain a family of symmetric polynomials p}(z), which we
call the dual of the original py(z) family. This dual family is quite interesting in that it
enjoys the same embedding property,

(5.1) Pi(2)=pi(0)a.(z),

as the original family, since we have a%(z) = s,(z) = a,(z) in view of (2.15). In other
words, pt(z2) is proportional to p,(z), while it is clear that p}(z) is generally not pro-
portional to p(z) for 0 < k < n. Let us now examine some remarkable features of this
duality relation.

By definition, p}(z)is the normalized version p§(z) = gib}(z) of the p,-symmetric
predictor polynomial b¥(z) given by

(5.2) bE(2) =8 an— 1(£0) Sk 1(2) + Puin - 1($0) 28— 1(2)].

Indeed, our duality permutes the roles of ax(z) and si(z); hence (5.2) is the dual of
(2.20). The pseudoreflection coefficient w} of the polynomial b} (z) is given by w} =
Yi({o), with the classical inner function ¥ %(z) = p,d,_«(z)/a,-«(z). Information con-
cerning the connection between the Toeplitz matrices Cy and their duals C can be found
in [13].

In the sequel we consider only the regular case, i.e., a,({y) # 0. Our objective in
this section is to explain how the dual family can be interpreted in the original framework.
We are mainly interested in the coefficients af of the dual three-term recurrence (3.7).
Fork=1, -+, n,n+ 1, define the complex number wj (of unit modulus) by

(5.3) wi == 1($0)/ $odk - 1($o)-

In particular, w{ = —{5' and w;,, = — (5" p,. Note that we have w; # p,. The dual
pseudoreflection coeflicients are given by

(5.4) wk=—=$0" Pudon 11—k

Elementary computation shows that the dual version of formula (3.14) can be written
in the form

(5.5) o - ko= So( 14 Sowitpr—1) " (1 =k pi) .

The right-hand side of (5.5) coincides exactly with that of (3.14), except that wy is
replaced by w7 . As a consequence, the numbers o f generated by the relation (3.14) thus
modified have the form

ta®_,  evenk,
(5.6) af =
t"'aﬁ_k odd k,

for a suitable constant ¢. Note that (5.6) makes sense for k = n, with the value of of
given by (3.19), i.e.,

(5.7) ag:g‘(l)/z(l*a’npn)_l-
The numbers wf defined in (5.3) obey exactly the same Schur-type recurrence relation
(2.29) as the “correct” numbers wy, except that we have w{ = — {5 (instead of w, =

p,). Hence they correspond to the distorted sequence of reflection coefficients pi
given by

(5’8) p/t=pk fork=1,2,"',n‘1, p;=w;~

Let us now consider the family of symmetric polynomials pj(z) associated with
this distorted sequence. It is generated by the recurrence formula (3.7), with the coefficients
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af given in (5.6). The initialization is pg(z) = 0 and p{(z) = —i{d/?(1 — {5'z). The
first coefficient is found to be af = ¢§/2(1 + {p;)~'. Hence, the dual versions of (3.1)
and (3.9) yield af_, = Ma7, with A denoting the dual Jacobi parameter (3.8). This
determines the factor ¢ in (5.6) to be the positive real number t = N:. By construction,
the family of polynomials p (z) belongs to the singular case; we have a;({) = 0 (as a
consequence of w{ {y = —1). Thus, as shown in (4.14), the reduced polynomial p; (z)
is proportional to the Szegd kernel ®,( ¢y, z) relative to the Toeplitz matrix Cy, for 0 =
k=n-—1(see(58)).

The coefficient vector of the polynomial pj (z) obeys a linear system of the form
(3.24), with the same Toeplitz matrix C; (even when k = n) but with a different number
Tk, denoted here by 77 . In particular, let us stress that 7} is not zero, since a; (z) differs
from a,(z). Our definition of «;, given by (5.6) and (5.7), allows us to go one step
further in the recurrence (3.7) and thus to obtain a symmetric polynomial p; . (z) of
degree n + 1. We shall see that it has the quite remarkable form

(5.9) P+ 1(2)=pr+1(0)(1 = 5" 2)an(2).

Thus, the extended family of polynomials pj (z) relative to the distorted Schur-Szegd
sequence enjoys the same type of embedding property as in the “official theory,” except
that » is replaced by # + 1 and a,(z) by a;+ (z) = (1 — {5'z)a,(z). It is interesting to
compare this extension operation (from n to n + 1) with the reduction operation (from
nto n — 1) reflected in (4.20).

As explained at the end of this section, in a more general setting, the result (5.9)
can be established by straightforward verification, based on explicit expressions for
pr_1(z)and p;(z). Here we use an alternative argument relying specifically on duality.
Set the positive constant » = N:ué/ui. In view of (5.6) and (4.3), the reduced version
Pi(z) of pii+1(2) is produced by the normalized mirror image (r 'af_ 1, rah_,, -+,
rad), with e = (—1)", of the sequence (af, af, - -+, af_ ) producing the polynomial
p¥(z). Now it is a simple exercise to prove that the mirror image operation preserves
the output polynomial of the recurrence (3.7). (See [12] for further details on this subject.)
Therefore, p; (z) is proportional to p#(z), so that the desired result (5.9) is nothing but
(5.1). The main conclusion can be stated as follows (an application is given in the
companion paper [12]).

PROPOSITION 6. The distorted sequence of reflection coefficients (pi)# -1, defined
in (5.8), produces a family of reduced symmetric polynomials pi(z), fork=0,1, «-- ,
n, the last element of which is proportional to the predictor polynomial a,(z).

Let us emphasize that the coefficients a7, a3, ---, a; defined in (5.6) can be
computed, together with the polynomials p{ (z), by running the split Levinson algorithm
of § 3 for the given Toeplitz matrix C,; it suffices to set the parameter w{ equal to
—{o'. (Note the property 7§ = icy.) The matrix identity (3.26) is satisfied up to k = n
(with p; instead of p;, etc.), with 7/, = 0 and with C,, ; denoting the unique singular
Toeplitz extension of order n + 2 of C,,. (Note that C, ,  is nonnegative definite and has
nullity two.) Let us stress that all recurrence coefficients ai in this “extended” split
Levinson algorithm are given by af = 7£_,/7{, asin (3.27), including the last of them
(for k = n). Further details on that subject can be found at the end of the paper.

As explained in the general theory of §§ 2 and 3, a family of second-kind antisym-
metric polynomials gj(z) can be constructed from the same coefficient sequence
(af)i-,, via the recurrence (3.21). It can be checked that the final polynomial,
qn+1(2), is given by

(5.10) dn+1(2)=Dpn+1(0)(1 = §5' 2)ra(2),
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in terms of the classical second-kind predictor r,(z). The proof is basically the same as
that of (5.9); details are omitted. In contrast with (5.10), note that none of the polynomials
g¥(z) with 1 = k = n vanishes at the point z = {,. The property g, () = 0 shows
that the Jacobi parameter A}, ,, defined formally as in (3.11), is equal to zero. In other
words, we have \} = ({52 + ¢8/%a}) ™" . Thus, the result (5.9) can be interpreted as
an extension of the formula (3.32) where # is replaced by n + 1 (and p, by p;+,). Note
that the property A}, ; = 0 agrees with (3.10).

As alluded to above, the polynomials p#(z) can be introduced in an alternative
manner, which is equally interesting. Assume that the available data are the entries of
the Toeplitz matrix C,, rather than the corresponding Schur-Szegd parameters p;, - - - ,
pn. In this situation, the recurrence coefficients «a; can no longer be computed by way of
(2.29) and (3.14). Choosing any complex number ¢ of unit modulus, let us apply the
split Levinson algorithm of § 3 to the Toeplitz matrix C,, with the initialization

(5.11) po(z,e)=¢"" 255 2+ 252, pi(z,e)=e 2t 2z,

and 7o = coe!/?¢4/2. This is formally the same as (3.17), with w,(¢) = ¢ in place of w,.
The algorithm produces some well-defined symmetric polynomials pi(z, ¢) and recurrence
coefficients ay(e), depending on the ¢ parameter. Of course, pi(z, ¢) equals pi(z) for
all k if and only if ¢ equals w,. Looking at the initial conditions, we see that the choice
e = —{o! leads to the polynomials p{ (z) examined above; we have

(5.12) p(z,— ") =pi(2),

fork=0,1, ---, n. As explained below, this identity extends to the case k = n + 1, in
a natural manner.

For any value of ¢ (with |e| = 1), elementary computations give

(5.13) Pn-1(2,6)= X" (e)pn(0,8) {0 [an - 1(2) + wn(e) $odn-1(2)],
(5.14) Pn(2,€) = pa(0,e)[an-1(2) + wu(e)zdy - 1(2)],

(5.15) Tn-1(2) = 04 10" (£)Pn(0, 8) () §8/2,

(5.16) Tn(e)=0,_1Dn(0,€)[wn(e) — pn].

As a consequence, provided we have ¢ # w,, i.e., w,(&) # p,, the split Levinson algorithm
can be applied one step further to yield

(5.17) Pn+1(2,6) = Pn11(0,6)(1 = §5' 2)an(2).

Comparing with (5.9), we see that (5.12) is actually valid for 0 = k = n + 1. Note that
the special choice ¢ = — {5! is characterized by the fact that p,({,, ¢) vanishes for all k,
while this is true only for kK = n + 1 when we choose ¢ # — {5 . Thus, a family of reduced
polynomials can be defined exclusively in the case ¢ = — 5.
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ON RANDOM CORRELATION MATRICES*
R. B. HOLMESt

Abstract. This report contains a detailed study of random correlation matrices, including algebraic, statistical,
and historical background. Such matrices are of particular interest because they serve to model “average signals”
for simulation testing of signal processing algorithms. The statistical behavior of spectral functions of the two
major types of random correlation matrices is extensively discussed in the latter half, from both theoretical and
empirical aspects. The emphasis is on eigenvalue distribution and condition number behavior. Actual application
to algorithm testing will be described in a subsequent report.

Key words. correlation matrix, random correlation matrix, random spectrum, Gram matrix, random Gram
matrix, random eigenvalue, condition number, spacings, spectral distribution function
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1. Introduction. This paper derives from a study of the relative efficacy of certain
(group-theoretic ) data transforms for various canonical signal processing tasks. Two such
tasks are, in particular, data compression and decorrelation. For a given data transform,
realized as a unitary matrix U, the extent of such activity can be measured from the
transformed data covariance matrix. Thus if a data vector x has covariance C, its transform
Ux has covariance D = UCU*, and the data compression (respectively, decorrelation )
efficiency of the transform U can be assessed by examination of the diagonal (respectively,
off-diagonal) entries of D.

In order to make a serious statistical study of the efficiency of group transforms and
filters for the various signal processing tasks, it is necessary to have an assortment of
standardized signal models. These fall into two classes: parametric models and “purely
random” models. The former determine, after sampling, structured covariance matrices
with entries having a simple dependence on a few parameters. The simplest and most
familiar example is the first-order Markov or autoregressive signal model, from which N
samples generate the covariance matrix [p!' /'], where 0 < |p| < 1,and 1 =i, j < N.
On the other hand, it is somewhat less clear a priori what a “purely random™ covariance
structure might be. Clarification and discussion of this term is the primary object of the
following sections. Speaking intuitively for the moment, it is evident that this term must
be precisely defined if we are to be able to do any serious simulations of the action of
the various transforms, and to eventually say that one or another of them, for fixed data
dimension, is superior in the performance of a particular task “on the average.”

This paper is written in a somewhat discursive style, with §§ 1 and 2, along with
§§ 3.1 and 4.1, being essentially expository. Relevant definitions and aspects of numerical
linear algebra are collected in Appendices A and B. Appendix A is primarily a review of
known, if not “well-known,” bounds on norms and eigenvalues. Appendix B focuses on
the important concept of condition number, the behavior of which, under various con-
ditions of randomness, is a major object of study of §§ 3 and 4. The main result in
Appendix B is a sharp lower bound on the norm of the inverse of a correlation matrix.

1.1. Definitions. In the background we have an N-dimensional real or complex-
valued second-order random vector x. We will usually assume that x has zero mean

* Received by the editors November 12, 1988; accepted for publication (in revised form ) November 29,
1989. This work was sponsored by the Lincoln Laboratory Innovative Research Program (IRP).

+ Massachusetts Institute of Technology, Lincoln Laboratory, P.O. Box 73, Lexington, Massachusetts 02173
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E(x) = O, the zero vector. The covariance matrix of x is the N X N matrix C, de-
fined by

Cr=[E(x;x))].

Such matrices are characterized as being Hermitian and positive semidefinite. We will,
in fact, always assume that C, is actually positive definite, so as to eliminate degenerate
probability density functions. Hence the eigenvalues { A\, - - - , Ay } of Cy are all positive;
they constitute the spectrum o( Cy), of C,, and their relative size will always be indicated
by subscript: Ay = A, = --- = Ay > 0.

We recall the statistical significance of these eigenvalues: letting {¢;, - -+, ¢} be
the orthonormal set of eigenvectors corresponding to Ay, - - -, Ay, we have

(a) N = var ({x, ¢;));

(b) tr(Cy) =N\ + --- + v =E(llx?);

(¢) A1+ -+ + Ay =ming, E(d(x, S,)?),m=1,--- ,N— 1.

The first assertion here is that \; is the variance of the ith principal component of x; these
random variables occur as the coefficients in the expansion of x in the (Karhunen-
Loéve) basis { ¢;, - - , ¢n}. Statement (b) is a special case of (c¢) (take m = 0, there).
The final assertion is that the best mean square approximation to x by m-dimensional
subspaces S, occurs when S,, is spanned by { ¢, - - - , ¢, }, with error as the indicated
function of the eigenvalues. For applications of these and related formulas to multivariate
statistics, pattern recognition, and signal processing (estimating x from noisy observa-
tions), see, respectively, [1], [18], and [33].

From now on we will make a slight specialization by assuming that all components
of the random vector x have the same variance, which we take to be unity. It follows
that the diagonal of C,, consists of ones, tr (C) = N, and the modulus of each off-diagonal
entry c; satisfies | ¢;| < 1. These entries are, in fact, the correlation coefficients of the i
and j components of x. Any such matrix is called a correlation matrix, and will be our
primary object of study. Bounds and estimates for various quantities associated with
such matrices are reviewed in Appendix A. Here we note that if C'is any N X N correlation
matrix, then 1 = |C|| = A\; £ A\, + -+ + Ay = N, so that the set I'(N) of all such C is
a bounded convex subset of the N(N + 1)/2-dimensional real space of N X N Hermitian
matrices. (If the scalars are complex, this latter space is of real dimension N2.)

In general, it is difficult to tell by inspection whether a given symmetric or Hermitian
matrix C with diagonal entries equal to one is positive definite, and hence a correlation
matrix. Several nonlinear inequalities involving the off-diagonal entries must be satisfied;
these correspond to the positivity of the leading principal minors of C.

Two simple sufficient conditions for positive definiteness are available, however.
These are:

(a) Cis diagonally dominant, so that the Gershgorin theorem can be applied; and

(b) C can be partitioned as

1 1 F
C=
.

where the I’s are identity matrices, and F is a matrix whose (spectral) norm is less
than one.

1.2. Notions of randomness. We now want to address the question of randomly
selecting a correlation matrix of some fixed size. Our particular interest in this question
has already been indicated in the introductory remarks above, and further motivation
will be provided in the next section; in general, we may say simply that a satisfactory
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answer to this question will permit generation of random test problems for a variety of
statistical methods.

Roughly speaking, any method of generating random correlation matrices will begin
by generating some number of pseudorandom variates uniformly distributed on the unit
interval, and then performing certain deterministic mathematical steps to arrive at a
correlation matrix. Four possible such methods will be described below, and two will be
discussed at some length. But we have to acknowledge at the outset that no method is
completely satisfactory. This is due to the lack of structure of the set I'(V), on the one
hand, and to the presence of structure in the individual members of I'(NV), on the other
hand. That is, each element C of I'( V) has associated with it, as a matrix, entries, eigen-
values, and functions of these, such as norm, condition number, etc., all of which become
random variables with their own distributions, which naturally depend on the manner
in which C was produced. But the set I'(/V) does not carry a natural invariant measure.
This deficiency may be contrasted with the cases of the orthogonal or unitary groups,
which carry a canonical (unimodular) Haar measure. Nor is I'(N) a homogeneous space,
such as a sphere, on which a transformation group acts and leaves invariant some measure.
Thus, while such phrases as “random orthogonal matrix”” and “uniform distribution
over the unit sphere SV~ !” have a clear conceptual meaning, and indeed there exist
successful numerical procedures for generating such variates (see, in particular, [2],[57]
for the former case), the situation remains murky for correlation matrices.

As a brief aside we offer two remarks. First, the topics of approximating and efficiently
sampling from the uniform (Haar) distribution on finite or compact groups persist under
current investigation. In addition to the references just given for the case of the orthogonal
group, see recent articles by Takacs [60] for finite groups, and by Diaconis and Shah-
shahani and various coauthors ([11] and references) for an assortment of groups and
applications. The basic approximation result, that the distributions of the successive
terms in a random walk on a compact group converge vaguely to normalized Haar
measure provided that the support of the common distribution of the individual terms
is sufficiently diffuse, goes back at least to Grenander [24]. The condition on the support
of the distribution can also be rephrased as a spectral property of its (operator-valued)
Fourier transform. Second, although as noted above, I'( V) is not a homogeneous space,
the cone P(N) of all positive definite N X N Hermitian matrices is such a space. Namely,
it is acted on by the general or special linear groups according to the rule

Ao TAT*,

for A € P(N) and T nonsingular. It follows from general theory, including the fact that
these linear groups are unimodular, that there is an invariant measure on P(N) [44].

Returning now to the matter of random correlation matrices, we indicate four pos-
sible methods of generation; only the last two will be discussed in any detail, beginning
in the next chapter.

Method 1. Direct acceptance-rejection. Here we must obtain symbolically the lead-
ing principal minors of the general symmetric N X N matrix with unit diagonal. This is
possible for moderate size N via a computer algebra program. Requiring these minors
to be positive then constitutes a set of N — 2 nonlinear constraints on the N(N — 1)/2
off-diagonal entries. Then a set Cj5, - -+, Cin, Coz, -+, Con, -+ +, Cn—1 n Of pseudo-
random deviates uniformly distributed on (—1, 1), or in the open unit disc, is generated
and tested to see if the constraints are satisfied. If so, a correlation matrix C is obtained;
if not, a new set of uniform deviates is generated, etc. To our knowledge, the distributional
aspects of the spectral features of the resulting matrices are unknown.
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As might be expected, this method is at best feasible for rather small values of N,
say N = 6. Indeed, based on 1,000 N trials, the empirical rejection rate ry = .195, .583,
.875, and .977, respectively, for N = 3, 4, 5, 6. Hence, the expected number of iterations
until the algorithm succeeds in producing a correlation matrix is (1 — ry) ™' = 1.24, 2.4,
8.0, and 45.5, for these values of N.

For the general theory of acceptance-rejection methods, reference may be made to
Devroye [10].

Method 2. Perturbation about a mean. This method is discussed by Marsaglia and
Olkin [40], which is generally the most current source of information about our subject.
However, it is not of particular interest to us as, for our purposes, there is no reason to
have in mind any a priori mean value.

Method 3. Random spectrum. As we know, the spectrum of an N X N correlation
matrix consists of N positive numbers (not necessarily distinct) that sum to N. As will
be recalled in the next section, every such set of N numbers occurs, so that the possible
spectra fill out a simplex in real N-space. Since it is numerically feasible to generate
pseudorandom uniform samples from this simplex, we can, by a succession of suitably
chosen orthogonal or unitary transforms, arrive at a random correlation matrix. An
automated procedure for doing this latter task is commercially available in the IMSL
subroutine GGCOR. Statistical aspects of this method will be discussed at some length
in § 3.

Method 4. Random Gram matrix. As is well known, every real positive-definite
matrix A has a Cholesky factorization

A=TT*,

where T'is a uniquely defined lower triangular matrix with positive diagonal entries. Let
the rows of 7 be denoted ¢,, - - - , tx. Then

a;=1i,1;),

and so 4 can be considered a Gram matrix defined by the vectors {#,, - - - , ty}. If also
A is a correlation matrix, then each vector f; must have length one. Consequently, any
procedure for generating pseudorandom unit vectors, with any distribution, will result
in a random correlation matrix of Gram type. These vectors may or may not end in
zeros, as in the Cholesky factorization, but naturally we do less work if they do. This
method is the most efficient of the general methods, 1, 3, and 4; some of its statistical
aspects will be discussed in § 4 (see also [40] again).

Whatever method we might eventually choose for a particular application will depend
on the nature of the application and just which aspect of the random correlation matrices
we wish to have an unambiguous uniform distribution.

1.3. Background and metivation. In terms of the preceding introductory material,
and prior to the more technical developments of the remaining chapters, we will briefly
review some of the relevant statistical literature. Specifically, we will comment on the
contents of four articles, [4], [3], [31], [40], listed in chronological order.

In [4], Chalmers (1975) presents an algorithm which produces correlation matrices
with a common spectrum. His motivation is the study of strongly structured data, that
is, random vectors whose first two or three principal components explain much of the
variability of the data. He wants to be able to distinguish between causes of the observed
associations among different subsets of the components of the data, whether these are
due to the physical nature of the variables themselves, or to some inherent structure in
the data as captured by the underlying principal components. An empirical approach is
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to generate other correlation matrices with eigenvalues identical to those observed, and
to then compare results from these matrices with those from the original data. The
algorithm itself is derived from a geometric lemma which asserts the existence of an
infinite set of orthogonal generators to certain quadratic cones in real #-space. Normalizing
these generators then leads to the columns of an orthogonal matrix which transforms a
given diagonal matrix of eigenvalues into the desired correlation matrix.

In [3] Bendel and Mickey address the same problem as Chalmers, but more sys-
tematically, and with more concern for whether the resulting correlation matrices are
truly “representative” of the entire class of correlation matrices with given spectrum,
thought of as those which could arise from a given experiment. They note that parame-
terizing subsets of I'(V) by structure, e.g., equi-interclass correlation (constant off-diagonal
entries) or first-order autoregressive (Markov-1 data) leads to very narrow classes of
correlation matrices, unsuitable for many applications. Their approach is to treat the
eigenvalues as parameters, especially when they, in turn, are functions of one or two
parameters. For example, the eigenvalues might be required to form a geometric pro-
gression. In general, if the parameterized eigenvalues are roughly constant, and therefore
approximately equal to one, the data variables are approximately independent, while a
large spread in the range of the eigenvalues indicates strong interdependence between
the variables.

Starting with a spectrum {\;, ---, Ay} and setting D = diag {\;, - - -, Ay}, the
method of Bendel and Mickey yields a correlation matrix C of the form

C=U*DU,

where U= VRy_- -+ RyR,. Here Vis arandomly chosen orthogonal (or unitary ) matrix
and the R’s are matrices representing Givens rotations, chosen successively to make one
diagonal entry at a time of the product equal to one. The V’s can be generated by various
procedures (see references [2], [57] already mentioned in § 1.2). They go on to describe
the application of their method to the problem of stopping rules in the statistical procedure
known as stepwise regression. They also offer some comparisons between their method
and that of Chalmers.

In [31], Johnson and Welch (1980) also emphasize the use of simulated data to
test alternative selection procedures in stepwise regression, particularly to build confidence
in the use of such procedures on real data with uncertain structure. If the joint distribution
of the dependent and regressor variables is Gaussian, then it is standard to sample ran-
domly from it by factoring the covariance matrix and using a string of pseudorandom
N(O0, 1) variates. Thus only the structure of the distribution remains to be specified, and
this, of course, is completely determined by the (mean and) covariance. If this is assumed,
as it is, to be of correlation type, then it can be partitioned as

1 p*

p CJ
where C is the intercorrelation matrix of the regressors, and p is the vector of correlation
coefficients between the regressors and the dependent variable. So the emphasis is on
generating such C’s, and this is done by viewing C as a Gram matrix: C = TT*, with
the rows of 7 being unit vectors. They suggest generating each entry of 7 from a symmetric
beta distribution, varying the free parameter from row to row. They note that a certain
control over some aspects of the matrices so defined can be maintained, such as the

degree of correlation between some regressors, and the coefficient of determination for
the complete regressor set.
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Finally, in [40], Marsaglia and Olkin give a rigorous mathematical description of
Methods 2-4 described in the preceding section. Their major result is to obtain the
explicit form of the distribution of the entries of a random Gram correlation matrix
C = TT*, when the entries of T are generated in a particular fashion. Some of this work
will be reviewed later, in the appropriate context.

2. Two principal methods. As noted in § 1.2, only the methods labeled there as
Methods 3 and 4 are discussed in any detail here. We begin this discussion now, setting
the stage for the presentation of the new results later.

2.1. Random spectrum. Aswe know, the spectrum of a correlation matrix C € I'(N)
has a spectrum o(C) = {\, -+, Ay} consisting of N positive numbers of sum N. The
set of all such N-tuples defines a simplex Sy, and we first want to observe that every
point in Sy occurs in this fashion, that is,

U{o(C): CET(N)} = Sy.

This is a consequence of a general characterization of Hermitian matrices due to several

authors. Namely, if 4 is a Hermitian matrix of order N with eigenvalues A} = - - - Z Ay,
and diagonal entries d; = - - - Z dy, then

(21) d1+"‘+dk§>\|+“'+>\k

forl =k=N-1,and

(22) d1++dN=)\1++>\N=tl’(A),

(see [501). Conversely, given real numbers { d;, \;} satisfying all these conditions, there
exists a real symmetric matrix 4 with diagonal entries d,, - -+, dn, and eigenvalues
A, -, Axv (Horn [29], Mirsky [43]; in contemporary terminology, the vector of diag-

onal entries is majorized by the vector of eigenvalues of a Hermitian matrix [42]).
In our case, however, the result follows more directly from a theorem of Fillmore [16],
namely, that any matrix A4 is unitarily equivalent to one with a constant diagonal. This,
in turn, is an easy consequence of the convexity of the numerical range W (.A4), so that
tr (4)/N € W(A), and an induction argument.

The upshot of the above paragraph is that, given (X, -+, Ay) € Sy, there is a
correlation matrix C with these numbers as its spectrum. How, in practice, is such a
matrix to be obtained? As already noted, answers have been given by Chalmers and
Bendel and Mickey; there is also the paper by Chan and Li [5] which more generally
provides an algorithm for constructing a real symmetric matrix with given diagonal
entries and eigenvalues satisfying the conditions (2.1) and (2.2). It appears that for
present purposes the most natural is that proposed by Bendel and Mickey, namely,

(2.3) C=Ry-1""RSR{DR Ry - Ry,
where D = diag [A;, * - -, Ax], and Ry is a rotation in the plane spanned by the standard
unit vectors [, and /i, ;. The matrix R, has the form
I,
c s
-s c

In-k-1

with ¢? + s2 = 1. The rotation angle arc cos (¢) is chosen so that the kth diagonal entry
of C is one.
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We can strengthen the preceding remark by replacing the diagonal matrix D in
(2.3) by A = U*DU, U unitary. That is, 4 is an arbitrary positive-definite matrix with
spectrum {A;, - -+, Ay}. Then A can still be transformed into a correlation matrix C,
as before, and there are, in fact, exactly four choices for each Ry in (2.3).

To see this, consider first the specification of R,. Ry AR, should have a diagonal
entry equal to 1. Let 4, be a principal 2 X 2 submatrix of 4, say

a b
=5 a)

with a, d > 0. Let Q be a 2 X 2 orthogonal matrix, either a rotation

[ ]
-

Then the upper left entry of Q*4,0 is ac® + 2 Re (b)cs + ds?, respectively. From the
behavior of the Rayleigh quotient of 4,, we see that this quadratic form in (¢, s) will
somewhere assume the value one if and only if 4, has one eigenvalue less than or equal
to one and the other greater than or equal to 1. Now since a, d are diagonal entries of
A,and tr (4) = N, A4, can be chosen so that one of a, d is less than or equal to 1, and
the other greater than or equal to one. Its eigenvalues A\; = A, then satisfy

A2 =min {A4,x,x)=min (a,d)

or a reflection

=1=max (a,d)=max (4,X,x)=\,.

So the condition on A, is satisfied, and therefore four choices of Q exist to yield a 1 in
the upper left corner of 0*4,0. R, is then created immediately as a direct sum of Q and
an identity matrix. The whole procedure can then be repeated, since the sum of the
remaining diagonal entries of R; AR, is N — 1.

The preceding remarks are a slight elaboration of some made at the end of § 4 of
[40]. We note that in all the discussion of this section so far, there are no issues of
randomness. These can be introduced in two stages. First, if a point (A, -+ , A) € Sy is
given, we can form the corresponding diagonal matrix D, select an orthogonal matrix V'
at random from the orthogonal group O(N) with normalized Haar measure, and select
a succession of orthogonal matrices, one of four choices at random at each step, so as to
transform V' *DV into a correlation matrix C. This C may fairly be said to be a random
correlation matrix with specified spectrum. Second, the spectrum may itself be chosen
from some probability distribution on Sy. The resulting matrices are said to have a
random spectrum. The special case where the distribution of Sy is uniform will be discussed
at some length in § 3. Some issues involved here are that this method is evidently rather
computationally expensive, and that the distribution of the entries of the resulting cor-
relation matrices is not well understood. However, we will be able to say something about
the distribution of some global features of these matrices.

2.2. Random Gram matrix. We first quickly review the concept of Gram
matrix. Let x;, -+, xy be linearly independent vectors in any pre-Hilbert space. The
corresponding Gram matrix is the N X N Hermitian matrix G = G(x, - -+ , xy) with
(i, j)-entry = {(x;, x;). The determinant g(x,, - - -, xy) is called the Gramian of the
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set {x;, -+, xy}. Clearly, the covariance matrix of a set of normalized second-order
random variables falls under this definition. In general, Gram matrices are positive semi-
definite as follows from the formula

<Ga, a> = " z aixiuzg(),

for any N complex numbers «;, - - -, ay. Furthermore, as already noted in § 1.2, by
Cholesky factorization, any real positive-definite matrix is a Gram matrix; more generally,
any complex positive-semidefinite matrix has a positive-semidefinite square root, and so
is a Gram matrix.

The Gramians are symmetric functions of their arguments, and obey the inequalities
(2.4) 0=g(xy, -, xn)=loxl? - lxul?,

with equality on the left if and only if {x;} is linearly dependent, and equality on the
right if and only if { x;} is orthogonal. To prove the right-hand inequality we first reduce
to the case that each x; is a unit vector, and then

g(xy, = ,xy) N = (TIN) VY
NN ’

where {\;} = o(G).

We sense from this that the Gramian and other spectral features of the Gram matrix
bear some relation to the relative orientation of the vectors { x; } . Along this line we recall
that if the vectors x; belong to R”, then

N N
(2.5) vol ([Z Aix;: 0§Ki§0i1)=g(xn, cexwn) 2 T es,
1 1

so that, in particular, g(x;, - - -, xy) is the square of the volume of the parallelepiped
spanned by the set {x;}. If the x; belong to some other space, (2.5) serves to define this
volume.

In addition to the simple Hadamard inequality in (2.4), we have further

g(xl9 s Xma Vi, 9yN)§g(xl9 o axm)g(y19 e 9yN)9

and, in fact, the ratio of the left side to the right side is known to be sin? ;- - -sin? ayy,
where «y, - -+, ap, M = N, are the angles between span {x;} and span {y;}.

Gram matrices occur naturally in all manner of least squares problems, such as
Gram-Schmidt orthogonalization, linear regression, and pseudoinversion. Indeed, the
basic problem of computing the orthogonal projection onto span { x; } requires the solution
of a linear system with Gram coefficient matrix. It is familiar that as the basis vectors x;
deviate more from orthogonality, such problems become more ill-conditioned, and as-
sociated statistical procedures are said to suffer from “collinearity.” For example, if x;(¢)
is the monomial ¢/, and the inner product comes from some Lebesgue-Stieltjes measure
with compact support, then the corresponding Gram matrices, indexed by N, have a
condition number that grows at least as fast as 4”; the classical Hilbert matrices are
special cases ([61], the main result of this reference is reviewed in Appendix B; for a
recent review of the collinearity problem with suggestions for its measurement by more
subtle indicators than simply condition number, see [58]).
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TABLE 1
Statistics for random N X N matrices.

N=5 10 N=5 10
Mean c.n. 111, 553. 1.37E6 7.85E6
Standard dev. 754. 1.18E4 4.29E8 2.19E8
Median c.n. 15.8 40.5 114. 809.
Interquartile range 30.7 80.9 446. 3533.
Trimmed mean 39.2 95.4 1.57E3 1.57E4
Standard dev. 70.3 157. 5.48E3 6.65E4
Mean F norm 2.88 4.24 2.99 4.36
Mean norm 2.31 2.92 243 294
Mean min. e-value 191 .100 .042 .009
Standard dev. .161 .093 .054 012

Random spectrum Random Gram

As a reference point for later use, we record here a well-known distance formula
involving Gramians. Let M = span {x;, -+, Xy}, and let x be another point in the
space containing M. Then

g(-xla e ,xNax)
g(xls T ,XN)

Recall that random Gram matrices were defined by Method 4 in § 1.2. In present
notation the x; are taken to be random vectors uniformly distributed over the sphere
S¥1in RY. We now report some results from a small simulation, intended to compare
such matrices with those of random spectrum (Method 3). We give here only the cases
N = 5 and 10, as they appear typical of all cases considered. In each case, the summary
statistics are based on 1,000 trials. In the left column of Table 1, c.n. means condition
number, F norm mean Frobenius norm, and norm means spectral norm. Also, trimmed
means that the largest one percent and smallest one percent of the samples have been
deleted.

Probably the most striking contrast to be made on the basis of this numerical ex-
periment is the much higher condition numbers of the random Gram matrices relative
to those of the matrices with random spectrum. This aspect of the data persists even after
trimming, and after passing to medians. It strongly suggests that random Gram matrices
do not have a random spectrum. It also raises interesting questions about the relative
orientation of a batch of two or more vectors drawn independently from the uniform
distribution on the (N — 1)-sphere. Some of these will be considered in § 4 below.

(2.6) dist (x, M)?=

3. Correlation matrices with random spectrum. Some background for the chapter

was given in § 2.1. There, two essential steps in this process were recognized:

—Pick a point A = (A, - -+, Ay) “at random” from the simplex Sy, and form the
diagonal matrix D = diag (A, - -, Ax).

—Construct a matrix C = R*V*DVR, where V is drawn at random from the
orthogonal group O(N), and R is a product of randomly selected rotation/re-
flection matrices, chosen to successively put ones on the diagonal of C.

Naturally, the second step leaves o(C) = A, and hence leaves all spectral functions of C
unchanged. Among such functions are the spectral and Frobenius norms of C, and its
condition number. (In general, any unitarily invariant norm of a Hermitian matrix is a
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spectral function of that matrix.) Consequently, once a probability distribution is selected
on Sy, so as to define the “at random” condition of the first step, the spectral functions
of any correlation matrix defined by the second step may be studied directly. Note that
this approach does not apply to other numerical attributes of C of possible interest, such
as its individual entries; their distribution naturally depends in part on those of the V'
and R matrices.

3.1. Method of generation. From the preceding discussion we see that a probability
distribution p must be specified on the simplex Sy. Then a sample A drawn from p will
be a random spectrum. Having no reason to weight any region of Sy more than another,
we will take u to be the uniform distribution on Sy, and denote by

A~ U(Sy)

a point \ so chosen. Two tasks remain:

—Specify p analytically,

—Specify u operationally.

This latter task simply means to prescribe a method for a computer to make these draws
in terms of an assumed capability to generate pseudorandom numbers ~ U[O0, 1].

The analytical specification of u depends on (a special case of) the general
theory of order statistics and spacings. Here we only need the case of independent sam-
ples from the uniform distribution. Thus let u) = --- = y-,, be the order statis-
tics of a random sample from U([O0, 1]). Define u) = 0, and u), = 1. As shown by
Wilks [66], the joint distribution of these order statistics is uniform over the simplex
{0=x;=:-- =xy_; =1} in RV "', Then the spacings of the sample are defined by

Si= UG~ Ui-1)s 1=i=N.

Observe that for each sample, the spacings are positive numbers that sum to one. It was
also shown by Wilks that the spacings vector (s;, - -+, Sy—) is uniformly distributed
over the simplex

N-1
[0§x,~, > x,él] in RV-1.
1

Now, for fixed N, the mapping
T(xy, -+ sxn-1)=(Xy, s XN—1, L=Xy = — XN y)

carries this simplex bijectively onto the simplex {0 =< x;, 2 x;-;} in R", and carries
over the uniform density (by an elementary change of variables).

The upshot of the preceding paragraph is that, for fixed N, the uniform density u
on the simplex Sy can be specified analytically as the distribution of the random vector

(3.1) NT(sy, - ,5n-1)-

And, of course, it follows that u can be specified operationally in terms of pseudorandom
number generator, and a sorting routine.

There is by now a fairly extensive literature of spacings (sometimes known as “gaps,”
“coverages,” or “random division of an interval”). This topic can be traced back to the
work of Whitworth [64] at the turn of the century on the distribution of the largest
spacing. His result was utilized by Fisher [17] to give a significance test for the largest
amplitude in a numerical harmonic analysis of a time series. (In fact, Fisher’s test turns
out to be the uniformly most powerful symmetric invariant decision procedure against
simple periodicities. More recent work is concerned with compound periodicities, and
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hence with the distribution of other functions of the spacings besides the maximum. It
is not germane to detail any of this work here; the interested reader may consult some
papers of Siegel, e.g., [S1]. We merely want to draw attention to the unexpected link
between the spacings concept and time-series analysis.)

In the later 1930s and then in the 1940s other work on distributions of functions
of spacings was done by several authors: Levy, Greenwood, Moran, etc. Most of this
originated as specific problems in applied statistics. The best review of all this is that of
Pyke [46]. Other useful references are [8] and [55]. Among (many) other things, these
references point out alternative analytical specifications of spacings. For instance, if
V1, -+, yny are independently exponentially distributed with arbitrary mean, and
z=y + -+ + yy, then the random vector

Z_l(yla e ,J’N)

is distributed as the spacings vector T(s{, ---, sy—). Hence random spectra can
also be generated by use of exponential variates. From this it follows that spacings
can also be simulated from the (normalized) interarrival times of a Poisson process
{N(2):t 2 0} with N(0) = 0. Namely, if T} is the elapsed time between the (k — 1)st
and the kth event, and >0 is fixed, then the conditional distribution, given
N(t) =n, of

1Ty, o Tyoiyt— Tag)

is the same as the spacings vector. This is a classic construction of spacings with important
modern applications to the limiting behavior of empirical processes [46].

The distribution of spacings and some functions thereof is also briefly discussed by
Kendall and Moran in [34]. Naturally, geometric aspects are stressed. For instance, the
joint distribution of the spacings is, with proper scale factor, exactly that of the lengths
of the N perpendiculars from a random point inside the simplex Sy to the N sides. The
authors go on to discuss some situations where probabilities can be computed from
simplicial geometry.

3.2. Distribution of eigenvalues. Pursuant to the foregoing discussion we take as a
random spectrum A € Sy, N times the random vector of spacings defined by a random
sample of size N — 1 from the standard uniform distribution. We denote this vector as
A= (A, - -+, Ay). In this short section we discuss the distribution of the \;, while in the
next two sections we consider that of certain functions of the A; related to correlation
matrices C with ¢(C) = A.

We first note that the A; are exchangeable random variables since, because of the
uniform distribution of A on Sy, that distribution is unchanged under permutation of
its components. It follows that the \; are identically distributed and, using the formula
for the least order statistic, the distribution function Fy is given by

A\
(3.2) FN(t)=1—(1—-N) .

Thus, for large N, \; is approximately exponentially distributed with mean one. From
(3.2) we can conclude that

N—1
E(\)= A)=——
A\)=1, var (A;) N1’
for each i.

Expressions for the joint distribution of the \; have been given by Steutel [55].
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Namely,

1 N-1
(I_Nzal) s Zai<N9

0 ifnot

Pr(A>a, -, Av>an)=

and

N N-1 N-1
~ +
Pr()\léa.,-~-,}\N§aN)=l—z< —‘3‘1) + 3 (1—"‘—’——"‘—") —t
j=1 N 1=sj<k=N N
These formulae are derived by Laplace transform techniques and the relation, already

alluded to in § 3.1, between the spacings distribution and that of certain exponential
variates.

In similar fashion we could go on to describe the joint distribution of pairs (A;, A;),
the associated covariance, etc. Here we will just note that

-1
corr(}\i,}\j)=m.

But actually all such formulae of likely interest follow directly from the multiple moments
SJormula

L(p+1)---T(pyt+1)
I'(p+N) ’

(3.3) E(\'- - N2y = NPT(N)

where p = p; + - - - + py. This expression can either be derived by the Laplace transform
method of Steutel [55], or, somewhat more directly and geometrically, as in Kendall
and Moran [ 34, p. 34].

3.3. Distribution of norms. We continue with the assumption that we are dealing
with a correlation matrix C whose spectrum A has been chosen randomly according to
U(Sy). The issue now is the distribution of the norms ||C|| and ||C| f, as defined in
Appendix A.

Let us begin with [|C||%2 = = \? which, for both typographical and historical reasons,
we will denote by GM(N). In the statistical literature this quantity is known as the
Greenwood-Moran statistic, after the authors of [23] and [44]. It was originally proposed
as a test for uniformity in response to a problem in epidemiology (time intervals between
outbreaks of an infectious disease ). Moran [44] derived a general formula for the moments
of GM(N); it was rederived by Steutel [55]. For us, it is enough to use the moments
formula (3.3) to obtain

2N?
E(GM(N) =+~
2 AN*(N+5)
E(GM(M) (N+1)(N+2)(N+3)
and hence
4N —
var (GM(N))= ANA(N—1)

(N+1DAH(N+2)(N+3)
=O(N).
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A second point to be made about GM(N) is that it is (slowly!) asymptotically
normal, a result due originally to Moran [44], and reproved by a more general method
by Darling [7] (see also [46], [55]). As usual, Pyke has the most complete discussion
of this topic. Once this asymptotic normality is established, the corresponding property
of (GM(N))'? = |C|r can be worked out by general theory concerning smooth
functions of asymptotically normal variates. In fact, since GM(N)/2N has mean
N/(N + 1) =~ 1, and variance ¢% = O(1/N), its asymptotic normality implies that
(GM(N))'/2/2N is asymptotically normal with mean one, and variance o%/4. Hence
(GM(N))!? is asymptotically normal with mean V2N, and variance INo% = 4.

Next we consider the spectral norm ||C||, for an N X N correlation matrix C with
random spectrum as usual. Since [|C| = Anax, the maximum eigenvalue of C, the dis-
tribution of |C| is that of N times the maximum spacing determined by a random
sample of N — 1 points from the standard uniform distribution. We let V' denote this
maximum spacing, so that A = [|C|l = NVy.

As already noted in § 3.1, the distribution of Vy goes back to Whitworth [64], and
has a history of interesting statistical applications. A convenient source for this distribution
is [7], wherein we can also find a derivation of the asymptotic behavior, due originally
to Lévy [37]. We find that

N N k N-1
Pr(NVN<x)=k§0(—l)k(k)(l—Wx)+ ,

where (t), = max (¢, 0). From this we could derive the mean and higher moments, as
needed. As a somewhat neater alternative, we can appeal to some well-known relations
between the distribution of the spacings and certain exponential variates, as briefly re-
viewed in § 3.1. Now making use of the fact that the sum of exponential variates y; is
gamma-distributed, and the known distribution of the order statistics from the exponential
distribution, we can obtain

NVy=~Nmax {y;}/z.

Also, a formula was given by Devroye [10]:

el

In both cases z = y; + - - - + yy. From all this we can deduce that

1 1
max = V =1+—+...+_
E(Amax) =E(NVy) > N

~log N+,

where vy = .577- - - is Euler’s constant.
Finally, the Levy-Darling asymptotic formula for the maximum spacing, scaled to
apply to the maximum eigenvalue of the matrix C is

Pr(NVy<log N+x)—>exp(—e™),
as N = oo. From this, it follows that
var (NVy)—>2/6,

asN—> .
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Thus we have obtained the exact means of the norm functions ||C| % and ||C||, and
the asymptotic behavior of these, along with ||C|l, as N = co. In particular, we have
observed that the Frobenius norm tends to normality, while the spectral norm tends to
obey an extreme value distribution.

3.4. Condition number expectation. We continue to study an N X N correlation
matrix C with random spectrum. Now our focus is on the distribution of the condition
number «(C), as defined by (B1). As we know from (B3), k(C) = Amax/ Amin, the ratio
of the largest to the smallest eigenvalue of C. We have just described the distribution of
Amax = ||C|l. In fact, the joint distribution of (Ayax, Amin) can be inferred from the work
of Darling [7], in the following form:

NN\, N—j \V !
Pt (Amin> X, Aax <) = 2 ( . )(—)’(1 —x(—’)—yi) .
j=o0\J N N +
From this, by letting y = N, we obtain the distribution for the least eigenvalue:
(3.4) Pr Amin>x)=(1—x)""1, 0<x<l.
This formula yields the moments of Ap;, as
N—-1
N*(N+1)’

We might pause here to collect the formulas giving the expected behavior of the
eigenvalues, and their important functions, as a function of N, for N X N correlation
matrices with random spectrum. Namely, we have seen that

E\)=1, iENEN,

1
E(Amin)'—_ﬁa Var(xmin)=

E(Amax) NlOg N+,
E(>\min)= 1/N>
E(S )~ 2N.

Returning now to the joint distribution of (Apax, Amin), it can also be inferred from
[7] that these quantities are asymptotically independent, as a consequence of the formula

Pr (Amin>—]):;,>\max<log N—log y)-*exp (=x—»),
as N = oo. This permits us to write, for large N,
E(K(C))= E(>\max/>‘min)
~ E(Amax)E(l/Amin)

However, although the first factor is finite, as we know, the second is not:

1
E( ! )=f 1—Ci(l~(1—x)""')a'x
o

Amin X dx

11 _ w\N—1
v [

1
=(N—1)L<}l€+-~-)dx=+oo.
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This observation suggests that the condition number «(C) may not have a finite
first moment. Additional grounds for such suspicion can be based on its validity at the
other extreme case where N = 2. In this simple case the assertion goes as follows: if a
single number s is drawn at random from the interval [0, 1], and U (respectively, V') is
the min (respectively, max) of {s, 1 — s}, then the ratio ¥/ U obeys the distribution

V,\-t=1
Pr ( T SR
and so has infinite expectation. This formula is derived by Feller [14, p. 24]. We now
generalize this fact to the case of arbitrary N.

THEOREM. Let C be a correlation matrix with random spectrum. Then the condition
number k(C) has infinite expectation.

Proof. In the notation of § 3.1 we let 0 < uy < up) < -+ < w1y < 1 be the
order statistics of a random sample of size N — 1 from the standard uniform distribution.
The joint distribution P of these statistics is the ordered (N — 1)-variate Dirichlet dis-
tribution [66, § 8.7], and is uniform over the region

Q={x:0<x1<X<-*<xy-1<1}

in RY. Therefore,

- R
E(K(C))=f‘ . rmax {uayuey—uw, = 1 —uw-1} dP
Q L

min {--- - }
m DY
=N(N— l)gf. .. M du(l)- "du(N—l)
T Uy

1
g(N_l)!f... u—du(l)"'du(N—l)a

T (n
where T is the subregion of Q defined by
X =min {X—Xx1,X3—X2, ", 1 —xy_1},

and we have used that the maximum spacing greater than or equal to 1/N. Now, the
last multiple integral over 7 exceeds, for sufficiently small ¢ > 0, the iterated integral

edxl 1 —(N=2)x 1—(N=3)x 1-x;
— dXZ dX3' c de—l
s[) x x|

X1 2x) 1+ X2 1+ XN-2

=L81/(N_ !+ x1g(xy) dx,,

X1

where ¢ is a polynomial. This last integral is clearly divergent. O
This completes our discussion of correlation matrices with random spectrum except
for the spectral distribution function, for which, see § 4.4.

4. Correlation matrices with random Gram structure. In this final chapter we dis-
cuss random Gram matrices, as defined in § 1.2, and briefly discussed in § 2.2, along
with some simulation results. We will follow the same plan as in the preceding chapter,
namely, generating such matrices and distribution of certain related random variables.
Finally, we will make a few comparisons between the sample behavior of the two types
of random matrices.
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4.1. Method of generation. We recall from § 1.2 that an N X N random Gram
matrix C has the form

(4.1) C=TT*,

where the rows of T are independently and identically distributed vectors distributed
uniformly on the sphere S¥~!in R". That is, for each row ; of T', we have

L~ USY).

So, just as in § 3.1, the first question is how to express such random vectors in terms of
standard univariate random variables.

Not surprisingly, this is a well-researched problem, with contributions dating back
at least 30 years. The short paper by Marsaglia [ 39] has a review of this early literature,
along with an improved method. More recent references are the pragmatic paper by
Rubinstein [49], which also discusses the problem of § 3.1, and the extensive book of
Devroye [9]. Again we distinguish between the analytic and the operational specification
of U(SM™!). The basic analytical result is that if X is a continuous radially symmetric
N-dimensional random vector, then its projection on the sphere is uniformly distributed,
that is,

X/NX N ~USY~h).

In particular, we can take X ~ N(#0, I), the standard spherical multivariate normal dis-
tribution. Operationally, the components of X can be generated by any of several standard
pseudorandom normal variate routines. These eventually utilize pseudorandom uniform
variates. The latter can also be used more directly to generate pseudorandom U(S™ ')
vectors, as is pointed out in [39], [9, Chap. V]. These are in addition to the brute force
acceptance-rejection method, which tends to be very inefficient for large N (N = 5, say).
However, we will stick with the projected normally distributed random vectors.

Suppose now that we have a random vector X ~ U(S™~!). It will be important to
know how the components of X are distributed. It turns out that each

1 N—1
(42) x?‘~Beta(§,——2——),

and that the density function of x; is
(4.3) Cy(1—2)N =372 [t] <1,

where Cy = I'(N/2)/(I'(1/2)T((N — 1)/2)) is a normalizing constant. It is interesting
to observe that these distributions vary considerably with dimension. In particular, we
see that x; follows an arc sine distribution when (x;, x,) ~ U(S'), while x; is uniform
on (—1, 1) when (x;, X, x3) ~ U(S?). As N increases beyond three, the density is
unimodal with an ever steeper peak at ¢ = 0.

We might note here that the joint density of two or more of the x; is also available,
as a consequence of some work of Stam [54].

As a consequence of these facts we have the following geometrical lemmas: if X, Y
are independently and uniformly distributed on SV !, then

(4.4a) E(X,Y))=0,
1
2y—
(4.4b) E({X, Y) )—N,
(4.40) var ((X, Y)?) = =N 1)

N3 (N+2)°
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Indeed, (4.4a) is a consequence of the so-called “formula of total expectation,”
E(f(X,Y))=E(E(f(X,Y)| X)),

for scalar functions of two random vectors. The other two equations follow from realizing
(X, Y )?* as the squared length of the projection of a random point in SV~ 1 on arandom
axis, along with standard properties of the beta distribution. This geometrical information
will be used below in the next two sections.

4.2. Distribution of norms. As earlier, in § 3.3, we will study the distributional
behavior of |C||r and ||C|, but where now C is a random Gram matrix of the form
of (4.1), with the rows of 7" uniformly distributed over the unit sphere of appropriate
dimension.

The study of ||C|| % is greatly facilitated by the preceding results, since these imply
that the square of each off-diagonal entry of C has the beta distribution of (4.2). It follows
immediately that

E( ||C|| ZF) =N+ 2lm
(4.5) N o2

=2N—-1.

However, a variance formula is not so immediate, as we indicate next.
We consider the second moment of ||C| % about the origin, that is,

N-1 N 2
(46) E<||cn4F>=E((N+2 s S c))
i=1j=i+1

Recalling that the first two moments of the beta distribution B(a, b) are a/(a + b) and
a(a+ 1)/(a+ b)(a+ b+ 1), respectively, we have, upon expansion of (4.6),

4y= N2 L NV 1)
E(ICIF) N +4N-———
3 N(N-1)
(4.7) +4 N(NT2) 7
N(N-D)[N(N-1) ]
+4- 2 [ 2 1] X,

13 ”»

where “x” is a generic notation for E(cjc%), for i # k or j # I. Certainly if both i # k
and j # /, then x = 1/N?, by independence.

In the remaining cases we are in the following situation. We have three random
vectors u, v, w independently and identically distributed U(SY~!) and we are considering
the bivariate distribution of ((u, v, {u, w)). This distribution has also been consid-
ered by Stam [54], who gave a formula for the density of the trivariate distribution of
({u,v),{u,w),{v,w)). He also proved that this distribution converges in total variation
to the standard normal distribution on R3. In view of the complicated nature of the
aforementioned density, and of the rather rapid approach to the normal, as shown by
simulations, we will ignore possible weak dependencies for small N, and use the ap-
proximation x = 1/N? throughout (4.7). Therefore, after collecting terms there we arrive
at the approximation

N—-1 2
. ) ~4N*—4N—1+6—F+—.
(4.8) E(IC| %) ~4N 6N TN
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Simulations show this to be actually very accurate for N 2 5. (In fact, extensive statistical
testing never permits rejection of the hypothesis that the variates (u#, v) and {u, w) are
uncorrelated, for any N.) Finally, we see that

N—1 2
var (|C13) ~6——=+—-2,

which, of course, is approximately four for large V.

These formulas for the first two moments of |C|| % invite comparison with the cor-
responding formulas for correlation matrices with random spectra developed in the pre-
ceding chapter. While the means are very close, and asymptotically equivalent, there is
a distinct difference in the behavior of the variances. Namely, the variance of |C| %,
when C has random spectrum, varies as 4N, approximately, while that of |C||%, when
C is random Gram, is asymptotically constant.

Writing ||C|| % in the form used in (4.6 ), and appealing to the central limit theorem,
the asymptotic normality follows readily:

N?—2N+1
||C|i%~N0rmal(2N—1,4—)’

N?*+N
for large N. As in the earlier section we could also establish the asymptotic normality of
ICllF, but at this point that can be left to the interested reader.

We now want to turn to the issue of the distribution of the spectral norm || C|| of a
random Gram correlation matrix C. This particular topic brings us to the edge of a large
and active field of research on the spectra of random matrices (see, for instance, Section
II of the AMS conference proceedings [47]). This area has a long history, as indicated
in the papers of Girko [20] and Geman [19] and their references, as well as the AMS
volume. In turn it relates to many studies in the multivariate statistics field of spectral
behavior of sample covariance matrices, for which see, for instance, Anderson [1].

The essential observation runs as follows. We have C = TT* as defined in (4.1).

Then the columns of T* are independent samples from the uniform distribution on
SV~! and hence the matrix

1
Sy=—T*T= et
N N Nkz k tk

is the sample second moment matrix for such a distribution. (Here ¢, is the kth row of
the matrix 7.) Now TT* and T*T always have the same eigenvalues, and hence, as a
special case,

(4.9) IC Il = NI Swl.

With this observation we can now refer to the considerable body of previous work
mentioned in the preceding references, and also to Watson [63]. None of this seems to
be exactly what we need. In particular, it is unlikely that we can ever know the precise
distribution of ||C|| for any fixed N. However, there are many asymptotic results. Here
we will just take note of an improvement of Geman’s theorem by Yin, Bai, and Krishnaiah,
as referenced by Yin and Bai [67]. Namely, let X, be a p X n random matrix with
independently and identically distributed entries, » = n(p) an increasing function of
p with

lim £=y, O<y<oo.
p>o N
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Suppose that the entries of X, have mean zero, variance o2, and finite fourth moment.
Then

(4.10) lim =(1+Vy)%? as.

p—>

1
nrte

At this point of the original version of this paper we made the conjecture that

(4.11) lim |C]l=4 as.

h—> oo
and advanced some reasons in its support. Here Cis an N X N random Gram correlation
matrix. First, we know from [19] that if N X N matrix G has independent entries, each
a standard normal variate, then

1
lim —[|[GG*|=4 as.
N 1—‘;noo N ” ” as

Next, let D be the N X N diagonal matrix with ith diagonal entry equal to
1/]lith column of G|, and set T* = GD. Then

1
ICl =IT*T| = |GD*G*| =NHG(ND2)G*II,

and insofar as ND? ~ I for large N, we may expect (4.11) to hold. We suggested that
an order statistic analysis of the X? distribution might be helpful here, but did not go
further. However, one of the referees observed that this heuristic could be made rigorous,
and the next paragraph is a slight paraphrase of his remarks.

The key fact is that not only is it true that

X*(N)
Iim ——=1 a.s.
n-—> o0 N ’
.o
e ®)
] 0.037 0.033
0.063 0.051
0.080
o
1 0.118
c
o]
[})
=
o N
a.
€
[¢]
m b
= T T T T T T T T T T T T T T T T T ]
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Order of Matrix

FIG. 1. Empirical spectral norm of C = TT*.
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but also the same is true for
max {X*(N)/N:1=i=N} and min{X*(N)/N:1=<i=N}

[52]. Now with H = V—JE, the eigenvalues of both H and H ! tend to one almost surely,
uniformly in i. So we have [(GH) | = [(G) ()| = [(GH)II(H) I (H~") |, which
implies that |GG*||/ | G(ND?)G*|| tends to one as N = oo, and thereby validates (4.11).

Finally, a simulation for N = 100 leads to the empirical curve of E(||C|) against
N shown in Fig. 1. Each data point for N = 50 is based on 500 trials, while those for
N = 175, 100 are based on 50 trials. The sample coefficient of variation is shown next to
the data points.

4.3. Condition number expectation. In § 3.3 it was shown that the condition number
of a correlation matrix with random spectrum has an infinite first moment. In the present
section we will demonstrate the analogous fact for random correlation matrices of Gram
type. The numerical results reported back in § 2.2 (refer to Table 1), along with their
theoretical result just mentioned, certainly have prepared us for this fact. Recall that the
key empirical difference between the two main types of random correlation matrices
was, in fact, the comparatively ill conditioned nature of random Gram matrices. We will
discuss some other aspects of the spectral behavior of such matrices in the next section.

THEOREM. Let C be a random Gram correlation matrix. Then the condition number
k(C) has infinite expectation.

Proof. Making use of Taylor’s inequality (B10) we have C = TT* and

K(CO)=lCIC™ = 1/min d7
z1/d},

where d; = dist (¢;, M;), t; = ith row of T, so each ¢, is independently and identically
distributed and ~U(S"~ "), and M, = span {¢;: j # i }. Now since codim (M;) = 1 in
RY, almost surely, d, is the magnitude of the projection of ¢, on the line M7 . Let u, be
a unit vector in this subspace; then

d%=<£1’£1>2-

That is, d? is the squared length of a random point on a random direction, and, as such,
it has the distribution of (4.2), with moments given by (4.4). See also [40]. Therefore,

E(x(C))z E(1/d})

1 t~1/2( 1— t)(N_ 3)/2 dt

“Jo BUA.(N-1)/2) ¢

and this integral clearly diverges at zero. O

4.4. Empirical spectral behavior. This final section addresses the question “How
random is the spectrum of a random Gram matrix?”’. Now, in one sense, this question
has already been answered by the results of §§ 3.3 and 4.2. Namely, in those sections we
derived the behavior of |C|%, |C|lr, and |C| for both types of random correlation
matrices. Expressing these functions of C in terms of the eigenvalues shows that, at least,
not all spectral functions behave the same, and hence, in particular, that random Gram
matrices do not have a random spectrum. Below, we will briefly discuss some other
aspects of this question.

We begin by considering the behavior of the least eigenvalue Ay of an N X N random
Gram matrix C. In view of the boundedness of ||C|| as N = oo and the earlier observed
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higher condition numbers of such matrices relative to those with random spectrum, we
might expect Ay to be much smaller than the least eigenvalue of a correlation matrix
with random spectrum. Now, the same kind of argument as was used in § 4.3 leads to
the conclusion that lim Ay = 0, almost surely. But the same is true for the least eigenvalue
of a correlation matrix with random spectrum, as follows from the distribution function
formula in (3.4). However, use of this formula in a Kolmogorov-Smirnov one-sample
test of the hypothesis that Ay obeys this distribution leads to its rejection, at the 99 percent
level, at least for N = 20.

Instead of dealing with the extreme eigenvalues A\, Ay, of C we can also inquire
about the behavior, in some sense, of the entire spectrum ¢(C). For example, we have
already considered the statistic

N
ICIE= 2 A2,

i=1

and noted that asymptotically its mean behavior is that of a matrix with random spectrum,
but its second moment behavior is quite different. But the most striking distinction
between the two types of random correlation matrices can be made by considering their
spectral distribution functions, and we turn to this topic next.

Given any square matrix A with real spectrum, its spectral distribution function F,
is defined by F4(x) = fraction of number of eigenvalues = x. When 4 is random then,
of course, so is F,4(x). In this situation the asymptotic behavior of F, has long been of
interest (some useful surveys of this field are [62], [65], and [67]). Let us see what these
distribution functions look like, for large N, for each of our two types of random correlation
matrices. The situation is fairly simple for the case of random spectrum, thanks to the
fact that each eigenvalue is identically distributed according to (3.2). It follows that the
limiting spectral distribution function is Frs(x)=1—¢7%,0 < x < 0.

By contrast, the situation for random Gram matrices is less immediate. The basic
relevant fact is the “quarter-circle law for Gaussian matrices” [65]. This states that if
the matrix G is defined as just after (4.11), then its spectral distribution function converges
to the distribution function of a random variable S?, where S has probability density
function (pdf) of = 1/2x((4 — t2))"/2, =2 < t =< 2 [62]. It routinely follows that .S has
a pdf of 1/2w((4/t — 1))'/2, 0 < t < 4. But now the same analysis as validated (4.11)
can be employed to show that the spectral distribution function of N X N random Gram
matrices has the same limit. That is,

> [14
FRG(x)EELf \ /(—~1) di.  0<x<a4,
T Jo t

The fact that Frg(x) becomes infinite as x { 0 while Fgg(x) does not is perhaps the
most striking single distinction between our two types of random correlation matrices.
But, of course, in principle it applies only in the limit as N = oo. What about the cases
where N remains finite which is, after all, our primary concern? We offer two responses:
one graphical and one statistical.

The first response is displayed in Figs. 2 and 3 for the case of random spectrum and
random Gram matrices, respectively. In each case we consider in turn N = 3, 6, and 10,
and from 500 trails for each N, we compute and plot the average of the spectral distribution
functions. These averages may be compared with their limiting cases Frg and Fgrg, re-
spectively.
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The second response takes the form of a statistical test for uniformity based on the
entire spectrum o(C) = {\, -+, Ay} of an N X N random Gram matrix, for N = 30.
Namely, the transformation

1
xk=]T/(>\N—k+l+ “rrFAv- 1t AY)

replaces ¢(C) by a sample of points {x;, - -, Xxy— } in the unit interval which, under
the null hypothesis of a uniform spectrum, is a sample from the uniform distribution
U([0, 1]). In this case we applied Neyman’s test [ 53] for uniformity, based on batches
of 1,000 random Gram matrices for the various values of N. Here Neyman’s statistic

N3= 03+ v}

was computed, where the v; are the sample Fourier-Legendre coefficients when the density
function f, from which the x’s are drawn, is expanded in terms of Legendre polynomials:

f(x)=cexp (14 2 ¢Li(x)).

The motivation and theory of this test is discussed in the reference, and will not be given
here. The distribution of N?% is known approximately, and is asymptotically X2(2). The
null hypothesis is to be rejected for large values of N3. For each N we calculated the
fraction of the 1,000 samples that exceeded various percentage points of the N3 distri-
bution, with the results indicated in Table 2. It is evident from these figures and the large
number of trials that the null hypothesis of uniformity must be rejected. A closer ex-
amination of the data reveals that not only is there a very small eigenvalue Ay, as noted
above, but in fact there are enough small eigenvalues to pull the sample mean x far
enough below 0.5 to greatly inflate the value of v, (precisely,

U|=m( —_%)’

where n = sample size = 1,000, here). Incidentally, the sample coeflicient of variation
of the Neyman statistics decreased steadily from 0.27 at N = 5 to 0.045 at N = 30,
showing very little scatter about the increasingly large values of N3.

Finally, we offer two comments about the empirical behavior of the condition number
of random Gram matrices. First, for various N (=20) we generated batches of 1,000 each
of random Gram matrices and correlation matrices with random spectra, and performed
a Kolmogorov-Smirnov two-sample test on the respective condition numbers, to test
the null hypothesis of a common distribution. This hypothesis was decisively rejected
for all values of N, and this rejection continued when the samples were subjected to
trimming.

TABLE 2
Fraction of Neyman statistics exceeding various percentage
points, and sample average.

N % 50 90 95 Mean N3
5 99.8 45 10.5 43
8 100 98.5 84.4 7.0
10 - 100 99.5 8.9
15 - - 100 13.3
20 - - - 17.7

30 - - - 26.5
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TABLE 3
Empirical ratio of condition number of collinearity measure for random Gram matrices.

N Batch size Sample mean ratio Sample coeff. of var.
5 1,000 5.20 21

10 1,000 8.82 .25

20 100 15.86 .24

35 100 22.65 24

50 100 29.28 22

Second, bearing in mind the condition number bounds established in Appendix B,
we studied by simulation the tightness of the upper bound (B13). That is, for various N
(=50) we generated batches of random Gram matrices, computed their condition num-
bers, the collinearity measure on the right-hand side of (B10), and then their ratio as in
(B13). The results are displayed in Table 3. They suggest that the admittedly crude upper
bound in (B13) can indeed be reduced, and perhaps even be replaced by a term that is
of order o(N).

5. Summary. Let us now, in conclusion, summarize not only the foregoing tech-
nicalities, but also the place of this material in a larger scheme. In addition, we will point
out several issues that remain to be resolved.

As noted at the outset, our interest in random correlation matrices stems from their
interpretation as covariance matrices of purely random or “average” (standardized ) sig-
nals. A companion research project has as its goal the evaluation of the efficacy of various
group-theoretic signal processing algorithms. One ingredient that must be specified before
a well-defined question can be posed in this context is a definite signal model. As remarked
in the Introduction, such models can either be defined by a few (typically =2) parameters,
or they can be essentially nonparametric. A further possible subdivision of this latter
class is into random stationary signals, or into purely random signals. The corresponding
covariance matrices are then random correlation matrices with, in the first case, a Toeplitz
structure. The question of generating such matrices, and the statistical behavior of the
corresponding entries, spectral functions, etc., is interesting, and is being studied, with
results to be reported elsewhere [28].

We therefore have chosen to concentrate on random correlation matrices of the
two principal types defined in § 1.2, and studied in detail in §§ 2-4. We observed early
on that random Gram matrices exhibited a more exaggerated spectral behavior relative
to correlation matrices with random spectrum. As we discovered later, this is due to the
very different small eigenvalue behavior as quantified by the respective spectral distribution
functions.

Some other results, both theoretical and empirical, point out the very different spectral
behavior of these two classes of random correlation matrices. For example, the spectral
norm of a correlation matrix with random spectrum tends to grow logarithmically, while
that of a random Gram matrix remains bounded, almost surely, as the dimension in-
creases.

Some other new results pertain to condition number behavior. Specifically, in Ap-
pendix B we have extended earlier work of Taylor [61] on condition number lower
bounds, and assessed their tightness. This result is strictly deterministic. We then used
this bound to show that the condition number of random Gram matrices (of a fixed
size) has an infinite first moment. In view of our earlier empirical observations, this
conclusion was not a complete surprise. Yet it also turned out that correlation matrices
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with random spectrum also have infinite first moment (for each fixed dimension N = 2,
the case N = 2 being due to Feller [14]).

We might offer an additional comment on the condition of random Gram matrices.
Namely, referring back to the basic definition (§ 4.1), we could allow the row vectors ¢;
there to be drawn randomly from the unit sphere in a larger-dimensional space. Geometric
intuition suggests that with more “room” in the sample space, collinearity should be less
of a problem, with consequent improvement in conditioning. Numerical experiments
show that, to an extent, this expectation is fulfilled. For example, in contrast with the
data reported in Table 1, the mean (respectively, median) condition number of 500
5 X 5 random Gram matrices based on vectors drawn uniformly from the sphere S is
11.6 (respectively, 8.7). The corresponding values for 500 10 X 10 random Gram matrices
based on vectors drawn from S'° are 17.5 (respectively, 15.2). However, as long as
dim (¢;) has the form N + p, where p is a fixed positive integer, then the limiting form
of the spectral distribution function, as derived back in § 4.4, will remain the same.

Appendix A. Aspects of numerical linear algebra. This section contains a brief review
of some quantitative aspects of linear algebra that are pertinent to the material that
follows. For general background information on matrix theory we may refer to two recent
volumes: Horn and Johnson [30] or Lancaster and Tismenetsky [35]. More specialized
treatments of numerical linear algebra are given by Stewart [56] and Golub and Van
Loan [22].

A.1. Bounds on norms and eigenvalues. Given an N X N matrix 4 we shall have
occasion to use its operator or spectral norm

[ Al = max { [ Ax]/llx]l: x+#6},
and its Frobenius norm
lAllF=(Z 1ay|*)'"?.

In terms of the positive part P = (44 *)'/2 of A, we have

(A1) 0= (Al =r(P)= | Al z=Vir (P),
where r,( +) means spectral radius. Bringing in the eigenvalues \;  --- = Ay of 4, and
the singular values s; = - - - Z sy (these are the eigenvalues of P), we have || 4| = s;, and
N N
(A2) > INPENAlE= 2 57,
1

1

with equality if and only if 4 is normal (theorem of Schur and Mirsky).

For general matrices A the singular values have many fascinating properties and
applications, such as min-max characterizations, smooth dependence on A (which leads
into perturbation theory), and geometric interpretations as distances from A4 to spaces
of operators of lower rank. This latter property, on the one hand, leads into regularization
techniques for least squares signal processing and, on the other, permits generalization
to compact operators on infinite-dimensional spaces (s-number theory).

Let us now specialize to the case of primary interest here, namely, that where
A = Cis a correlation matrix. Then we have

(A3) 1=|Cll=r(C)=inf |Cll =max {[row,[|;, - - -, [rowyll; } =N,

where || - || refers to a general matrix norm induced by some vector norm, and | - ||; is
the /'-vector norm. The expression “max { - - -} above is just the matrix norm induced
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by the /®-vector norm. Its advantage, as with the bound || C ||, is that it is immediately
computable from the entries of C. Either of the extremes 1, N can be reached by some
CeT(N). The second equality is true in much greater generality, in fact, for any operator
on a Banach space [27].

If 4 is positive semidefinite, then

|a,-j| = Vaﬁajjé %(aii+ajj)’

showing, in particular, that all off-diagonal entries of a correlation matrix have modulus
less than or equal to one. Of course, such a matrix need not be diagonally dominant.

An improvement on the bound ||C| = |C| r has been noted by Leclerc [36], spe-
cifically for correlation matrices. Namely,

N—12\1/2

(A%) Icls1+(*5 ) SICly,

0

where X3 is the sum of squares of off-diagonal entries of C. The right-hand inequality
here is strict unless all off-diagonal entries have modulus one. This bound on || C| can
be either larger or smaller than the “max” bound of (A3).

At this point we have given some upper bounds for |C||, and hence for all the
(positive ) eigenvalues of C. Upper bounds for ||C™!| are equivalent to lower bounds on
the eigenvalues of C, using [|[C™!|| = r,(C™!); note that C~!, while still positive definite,
is no longer a correlation matrix in general. This kind of bound is not of particular
interest to us here, but Jower bounds on ||C™!|| are important, in connection with condition
number estimates, and will be discussed later on. Here we will just recall an inequality
of Kato [32], which gives a bound on || 47!|, for any nonsingular 4:

lATH = 1AV 1/ | det (4)].

There are innumerable inequalities pertaining to the eigenvalues of positive-definite
matrices, and more generally to the singular values of arbitrary matrices. Here we mention
just two. They are originally due to Fan [13], with a short proof now available [21],
based on the characterization of the kth singular value s,(A4) of a matrix (or operator)
A as the distance from A to the set of matrices of rank = k — 1, in the spectral norm.
Thus

Sm+n-1(A+ B)=85,(A) +5,(B),
Sm+n—1(AB) = 5,,(A)s,(B),

form,n=1.
Finally, we mention the concept of spread of a matrix 4. This is the quantity

(A5) S(A)=diam o(4)=max |\,— N;|.
When 4 = C, a correlation matrix, the following bounds on S(C) can be derived:

2 max | ¢l SS(C)=(2(IC 13— N))' /2.
i#j

Since ||C|l% = Z M, the last inequality offers a lower bound on this quantity. But, in
fact, a stronger two-sided inequality can be established, namely,

1
ES(C)2+N§ IICII%§§NS(C)2,

by working with the eigenvalues.
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An alternate concept of spread, the condition number, is defined in Appendix B; it
uses the maximum ratio as opposed to the maximum difference of eigenvalues, for pos-
itive-definite matrices (cf. (B3)).

Appendix B. Condition number estimates. The condition number x(A) of an arbitrary
matrix A is defined by

(BI) k(A)=ANNA* = IAallA],

where the “+” means pseudoinverse, and the second equality is naturally only applicable
if A is nonsingular. Note that this is the spectral condition number; other matrix norms
might be used in (B1). In terms of the singular values of A we have

(B2) 1 =x(A)=s1/sn,

with equality if and only if 4 is a nonzero multiple of a unitary matrix. (Naturally, (B2)
is restricted to nonsingular 4.) Many kinds of singular matrices 4 can have x(4) = 1;
for instance, orthogonal projections and, more generally, partial isometries.

Condition numbers are widely used as measures of sensitivity of the solution of
linear systems to inaccuracies in the data. Similarly, the condition number of the matrix
of eigenvectors of a diagonalizable matrix measures the closeness of an approximate
eigenvalue to the true spectrum. Roughly speaking, the percentage change in the (least
squares) solution x of the system Ax = b is bounded by the percentage variation in the
data b times k(A4), and this bound cannot be lowered. Thus x(A) is a measure of the
inherent resistance of a particular system to accurate solution, and which does not depend
on the particular numerical method employed. The larger the condition number, the
more “ill conditioned” a particular system is, and the less we can infer a small error from
a small residual.

We might also remark that x(A4) can be characterized geometrically by the least
angle Y resulting as A is applied to all possible pairs of orthonormal vectors. Precisely,

k(A)=cot (y/2).

It is instinctive to want to measure ill-conditioning by some function of the eigen-
values, but this is only fruitful for normal matrices. For example, there is the N X N
“Kahan matrix™”:

1 -1 -1

0 1

: -1|’

0 1
which clearly has all eigenvalues equal to one, yet a condition number greater than
(N2N=2)1/2 However, when A is positive definite with eigenvalues \; = -+ = Ay,
then
(B3) k(A)= A/ AN,

and we have the inequality of Kato:
4 (tr(A)\Y
AS———|——] .
K(A4) det(A)( N )

Thus, for correlation matrices C, k(C) det (C) is a bounded function. Note that (B2)
and (B3) together imply that

k(A*A4)=k(AA*)=«r(A)?,
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showing how the familiar “normal equations” of many least squares procedures can
become very ill conditioned (and, eventually, motivating the use of factorization methods
which deal only with A4, as an alternative).

In 1955, Riley [48] used the fact that

(B4) k(A+N)=k(A)

for any positive-definite A to suggest an iterative improvement procedure for solving an
ill-conditioned linear system Ax = b. This was a forerunner of the ridge regression and
regularization methods of statistics and signal processing, which trade off some bias for
lowered mean square error. The inequality (B4) was greatly extended by Marshall and
Olkin [41] who proved that

k(A+ B)=«k(A)

whenever 4 and B are positive definite with x(B) = k(A4).

We now turn to the matter of lower bounds for condition numbers. These will be
of greatest interest for the case of Gram matrices, but we consider first, briefly, the general
case. (We note, too, the considerable interest in recent years in numerical estimates—
not bounds—for condition numbers, by estimating some norm of the inverse matrix
[61,[12], [26].)

First, if A is any nonsingular matrix, with eigenvalues ordered by modulus:
[A{| 2 -+ 2 |Ay], then

(BS) [N/ AN Sx(A).
This follows from the relations
lA7H =" =inf { | 4x]: | xll = 1}
= | del =[x,

where eis any unit eigenvector associated with A € a(A4). Of course, as the earlier example
of the Kahan matrix illustrates, the left side of (B5) may severely underestimate the true
condition number x(A4), when A is not normal.

Now assume that A is positive definite. A variant of the well-known Kantorovich
inequality [25] tells us that
_ (my+my)?
B6 x|2=Ax, x YA x, xY=——| x||?,
(B6) 125 (. ) (A e,y ST P |

provided that

mlI=sA=m,lI,
for 0 < m; = m,. Taking m, (respectively, m,) to be the least (respectively, greatest)
eigenvalue of 4, and x any unit vector, we obtain

1
4(Ax, xYy(A7 ' x,x)Sk+—+2=k+3,
K

yielding a lower bound for k = x(A4) for each x. Of course, an estimate involving 4" is
not of great practical value.

Another kind of inequality comes from the theory of Schur (or Hadamard ) products
of matrices. We will not review this concept in any detail here; see [ 59] for a nice survey.
This product, for conformable matrices 4, B, is defined by

[A~B],<,j=a,-j'b,~j.
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This multiplication, unlike the usual one, is commutative. The original result of Schur
is that if 4, B are positive semidefinite, then so is A+ B. An inequality of Fiedler [15] for
positive-definite 4 reads

(B7) A-A7'=1.

Note that, as a consequence of either this or the left side of the Kantorovich inequality,
when Cis a correlation matrix,

[C']z1, i=1,---,N.

In 1982, Marcus [38] proved the matrix norm inequality
Il4- Bl =1 4llll B
for the Schur product. Taking B = 4™! yields a lower bound for the condition number
l4- 47 = «(A4).

Finally, in preparation for part of our discussion in § 4, we want to specifically
consider the case where 4 is a Gram matrix

AzG:G(xla e ,XN),

in the notation of § 2.2, with each X; a unit vector in some inner product space X. As
already remarked in § 2.2 it has been empirically noted that many common Gram matrices
tend to be ill conditioned, and an inequality derived in [61] can be used to quantify
these observations by providing a lower bound for «(G) in terms of the relative orientations
of the vectors {x;}. By virtue of our own numerical experiments reported earlier, ill-
conditioning is a prominent feature in random Gram matrices also. We now discuss an
improved version of this inequality, and its sharpness. These results are purely deter-
ministic; statistical implications are discussed in § 4.

We now work with a fixed Gram matrix G =G(x, - -, xy), |xll =1, i=
1, -+, N. G is a correlation matrix, and |G| = r,(G), so the real problem is to find a
lower bound on |G| in terms of the vectors {x;}. Let M (respectively, M;) be the
subspace of X spanned by {x;} ! (respectively, {x;: j # i}¥). Let {v;} be the basis for M
that is dual to {x;}. Also, for an arbitrary real or complex unit vector e (according as X
is real or complex), let b = G~ 'e. Then

G2 (G e,e)y={b,Gb)
=12 bixlI*=1vl>.

Now, with v as just defined, it is easily checked that
b=|(v,v)|,

so that if v = v;, one of the dual basis vectors in M, then Gb = ¢;, the standard unit basis
vector.

We also observe that, since M; is of codimension one in M, the duality formula for
distance,

(B8) dist (x, M;)=max { [Y(x)|: y€S(M7)},
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for x € M, implies that
di=dist (x;, M;) = {xi, v/ loill )

=1/lvd.
Putting all this together, we conclude that

16712 (G " e ey = llvill

(B9) _ 1 _gi('xla tee ’XN)

di g(xi, -+ ,xn)’

where the last equality follows from the Gramian distance formula of (2.6), and “g;”
means the Gramian with x; deleted.
The ensuing inequality

1

(B10) |G~ = max d;2=min pr

is due to Taylor [60, p. 46]. The major difference between his approach and the present
one is that use of the duality formula (B8 ) strengthens the inequality by avoiding reliance
on the Schwarz inequality. Thus the sole source of inequality in (B10) is the inequality
appearing in (B9). This inequality is only a measure of the behavior of the Rayleigh
quotient for G, and does not explicitly involve the Gram structure of G. Hence the
following theorem gives a measure of the tightness of Taylor’s inequality (B10).

[

THEOREM. —
dervy max (A7 'e;, ¢;)

= N.

Proof. For notational ease, we will replace 4~! by 4, and then
max {(Ade;, e y:i=1,--- ,N}
by u(A4). We first note that if 4 is any N X N positive-definite matrix,
1=]4]/u(4)=N,

and that these bounds are sharp (within this larger class of matrices). The left inequality
is trivial, and is achieved for diagonal matrices. The right inequality follows from

Al =r,(4)= N =tr (4) = Nu(4).

To verify its sharpness, let ¢ > 0, and D = diag (1, ¢, -- -, ¢), and apply the theory in
§ 2.1 to obtain A, unitarily equivalent to D, with constant diagonal. Then

1= Al Str (4)=Nuw(A)=1+(N—1)¢

now let ¢ ¥ 0. So the point of the theorem is that if the A’s are restricted to the class
{A: A" € T(N)}, the upper bound on || 4| /u(A4) does not decrease.
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To complete the proof, consider a special family of A’s, namely, {A: A = aly + B,
b= (1—26;b}, where a > b > 0. We have

4l a+(N—1)b

WA a
(B11) ,
=1+(N-1)=,
a
and it will be shown that @ and b can be chosen so that 47! € I'(N) and
(B12) lim 2=1.
a—»>ood

Let A = det (4). We have
A=(a—b)" " "(a+(N—1)b),
and since the diagonal entries of 47! are
(A e ey = ith-coAfactor ’
it follows that

- (a+(N—2)b)(a—b)N 2
(A7 e, ey = N-1*
(a+(N—-1)b)(a—b)
So, if A4 is to be a correlation matrix, @ and » must satisfy the equation
a+(N—=2)b=(a—b)(a+(N—1)b).
If we treat this as a (quadratic) equation for b and solve it, we obtain

_(a— 1)(N=2)+((N=2)*(a—1)*+4(N—1)(a’—a))'?
2(N—-1) '

After dividing both sides by a, and manipulating, we have

b

—_=1—-

b 1(N—2)+VN2+e—N

a a\2N—2 IN—2
where
N-2)2 4
e=¥(l—2)——(N—l)<0.
a a a

This shows that b < g and that the limit in (B12) is one, as required. O
At this point we might justify an assertion made just after (A3), namely, that

sup |4 = N.

AET(N)

We know from that equation that this supremum is at most N. That it is not less than
N follows from consideration of the same family of matrices just used, and the value of
the norms of such matrices given in (B11): just take ¢ = 1 and let b — 1.
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To sum up, for a Gram matrix G = G(xy, * - -, Xy), we have the lower bound on
k(G), due to Taylor:

G)z————,
K(G) min d?
i
an equivalent form
«(G)= max gilXxy, * - ,-XN)’

i &(xi, *+ ,xN)

and an upper bound on the tightness of this lower bound:
G

(B13) 1= MO e

lower bound

It is possible that this upper bound could be decreased, but we have not investigated this
point. Some evidence was given earlier in § 4.4.
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REFERENCES

[1] T. ANDERSON, An Introduction to Multivariate Statistics, John Wiley, New York, 1984.
[2] T. ANDERSON, I. OLKIN, AND L. UNDERHILL, Generation of random orthogonal matrices, SIAM J. Sci.
Statist. Comput., 8 (1987), pp. 625-629.
[3] R. BENDEL AND R. MICKEY, Population correlation matrices for sampling experiments, Comm. Statist.
B—Simulation Comput., 7 (1978), pp. 163-182.
[4] C. CHALMERS, Generation of correlation matrices with a given eigen-structure, J. Statist. Comput. Simulation,
4 (1975), pp. 133-139.
[5]1 N. CHAN AND K. L1, Diagonal elements and eigenvalues of a real symmetric matrix,J. Math. Anal. Appl.,
91 (1983), pp. 562-566.
[6] A.CLINE, C. MOLER, G. STEWART, AND J. WILKINSON, An estimate for the condition number of a matrix,
SIAM J. Numer. Anal., 16 (1979), pp. 368-375.
[7] D. DARLING, On a class of problems related to the random division of an interval, Ann. Math. Statist.,
24 (1953), pp. 239-253.
[8] P. DEHEUVELS, Spacings and applications, in Proc. 4th Pannonian Symposium on Mathematical Statistics,
D. Reidel, Dordrecht, Holland, 1983, pp. 1-30.
[9]1 L. DEVROYE, Non-Uniform Random Variate Generation, Springer-Verlag, New York, 1986.
[10] , Laws of the iterated logarithm for order statistics of uniform spacings, Ann Probab., 9 (1981),
pp. 860-867.
[11] P. DIACONIS AND M. SHAHSHAHANI, The subgroup algorithm for generating uniform random variables,
Prob. Engrg. Inform. Sci., 1 (1987), pp. 15-32.
[12] J. DIXON, Estimating extremal eigenvalues and condition numbers of matrices, SIAM J. Numer. Anal.,
20 (1983), pp. 812-814.
[13] K. FAN, Maximum properties and inequalities for the eigenvalues of completely continuous operations,
Proc. Nat. Acad. Sci., 37 (1951), pp. 760-766.
[14] W. FELLER, An Introduction to Probability Theory and Its Applications, Vol. 2, John Wiley, New
York, 1971.
[15] M. FIEDLER, Uber eine Ungleichung fiir positiv definite Matrizen, Math. Nachr., 23 (1961), pp.
197-199.
[16] P. FILLMORE, On similarity and the diagonal of a matrix, Amer. Math. Monthly, 76 (1969), pp.
167-168.
[17] R. FISHER, Tests of significance in harmonic analysis, in Proc. Roy. Soc. London Ser. A, 125 (1929), pp.
54-59.
[18]1 K. FUGUNAGA, Introduction to Statistical Pattern Recognition, Academic Press, New York, 1972.
[19] S. GEMAN, 4 limit theorem for the norm of random matrices, Ann. Probab., 8 (1980), pp. 252-261.
[20] V. GIRKO, Spectral theory of random matrices, Russian Math Surveys, 40 (1984), pp. 77-120.




ON RANDOM CORRELATION MATRICES 271

[21] 1. GOHBERG AND M. KREIN, Introduction to the Theory of Linear Nonselfadjoint Operators, American
Mathematical Society, Providence, RI, 1969.

[22] G. GoLUB AND C. VAN LOAN, Matrix Computations, The Johns Hopkins University Press, Baltimore,
MD, 1983.

[23] M. GREENWOOD, The statistical study of infectious diseases, J. Roy. Statist. Soc. Ser. A, 109 (1946), pp.
85-110.

[24] U. GRENANDER, Probabilities on Algebraic Structures, John Wiley, New York, 1963.

[25] W. GREUB AND W. RHEINBOLDT, On a generalization of an inequality of L. V. Kantorovich, Proc. Amer.
Math. Soc., 10 (1959), pp. 407-415.

[26] W. HAGER, Condition estimates, SIAM J. Sci. Statist. Comput., 5 (1984), pp. 311-316.

[27] R. HOLMES, A formula for the spectral radians of an operator, Amer. Math. Monthly, 75 (1968), pp.
163-166.

, On random correlation matrices 1. The Toeplitz case, Tech. Report 816, M.I.T. Lincoln Laboratory,
Lexington, MA, 1989; Comm. Statist. B—Simulation Comput., 18 (1989), pp. 1511-1537.

[29] A. HORN, Doubly stochastic matrices and the diagonal of a rotation matrix, Amer. J. Math., 76 (1954),
pp. 620-630.

[30] R. HORN AND C. JOHNSON, Matrix Analysis, Cambridge University Press, New York, 1985.

[31] D. JOHNSON AND W. WELCH, The generation of pseudo-random correlation matrices, J. Statist. Comput.
Simulation, 11 (1980), pp. 55-69.

[32] T.KATO, Estimation of iterated matrices, with application to the von Neumann condition, Numer. Math.,
26 (1960), pp. 22-29.

[33] D. KAzAKOS, Optimal constrained representation and filtering of signals, Signal Process., 5 (1983), pp.
347-353.

[34] M. KENDALL AND P. MORAN, Geometric Probability, Griffin, London, 1963.

[35] P. LANCASTER AND M. TISMENETSKY, The Theory of Matrices, Second Edition, Academic Press, New
York, 1985.

[36] A. LECLERC, Uni borne superieure pour les valeurs d’une matrice symetrique. Applications, C. R. Acad.
Sci. Paris, 287 (1978), pp. A553-555.

[37] P. LEVY, Sur la division d’un segment par des points chosis au hazard, C. R. Acad. Sci. Paris, 208 (1939),
pp. 147-149.

[38] M. MARcus, Eigenvalues, numerical ranges, stability analysis, and applications of number theory to
computing, Annual Scientific Report to Air Force Office of Scientific Research, Institute for Algebra
and Combinatorics, University of California, Santa Barbara, CA, September 1982.

[39] G. MARSAGLIA, Choosing a point from the surface of a sphere, Ann. Math. Statist., 43 (1972), pp.
645-646.

[40] G. MARSAGLIA AND 1. OLKIN, Generating correlation matrices, SIAM J. Sci. Statist. Comput., 5 (1984),
pp. 470-475.

[41] A. MARSHALL AND I. OLKIN, Norms and inequalities for condition numbers, 11, Linear Algebra Appl., 2
(1969), pp. 167-172.

[42] , Inequalities: Theory of Majorization and Its Applications, Academic Press, New York, 1979.

[43] L. MIRSKY, Matrices with prescribed characteristic roots and diagonal elements, J. London Math. Soc.,
33 (1958), pp. 14-21.

[44] P. MORAN, The random division of an interval, Proc. Cambridge Philos. Soc., 89 (1947), pp. 92-98.

[45] L. NACHBIN, The Haar Integral, Van Nostrand, Princeton, 1965.

[46] R. PYKE, Spacings, J. Roy. Statist. Soc. Ser. B, 27 (1965), pp. 395-436.

[47] J. COHEN, H. KESTEN, AND C. NEWMAN, EDS., Random Matrices and Their Applications, Contemporary
Mathematics 50, American Mathematical Society, Providence, RI, 1986.

[48] J. RILEY, Solving systems of linear equations with a positive definite, symmetric, but possibly ill-conditioned
matrix, Math. Comp., 9 (1955), pp. 56-61.

[49] R.RUBINSTEIN, Generating random vectors uniformly inside and on the surface of different regions, European
J. Oper. Res., 10 (1982), pp. 205-209.

[50] L SCHUR, Uber eine Klasse von Mittelbildungen mit Anwendungen die Determinanten, Theorie Sitzungsber.
Berlin Math. Ges., 22 (1923), pp. 9-20.

[51] A. SIEGEL, Testing for periodicity in a time series, J. Amer. Statist. Assoc., 75 (1980), pp. 345-348.

[52] J. SILVERSTEIN, The smallest eigenvalue of a large dimensional Wishart matrix, Ann. Probab., 13 (1985),
pp. 1364-1368.

[53] H. SOLOMON AND M. STEPHENS, On Neyman’s statistic for testing uniformity, Comm. Statist. B—Sim-
ulation Comput., 12 (1983), pp. 127-134.

[54] A. STAM, Limit theorems for uniform distributions on spheres in high-dimensional Euclidean spaces, J.
Appl. Probab., 19 (1982), pp. 221-228.

[28]




272 R. B. HOLMES

[55] F. STEUTEL, Random division of an interval, Statist. Neerlandica, 21 (1967), pp. 231-244.
[56] G. STEWART, Introduction to Matrix Computations, Academic Press, New York, 1973.

[57] , The efficient generation of random orthogonal matrices with an application to condition estimators,
SIAM J. Numer. Anal., 17 (1980), pp. 403-409.
[58] , Collinearity and least squares regression, Statist. Sci., 2 (1987), pp. 68-83.

[59] G. STYAN, Hadamard products and multivariate statistical analysis, Linear Algebra Appl., 6 (1973), pp.
217-240.

[60] L. TAKACS, Harmonic analysis on Schur algebras and its applications in the theory of probability, Probability
Theory and Harmonic Analysis, J. A. Choi and W. Woyczynski, eds., Marcel Dekker, New York,
1986, pp. 227-283.

[61] J. TAYLOR, The condition of Gram matrices and related problems, Proc. Roy. Soc. Edinburgh Sect. A,
90 (1978), pp. 45-56.

[62] H. TROTTER, Eigenvalue distributions of large hermitian matrices; Wigner's semicircle law and a theorem
of Kac, Murdock, and Szego, Adv. in Math., 54 (1984), pp. 67-82.

[63] G. WATSON, Statistics on Spheres, John Wiley, New York, 1983.

[64] W. WHITWORTH, Choice and Chance, Cambridge University Press, Cambridge, U.K., 1887.

[65] E. WIGNER, Random matrices in physics, SIAM Rev., 9 (1967), pp. 1-23.

[66] S. WILKS, Mathematical Statistics, John Wiley, New York, 1962.

[67] Y. YIN AND Z. BaL, Spectra for large dimensional random matrices, in Random Matrices and Their
Applications, J. Cohen, H. Kesten, and C. Newman, eds., American Mathematical Society, Providence,
RI, 1986, pp. 161-167.



SIAM J. MATRIX ANAL. APPL. © 1991 Society for Industrial and Applied Mathematics
Vol. 12, No. 2, pp. 273-291, April 1991 006

RATIONAL ITERATIVE METHODS FOR
THE MATRIX SIGN FUNCTION*

CHARLES KENNEYt AND ALAN J. LAUBt

Abstract. In this paper an analysis of rational iterations for the matrix sign function is presented. This
analysis is based on Padé approximations of a certain hypergeometric function and it is shown that local
convergence results for “multiplication-rich” polynomial iterations also apply to these rational methods. Mul-
tiplication-rich methods are of particular interest for many parallel and vector computing environments. The
main diagonal Padé recursions, which include Newton’s and Halley’s methods as special cases, are globally
convergent and can be implemented in a multiplication-rich fashion which is computationally competitive with
the polynomial recursions (which are not globally convergent). Other rational iteration schemes are also discussed,
including Laurent approximations, Cayley power methods, and globally convergent eigenvalue assignment
methods.

Key words. Padé approximation, matrix sign function, Riccati equations, rational iterations
AMS(MOS) subject classifications. 15A24, 65D99, 65F99

1. Introduction. It is a classical result that the algebraic Riccati equation can be
solved by using an invariant subspace of an associated Hamiltonian matrix. This motivated
the introduction, by Roberts [21] in 1971, of the matrix sign function as a means of
finding the positive and negative invariant subspaces of any matrix X which does not
have eigenvalues on the imaginary axis. This and subsequent work [9] showed that the
matrix sign function could be used to solve many problems in control theory.

The sign of X can be defined constructively as the limit of the Newton sequence

(1.1) X1 =3 X+ X0, Xo=X,
(1.2) sgn (X)= lim X,.
n—>+oo

Newton’s method has the pleasant feature that it is globally convergent; if X has no
eigenvalues on the imaginary axis then the limit in ( 1.2) exists. As a definition, however,
(1.2) does not reveal many of the important properties of the sign function. Because of
this, it is useful to have an equivalent definition based on the Jordan canonical form of
X (see [4], [7]). For a complex scalar z with Re z # 0, define the sign of z by

[ 1 ifRez>0,
sgn z=

1.3
(13) —1 ifRez<0.

For a complex matrix X such that A(X) c C* U C~ (i.e., X has no eigenvalues on the
imaginary axis) let T take X to Jordan form:

[P0
(1.4) X=T [0 N]T,
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contract AFOSR-89-0167.

+ Department of Electrical and Computer Engineering, University of California, Santa Barbara, California
93106 (laub%lanczos@hub.ucsb.edu).

273



274 C. KENNEY AND A. J. LAUB

where Pand N are in block diagonal Jordan form with, respectively, positive and negative
real part eigenvalues. Then the sign of X is given by

- I 0]
(1.5) sgn (X)=T [0 _J T,

where I and —I in (1.5) have the same dimensions as P and N in (1.4). This shows
immediately that the sign of X is a square root of the identity which commutes with X:

(1.6) S%=1, XS=SX,

where S = sgn (X).
Using (1.4) in (1.1), shows that the eigenvalues )x}") of X, are decoupled from each
other and obey the scalar recursions

n 1 n 1
(1.7) A]( H=c >‘j( )+ ) |» A}O):Aj(X)a
2 \

with lim,, . 4o, )\;") = sgn ();). This decoupling greatly simplifies the analysis of methods
like (1.1).

Because of the need for pivoting, matrix inversions are sometimes not as amenable
to parallel or vector implementation as matrix multiplications. Thus, a current trend
in evaluating sgn (X) and related functions such as the polar decomposition [5],
[11], [12] is to favor algorithms which are “multiplication-rich,” such as the Newton—
Schulz iteration

(1.8) Xoe1=3X,(31-X7).

(The recursion (1.8) is obtained from (1.1) by using Schulz’s approximation X! =~
X, + (I — X2)X, as suggested in [12].) This method avoids the matrix inversion in (1.1)
and is quadratically convergent provided

(1.9) I7I-x2| <1,

where | - || is any reasonable matrix norm (see Theorem 5.2). If (1.9) is not satisfied
then a starter method such as (1.1) must be used until |7 — X2|| < 1.

Higher-order polynomial recursions for the polar decomposition of a nonsingular
matrix were developed independently by Kovarik [17] and Leipnik [18] and are applicable
to the matrix sign function. These methods are based on polynomial approximations of
the hypergeometric function

—ey1/2 = 1 §2
(1.10) (1=¢)7Y 1+2g+85+ ,

and generate convergent matrix sequences provided that (1.9) is satisfied. The motivation
for studying this function is that for nonzero real x, sgn x = x/ | x| = x/(1 — £)'/? where
£=1— x2 In § 3, we show that the sufficient condition (1.9) actually provides a rather
good approximation to the true region of convergence for these methods. Consequently,
we might feel that loss of global convergence is the price that must be paid in order to
use multiplication-rich algorithms. Rather surprisingly, this is not the case.

For example, recursions based on rational (Padé) approximations of (1 — £)~!/2
have much larger regions of convergence. In fact, the main diagonal approximations
(those for which the degree m of the denominator is equal to or one greater than the
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degree k of the numerator) lead to globally convergent iterations that satisfy an elegant
error formula:

(1.11) (S=X)(S+X,) ™' =(S—X0)""(S+Xo)™™",

where v = k+ m + 1 is the order of the approximation. (For Newton’s method, a similar
result was proved by Balzer [3, eq. (39)] and by Roberts [21, § 1.3].) These methods
are easily modified to allow exact one-step convergence of specified eigenvalues (much
like the eigenvalue assignment schemes of Balzer in [3]) while still remaining globally
convergent. An analysis of the Halley family of algorithms of Gander [10] for the polar
decomposition shows that these methods belong to this class of assignment procedures.
The work in [10] can also be adapted to give a local convergence theory for general sign
function iterations of the form X, ., = F(X,).

A second family of globally convergent multiplication-rich methods is based on the
Cayley transform

(1.12) Y=(I-X)I+X)",

which takes the positive real part eigenvalues of X inside the unit circle and the negative
real part eigenvalues of X outside the unit circle. If Y is multiplied by itself repeatedly,
then these eigenvalues move toward zero and infinity, respectively. Transforming back
to get X,,

(1.13) X,=(I-Y")I+Y")"!

moves these eigenvalues very near one and minus one, respectively. (If X has —1 as an
eigenvalue, then I + X is singular and a modified version of (1.12), (1.13) must be used.)
A fascinating correspondence between the Cayley power method and the Padé approx-
imation method is that if the power » in (1.13) is equal to 4" in (1.11), then X,, is equal
to X,! This does not mean, however, that these two methods should be viewed as identical
because in this case the Padé method requires » matrix inversions while the Cayley
method requires only two. Similar equivalency results for different members of the Padé
method can also be proved (see Theorem 3.4). An interesting sidelight on the Cayley
power method is that (1.12) can be replaced by any transformation which is a rational
or analytic function of X that takes the right- and left-half complex planes inside and
outside the unit disk, respectively. For example, if Y = ¢™* then Y” is just the fundamental
solution matrix to ¥ = —XY at time »: Y* = e *¥and X, = (I — e "¥)(I + e7*)7\.
Note in this case that I + e~** is never singular, since the eigenvalues of X are not on
the imaginary axis.

In the next section we present the theory of the Padé approximants of (1 — £)~!/2
for k = m — 1, which is based on well-known results for hypergeometric functions. This
theory is then used to analyze scalar sign function recursions in § 3, where we also show
how it can be adapted to give globally convergent eigenvalue assignment iterations. In
§ 4 we consider other rational iterations including Laurent methods. These scalar results
are useful because matrix convergence is predicated on the scalar convergence of the
eigenvalues of X (§ 5). This leads to local convergence results for kK = m — 1, and global
convergence for the main diagonal approximants k = mand k = m — 1.

2. Padé approximations to (1 — &) 7'/2. Let (a), = (a)(@ + 1)- (e + n— 1)
with (a)o = 1, and define the family of hypergeometric functions

(2~1) 2F1(a’ﬁ,79£)= Z(a—)”(&

2,
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From [1],
(2.2) (1=8)7"2=,F (3,1, 1,8)= f(§).

In general, the [k/m] Padé approximant to fis a rational function Py,/Qw» Where
deg (Pin) = k, deg (Qim) = m, and

_PkM(£)= k+m+1
(2.3) (&) ) O(& )-

Because fis a hypergeometric function, a great deal is known about Py, and O, [1].
First of all [13], O is related to the set of orthogonal polynomials over [0, 1] defined
with respect to the weight function w(§£) = (§7"2/x)(1 — &)k 1" mforkz m — 1.
If ¥, is the mth such polynomial with (1) = 1, then

(2.4) Oun( ) = E™Yml(E71),

and Oy,.(0) = 1. From (2.4), the zeros of Oy, are just the reciprocals of the zeros of V.
Since the zeros of ¥, are simple [22] and lie in (0, 1), the zeros of Qx,, are also simple
and lie in (1, o0). (This result could have been anticipated from another point of view
since (1 — £)~'/2 has a natural branch cut along (1, o) and, as noted in [2, pp. 51-57],
the zeros and poles of a Padé approximant tend to fall along the branchcuts of the

functions they approximate.) Denoting the zeros of Oy, by | <z, < z; < *** < Zp, We
may write
(2.5) Ol 8)= 11 (zi—8)/z:.

i=1
This identity is useful for convergence analysis, but a more convenient form [1] is
ka(g) =2F1(_ma _% _ka _k_mag)
- (—m n —3— k n "
26) _ § Cmn(d =R

noo Nl(—k—m),

From [13], Pyx is given by

k

_ (%)n(%_m)m(n_k_m)m
Pl &)= 2 Tyt T =)

En
(2.7) .
=3 Pimg
n=0

The key to the local error analysis of Padé recursions is the following theorem, which
was proved by Leipnik [18, Thm. 1] and stated by Kovarik [17, lemma following Thm.
2] for the polynomial case m = 0.

THEOREM 2.1. Fork=zm — 1,

(2.8) Qim(é)—(l*E)Pim(£)=ifk+’"“( Z Cifi)a

i=1
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wherec; = c(k,m)>0for0 = isp=max (2k+ 1,2m) —(k+ m+ 1), and

(2.9) (=3 .

i=1

Proof. From (2.3) and the fact that Q%,.(§) — (1 — £)P%,,(§) is a polynomial of
orderu + k+m+ 1,

Qim Pkm Pkm
2 — — 2 — =My e EM Zxm
Qim(&) = (1= &) Pim(£) 12 (f ka)(f'l' ka)

=Ek+m+ l( EH: Cigi),
i=1
for some constants ¢y, ¢;, * - - , C,. Setting £ = 1 gives (2.9). It remains to show that the
coefficients ¢; are positive. The idea of the proof is best illustrated by considering the
diagonals, m = k—t,fort = —1,0, 1, - - - , k in the Padé table. (For example, see Table
1.) For the first main diagonal, ¢ = —1, u = 0 and multiplying out the left side of (2.8)
gives ¢ = (g%4")? > 0. For the second main diagonal, = 0, u = 0, and ¢, = (P¥)? >
0. For the first superdiagonal, t = 1, u = 1, and

c=(PE™1)?>0, =P N(PES =P+ PP

In general, for ¢ = 0, u = ¢, and the coefficients, ¢; can be written as the sum of terms of
the form

(2.10) PRI PRES  — PS50,
and

(2.11) PSP,

where

(2.12) 0=r=<s=t=k.

We complete the proof of the theorem by showing that each term of the type (2.10) or
(2.11) is positive. From (2.7),

_ BDirr-s3 1=k (t+r—s—k),_,
w-: 3 )
(2.13) Picir=s (k+r—s)W(t=2k)— (3 +t+r—s)—,’

Since both P¥% , and P’ have sign (—1)*~*,
(2.14) PlE Pkt > 0.
Using (2.13),

- ~ —r)(t—s+r+3%)
PEI (PR = PR )= PR Pl (1 - 8= DU=s : >
k r( k+r—s k+r s+1) k—r L k+ s (S—V+k—t)(k+r_s+l) 0

by (2.14) and (2.12) because (s — r)/(s —r+ k—1t) = 1 and
(t—s+r+H/(k—s+r+1)<1.

(Note that the degenerate case k = ¢t = s = r does not cause a problem because (2.10)
then reduces to P§° P, which is positive by (2.14).) O
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3. Scalar Padé recursions. As we show in § 5, the convergence of the matrix sequence

{ X, } is determined by the convergence of the scalar sequences for the eigenvalues of Xj.
The scalar Padé recursions have the form

X P 1= x7)
" Ol 1= x7)°
where P,/ Qo is the [ k/m] Padé approximant to (1 — £)~'/2. Table 1 gives the expres-

sions for the right-hand side of (3.1) for k and m between zero and three. For example,
the case k = 0, m = 1 gives

(3.1)

Xn+1=

2x,

(32) T

Xn+1™=
which might be called the “inverse” Newton method for solving the equation x> — | =

0 since the values x;, x,,- - - generated by (3.2) are the inverses of those generated by
the “regular” Newton method

1 |
(3.3) xn+1=§(x,,+—).
Xn
The case k = 1, m = 1 gives Halley’s method (see [10] for a related application). The
next theorem generalizes the local convergence results of Leipnik [18] and Kovarik [17].

THEOREM 3.1. Let |1 — x3| <1 for xo€C and define {x,} by (3.1) for
kzm— 1. Then

(34) [1=x3] < |1 —x3|krmeo,
and
(3.5) lim x,=sgn (xp).

n—>+oo

Proof. By (3.1),
(3.6) 1= x1=(Qm(&) = (1 — &) Pin(£))/ Qkm(£),

where £ = 1 — x3. But Qy,, has zeros z;, - -, z,,in (1, +0), so by (2.5)

rlzi—El Gz el Gz
1 1 1
(3.7) | Qi £)1 = T1 z]] > = Qin( 1).
i=1 i i=1 i i=1 “i
TABLE 1
Padé recursions for the matrix sign function.
k=0 k=1 k=2 k=3
_ X 2 X 2 4 X 2 4 6
m=0|x 5(3—x) §(15—10x +3x% E(35—35x +21x%—5x°)
w1 2x x(3+x?) x (154 10x> —x*) x (35+35x% - 7x* +x9)
1+ x? 1+3x2 4 (1+5x) 8 (1+7x?)
m=2 8x 4x(1+x?) x(5+ 10x2+ x%) X (35+105x2+21x* — x9)
3+6x2—x* 1+6x2+x* 1+ 10x2+ 5x* 2 (3+42x2+35x%
m=3 16x 8x(3+5x2) 2x(3+10x2+3x%  x(7+35x%+21x*+x9)
S5+ 15x2—5x*+ x5  54+45x2+15x*—x% 14+ 15x2+15x*+x®  1+21x2+35x*+ 7x¢
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Using Theorem 2.1 in (3.6) gives

—x}| < |s|'°+m+‘( o c,~|s|")/|ka<s>|2

i=1

= |1—x3|"+"‘“( 2 ci)/Ika(«E)l2

i=1

S 1=x3 1 1 Qfn(1) /| Quon )12

éll-x%|k+m+l

by (2.9) and (3.7). Repeating this argument gives (3.4). From (3.4), x2 — 1. To see

that x, = sgn (Xo), let A(x) = xPin(1 — x2)/ Qun(1 — x?). Since the only poles of 4 lie
on the imaginary axis, / is continuous on the set

(3.8) S={x:|1-x2| <1}=S,US_,

where Sy = {xe€S:Rex>0},S_-={xeS:Rex<0}.By(3.4), A takes S into S.
Since S, N S_ = & and each is a connected set, 4(.S,) must lie entirely in